Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title dimeric complex, [Cu2(C4H4O4)2(C7H6N2S)4], which possesses a centre of symmetry, the Cu atoms are enclosed in a 14-membered ring. They adopt a distorted square-bipyramidal (4+2) coordination. The four closest donor atoms are two N atoms of 2-amino­benzo­thiazole ligands and two O atoms of the succinate carboxylate groups. They form a square-planar cis arrangement, with an average Cu—N distance of 2.003 (3) Å and Cu—O distances of 1.949 (3) and 1.965 (3) Å. Two longer Cu—O bonds of 2.709 (3) and 2.613 (3) Å involving the remaining O atoms of the carboxylate groups complete the sixfold coordination of the Cu atoms. The H atoms of each amino group of the 2-amino­benzo­thiazole molecules form intra- and inter­molecular N—H...O hydrogen bonds. A nearly perpendicular inter­molecular C—H...Cg interaction (Cg is the centroid of the imidazole ring) is observed. The intramolecular Cu...Cu distance is 6.384 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199013013/ka1341sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013013/ka1341Isup2.hkl
Contains datablock I

CCDC reference: 140922

Comment top

This work forms part of a continuing study of CuII complexes with benzimidazole and dicarboxylic acids (Tosik & Bukowska-Strzyżewska, 1992; Tosik et al., 1995a,b; Sieroń & Bukowska-Strzyżewska, 1998, 1999a), and with carboxylate anions and 2-aminobenzothiazole (Sieroń & Bukowska-Strzyżewska, 1999b), giving a second example of Cu–(2-aminobenzothiazole) coordination. In the molecule of the title compound, (I) (Fig. 1), both succinate ions adopt the rare synclinal conformation with respect to the central C—C bonds [C8–C9–C19i–C18i = −73.2 (5)°; symmetry code: (i) −x, −y, 1 − z] and take the bridge position between the two Cu atoms, forming a dinuclear centrosymmetrical complex with a Cu···Cu distance of 6.384 (2) Å. A 14-membered ring is formed around a centre of symmetry. The Cu atoms adopt very distorted square-bipyramidal coordinations. The four basal bonds are formed by two cis-N atoms of 2-aminobenzothiazole, with an average Cu—N distance of 2.003 (3) Å, and two cis-O atoms of two carboxylate groups, with Cu—O distances of 1.949 (3) and 1.965 (3) Å. The square-planar coordination is visible deformed in the direction of the tetrahedral coordination. The deviations from the N1/N11/O1/O11 least-square plane are −0.404 (1) and −0.472 (2) Å for the trans-situated N1 and O1 atoms, and O.444 (2) and 0.433 (2) Å for the N11 and O11 atoms, respectively. The deviation of Cu atom from this plane is only 0.022 (2) Å. Two distinctly longer Cu—O2 and Cu—O12 bonds of 2.709 (3) and 2.613 (3) Å complete the sixfold coordination. The observed O2—Cu—O12 angle is only 133.2 (1)°. The dihedral angle between the planes of the two cis-carboxylate groups is 89.9 (5)° and between the average planes of the two 2-aminobenzothiazole ligands is 82.2 (1)°. The five and six-membered rings of the 2-aminobenzothiazole molecules are ideally planar and in one molecule ideally coplanar. In the second molecule (containing S1 and N1 atoms), the five and six-membered rings form a dihedral angle of 2.7 (2)°.

The geometry of intra- and intermolecular hydrogen bonds and of the intermolecular C—H···Cg(π-ring) interaction, where Cg is the centroid of the imidazole ring (containing S1 and N1), are given in Table 2. The observed H···Cg distance is 2.69 Å. The molecular packing is illustrated in Fig. 2. The trans-situated carboxylate ions and 2-aminobenzothiazole molecules are connected by N—H···O intramolecular hydrogen bonds, forming six-membered rings. The individual carboxylate ions are differently involved in the intermolecular N—H···O hydrogen-bond system. The C8/O1/O2 group forms an intramolecular hydrogen bond through the O2 atom and an intermolecular hydrogen bond through the O1 atom. In the C18/O11/O12 group, only O12 is involved in hydrogen bonding, forming both inter- and intramolecular N2(12)—H···O12 hydrogen bonds. This causes distinctly different delocalization of π bonds in both carboxylic groups. The bonds C8–O1 [1.284 (5) Å] and C8–O2 [1.221 (4) Å] are differentiated, while C18–O11 [1.258 (4) Å] and C18–O12 [1.255 (4) Å] are practically identical. The different structure of both Cu-coordinated carboxylic groups causes the differentiation of both short and long Cu—O bonds; Cu–O1 [1.949 (3) Å] is distinctly shorter than Cu—O11 [1.965 (3) Å], and Cu–O2 [2.709 (3) Å] is longer than Cu–O12 [2.613 (3) Å]. The observed regularity is consistent with the valence bond sum rule (Brown, 1994). The application of the bond valence–bond length correlation allows comparison of the relative importance of Cu—N and different Cu—O bonds of the CuII polyhedron and also allows a check of the valence sum rule. According to Brown (1994), the bond length to bond valence correlation represents a measure of the strength of a bond that is independent of the atomic size. The valence sum rule states that the sum of the valences of the bond formed by an atom is equal to the valence (formal oxidation state) of the atom (Vi = Σνij). The bond valences were computed according to Brown (1992, 1997) and O'Keeffe & Brese (1991) as νij = exp[(Rij-dij)/0.37], where Rij is the bond-valence parameter (in the formal sense it is the single-bond length between the i and j atoms) and dij is the observed bond length. RCu—O and RCu—N were taken as 1.679 and 1.713 Å (see Sieroń & Bukowska-Strzyżewska, 1999a). The computed bond valences of the CuII atom are: νCu—O1 = 0.482, νCu—O2 = 0.062, νCu—O11 = 0.462, νCu—O12 = 0.080, νCu—N1 = 0.458, νCu—N2 = 0.455 v.u. (valence unit), thus, the computed valence of the CuII atoms (VCu) is 2.00 v.u.

The conformations on the two terminal C—C bonds of the succinate ion are different. On the C18—C19 bond, the conformations are synperiplanar and antiperiplanar [torsion angles O11—C18—C19—C9i = 5.0 (6)° and O12—C18—C19—C9i = −175.2 (4)°], and on the C8—C9 bond, the conformations are antiperiplanar and synclinal [torsion angles O1–C8–C9–C19i = 151.4 (4) and O2–C8–C9–C19i = −32.0 (6)°]. The structure illustrates the influence of weak hydrogen bonds on the conformation of the aliphatic chain and the differentiation of Cu—O bond lengths.

Compound (I) is a second example of bis(µ-dicarboxylate) coordination in a CuII complex with formation of a dimeric molecular structure. A similar coordination was observed in the complex bis[(µ2-adipato-O,O':O'',O''')(N,N-diethylenediamine)copper(II)] (Pajunen & Nasakkala, 1977).

Experimental top

The title complex was prepared by dissolving equimolar quantities (1 mmol) of 2-aminobenzothiazole, succinic acid and copper(II) chloride dihydrate (CuCl2.2H2O) in water (80 ml). After heating to boiling, the solution was filtered and allowed to cool. After several hours, green crystals of (I) were obtained.

Refinement top

Refined C—H distances are in the range 0.82 (6)–0.98 (4) Å.

Computing details top

Data collection: P3 software; cell refinement: P3 software; data reduction: XDISK in SHELXTL/PC (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: XP in SHELXTL/PC; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of (I) showing intra- and intermolecular hydrogen bonds, and intermolecular C—H···π interactions.
Bis[bis(2-amino-1,3-benzothiazole-N3)(µ-succinato-O,O',O'',O''')copper(II)] top
Crystal data top
[Cu2(C4H4O4)2(C7H6N2S)4]F(000) = 980
Mr = 960.08Dx = 1.630 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 32 reflections
a = 9.239 (2) Åθ = 4.2–14.3°
b = 15.643 (3) ŵ = 1.36 mm1
c = 13.859 (3) ÅT = 293 K
β = 102.37 (2)°Prism, green
V = 1956.5 (7) Å30.23 × 0.13 × 0.13 mm
Z = 2
Data collection top
Siemens P3
diffractometer
2516 reflections with I > 2σ(I)
Radiation source: FK60-10 Siemens Mo tubeRint = 0.035
Graphite monochromatorθmax = 25°, θmin = 2.0°
ω–2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.740, Tmax = 0.848l = 016
3561 measured reflections2 standard reflections every 100 reflections
3414 independent reflections intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.041w = 1/[σ2(Fo2) + (0.029P)2 + 2.511P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.33 e Å3
3414 reflectionsΔρmin = 0.28 e Å3
326 parameters
Crystal data top
[Cu2(C4H4O4)2(C7H6N2S)4]V = 1956.5 (7) Å3
Mr = 960.08Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.239 (2) ŵ = 1.36 mm1
b = 15.643 (3) ÅT = 293 K
c = 13.859 (3) Å0.23 × 0.13 × 0.13 mm
β = 102.37 (2)°
Data collection top
Siemens P3
diffractometer
2516 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.740, Tmax = 0.8482 standard reflections every 100 reflections
3561 measured reflections intensity decay: none
3414 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.090All H-atom parameters refined
S = 1.03Δρmax = 0.33 e Å3
3414 reflectionsΔρmin = 0.28 e Å3
326 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. The title structure was solved by direct methods and refined by full-matrix least-squares calculations. All non-H atoms were refined anisotropically. All H atoms were located from a difference synthesis and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.21597 (5)0.14174 (3)0.44318 (3)0.02887 (14)
S10.02645 (13)0.40288 (7)0.34243 (9)0.0489 (3)
O10.2069 (3)0.02104 (17)0.4075 (2)0.0399 (7)
O20.0109 (3)0.06109 (18)0.3208 (2)0.0461 (7)
N10.1651 (3)0.26506 (19)0.4161 (2)0.0318 (7)
N20.0472 (4)0.2410 (3)0.2925 (3)0.0454 (10)
C10.0489 (4)0.2918 (2)0.3505 (3)0.0333 (9)
C20.1844 (5)0.4141 (3)0.4372 (3)0.0405 (10)
C30.2447 (6)0.4886 (3)0.4831 (4)0.0529 (13)
C40.3697 (6)0.4822 (3)0.5565 (4)0.0518 (12)
C50.4345 (5)0.4032 (3)0.5834 (3)0.0450 (11)
C60.3734 (5)0.3291 (3)0.5383 (3)0.0378 (10)
C70.2453 (4)0.3341 (2)0.4656 (3)0.0324 (9)
C80.0815 (4)0.0057 (2)0.3494 (3)0.0330 (9)
C90.0591 (4)0.0856 (3)0.3135 (3)0.0355 (9)
S110.67702 (13)0.09556 (8)0.39673 (10)0.0548 (3)
O110.0856 (3)0.12443 (17)0.53640 (18)0.0365 (6)
O120.3021 (3)0.14884 (18)0.6353 (2)0.0403 (7)
N110.4114 (3)0.1470 (2)0.4028 (2)0.0332 (7)
N120.5517 (5)0.0973 (3)0.5535 (3)0.0492 (10)
C110.5323 (4)0.1145 (2)0.4575 (3)0.0377 (10)
C120.5644 (5)0.1335 (3)0.2882 (3)0.0453 (11)
C130.5944 (6)0.1410 (3)0.1945 (4)0.0558 (13)
C140.4876 (7)0.1733 (3)0.1196 (4)0.0596 (15)
C150.3510 (6)0.1987 (3)0.1360 (4)0.0519 (13)
C160.3191 (5)0.1913 (3)0.2280 (3)0.0408 (10)
C170.4249 (5)0.1591 (2)0.3050 (3)0.0389 (10)
C180.1670 (4)0.1302 (2)0.6214 (3)0.0307 (8)
C190.1000 (5)0.1146 (3)0.7098 (3)0.0360 (9)
H30.201 (6)0.534 (4)0.469 (4)0.09 (2)*
H40.408 (4)0.528 (3)0.586 (3)0.043 (12)*
H50.516 (5)0.402 (3)0.632 (3)0.053 (14)*
H60.416 (4)0.278 (2)0.553 (3)0.030 (10)*
H130.689 (6)0.121 (3)0.188 (4)0.071 (16)*
H140.508 (5)0.179 (3)0.059 (4)0.067 (15)*
H150.284 (5)0.218 (3)0.090 (4)0.057 (16)*
H160.229 (4)0.207 (2)0.238 (3)0.025 (10)*
H210.041 (5)0.188 (3)0.301 (4)0.057 (15)*
H220.108 (5)0.264 (3)0.250 (3)0.040 (13)*
H810.120 (4)0.123 (2)0.364 (3)0.033 (10)*
H820.096 (4)0.084 (2)0.253 (3)0.037 (11)*
H1210.477 (6)0.100 (3)0.579 (3)0.056 (15)*
H1220.620 (6)0.067 (3)0.581 (4)0.061 (16)*
H1910.163 (4)0.079 (2)0.746 (3)0.019 (9)*
H1920.115 (5)0.166 (3)0.745 (3)0.049 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0257 (2)0.0294 (2)0.0318 (2)0.0018 (2)0.00677 (17)0.0019 (2)
S10.0522 (7)0.0339 (6)0.0553 (7)0.0111 (5)0.0003 (6)0.0072 (5)
O10.0253 (14)0.0327 (15)0.0606 (19)0.0008 (12)0.0069 (13)0.0077 (13)
O20.0544 (19)0.0363 (16)0.0424 (17)0.0082 (14)0.0011 (14)0.0051 (13)
N10.0306 (18)0.0306 (17)0.0347 (18)0.0026 (14)0.0083 (14)0.0033 (14)
N20.042 (2)0.041 (2)0.046 (2)0.0055 (19)0.0083 (18)0.0049 (19)
C10.033 (2)0.031 (2)0.036 (2)0.0044 (17)0.0086 (18)0.0011 (17)
C20.044 (3)0.035 (2)0.042 (2)0.0038 (19)0.010 (2)0.0003 (19)
C30.069 (4)0.032 (3)0.058 (3)0.002 (2)0.013 (3)0.001 (2)
C40.067 (3)0.043 (3)0.047 (3)0.009 (3)0.014 (2)0.013 (2)
C50.049 (3)0.049 (3)0.038 (2)0.012 (2)0.009 (2)0.005 (2)
C60.041 (2)0.037 (2)0.036 (2)0.0031 (19)0.0095 (19)0.0007 (18)
C70.036 (2)0.033 (2)0.031 (2)0.0002 (17)0.0129 (17)0.0024 (16)
C80.037 (2)0.030 (2)0.035 (2)0.0038 (18)0.0152 (19)0.0026 (17)
C90.034 (2)0.039 (2)0.036 (2)0.0010 (18)0.0139 (19)0.0002 (19)
S110.0350 (6)0.0591 (8)0.0765 (9)0.0064 (5)0.0255 (6)0.0020 (6)
O110.0353 (15)0.0439 (17)0.0301 (14)0.0045 (12)0.0063 (12)0.0000 (12)
O120.0338 (15)0.0427 (16)0.0447 (16)0.0085 (13)0.0092 (12)0.0041 (14)
N110.0246 (16)0.0314 (17)0.0474 (19)0.0001 (14)0.0162 (14)0.0049 (15)
N120.033 (2)0.056 (3)0.059 (3)0.010 (2)0.011 (2)0.009 (2)
C110.025 (2)0.033 (2)0.058 (3)0.0009 (17)0.0162 (19)0.0025 (19)
C120.044 (2)0.039 (2)0.061 (3)0.009 (2)0.029 (2)0.012 (2)
C130.055 (3)0.052 (3)0.071 (3)0.011 (3)0.037 (3)0.011 (3)
C140.081 (4)0.053 (3)0.058 (3)0.025 (3)0.047 (3)0.018 (3)
C150.066 (4)0.049 (3)0.044 (3)0.016 (3)0.017 (3)0.008 (2)
C160.037 (2)0.041 (2)0.048 (3)0.002 (2)0.018 (2)0.005 (2)
C170.042 (2)0.031 (2)0.048 (2)0.0073 (18)0.019 (2)0.0063 (18)
C180.030 (2)0.0248 (19)0.037 (2)0.0012 (16)0.0063 (16)0.0020 (16)
C190.035 (2)0.040 (2)0.033 (2)0.0070 (19)0.0048 (18)0.0003 (19)
Geometric parameters (Å, º) top
Cu—O11.949 (3)C9—C19i1.506 (5)
Cu—O22.709 (3)C9—H810.98 (4)
Cu—O111.965 (3)C9—H820.98 (4)
Cu—O122.613 (3)O11—C181.258 (4)
Cu—N12.002 (3)O12—C181.255 (4)
Cu—N112.004 (3)S11—C111.751 (4)
O1—C81.284 (5)S11—C121.740 (5)
O2—C81.221 (4)N11—C111.310 (5)
S1—C11.751 (4)N11—C171.400 (5)
S1—C21.750 (4)N12—C111.331 (6)
N1—C11.317 (5)N12—H1210.84 (5)
N1—C71.403 (5)N12—H1220.82 (5)
N2—C11.327 (5)C12—C131.390 (6)
N2—H210.84 (5)C12—C171.416 (6)
N2—H220.81 (4)C13—C141.366 (8)
C2—C31.385 (6)C13—H130.95 (5)
C2—C71.394 (5)C14—C151.388 (7)
C3—C41.370 (7)C14—H140.91 (5)
C3—H30.82 (6)C15—C161.374 (6)
C4—C51.389 (7)C15—H150.85 (5)
C4—H40.86 (4)C16—C171.378 (6)
C5—C61.379 (6)C16—H160.90 (4)
C5—H50.89 (4)C18—C191.506 (5)
C6—C71.383 (5)C19—C9i1.506 (5)
C6—H60.90 (4)C19—H1910.88 (3)
C8—C91.512 (5)C19—H1920.94 (4)
O1—Cu—O253.45 (10)O1—C8—C9115.1 (3)
O1—Cu—O1191.98 (11)C19i—C9—C8114.4 (3)
O1—Cu—O12106.69 (11)C19i—C9—H81111 (2)
O1—Cu—N1152.89 (12)C8—C9—H81108 (2)
O1—Cu—N1187.75 (12)C19i—C9—H82109 (2)
O2—Cu—O1181.17 (10)C8—C9—H82102 (2)
O2—Cu—O12133.15 (9)H81—C9—H82112 (3)
O2—Cu—N1102.25 (11)C11—S11—C1288.9 (2)
O2—Cu—N11117.82 (11)C18—O11—Cu106.1 (2)
O11—Cu—O1255.36 (9)C18—O12—Cu76.0 (2)
O11—Cu—N195.97 (12)C11—N11—C17111.8 (3)
O11—Cu—N11154.90 (12)C11—N11—Cu122.0 (3)
O12—Cu—N199.11 (11)C17—N11—Cu123.2 (3)
O12—Cu—N11100.77 (11)C11—N12—H121118 (3)
N1—Cu—N1195.60 (13)C11—N12—H122121 (4)
C1—S1—C289.04 (19)H121—N12—H122117 (5)
C8—O1—Cu108.9 (2)N11—C11—N12124.9 (4)
C8—O2—Cu74.6 (2)N11—C11—S11115.5 (3)
C1—N1—C7111.1 (3)N12—C11—S11119.6 (3)
C1—N1—Cu124.0 (3)C13—C12—C17120.1 (5)
C7—N1—Cu124.9 (2)C13—C12—S11129.4 (4)
C1—N2—H21119 (3)C17—C12—S11110.6 (3)
C1—N2—H22117 (3)C14—C13—C12119.0 (5)
H21—N2—H22124 (5)C14—C13—H13125 (3)
N1—C1—N2124.7 (4)C12—C13—H13116 (3)
N1—C1—S1115.3 (3)C13—C14—C15121.1 (5)
N2—C1—S1120.0 (3)C13—C14—H14119 (3)
C3—C2—C7121.8 (4)C15—C14—H14120 (3)
C3—C2—S1128.2 (4)C16—C15—C14120.7 (5)
C7—C2—S1110.1 (3)C16—C15—H15118 (3)
C4—C3—C2118.2 (5)C14—C15—H15122 (3)
C4—C3—H3122 (4)C15—C16—C17119.5 (4)
C2—C3—H3120 (4)C15—C16—H16120 (2)
C3—C4—C5120.7 (5)C17—C16—H16120 (2)
C3—C4—H4119 (3)C16—C17—N11127.2 (4)
C5—C4—H4120 (3)C16—C17—C12119.7 (4)
C6—C5—C4121.0 (4)N11—C17—C12113.2 (4)
C6—C5—H5121 (3)O11—C18—O12122.4 (3)
C4—C5—H5117 (3)O12—C18—C19118.8 (3)
C5—C6—C7119.1 (4)O11—C18—C19118.8 (3)
C5—C6—H6122 (2)C9i—C19—C18115.3 (3)
C7—C6—H6119 (2)C9i—C19—H191115 (2)
C6—C7—C2119.2 (4)C18—C19—H191103 (2)
C6—C7—N1126.3 (4)C9i—C19—H192113 (3)
C2—C7—N1114.5 (3)C18—C19—H192104 (3)
O1—C8—O2123.0 (4)H191—C19—H192105 (3)
O2—C8—C9121.8 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O20.84 (5)2.01 (5)2.852 (5)176 (5)
N2—H22···O12ii0.81 (4)2.12 (4)2.890 (5)159 (5)
N12—H121···O120.84 (5)2.09 (5)2.894 (5)161 (5)
N12—H122···O1iii0.82 (5)2.09 (5)2.859 (5)157 (5)
C14—H14···Cgiv0.91 (5)2.693.563162
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C4H4O4)2(C7H6N2S)4]
Mr960.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.239 (2), 15.643 (3), 13.859 (3)
β (°) 102.37 (2)
V3)1956.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.23 × 0.13 × 0.13
Data collection
DiffractometerSiemens P3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.740, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
3561, 3414, 2516
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.090, 1.03
No. of reflections3414
No. of parameters326
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: P3 software, XDISK in SHELXTL/PC (Sheldrick, 1990), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997b), XP in SHELXTL/PC, SHELXL97.

Selected geometric parameters (Å, º) top
Cu—O11.949 (3)N1—C11.317 (5)
Cu—O22.709 (3)N1—C71.403 (5)
Cu—O111.965 (3)N2—C11.327 (5)
Cu—O122.613 (3)O11—C181.258 (4)
Cu—N12.002 (3)O12—C181.255 (4)
Cu—N112.004 (3)S11—C111.751 (4)
O1—C81.284 (5)S11—C121.740 (5)
O2—C81.221 (4)N11—C111.310 (5)
S1—C11.751 (4)N11—C171.400 (5)
S1—C21.750 (4)N12—C111.331 (6)
O1—Cu—O253.45 (10)N1—C1—N2124.7 (4)
O1—Cu—O1191.98 (11)N1—C1—S1115.3 (3)
O1—Cu—O12106.69 (11)N2—C1—S1120.0 (3)
O1—Cu—N1152.89 (12)C3—C2—S1128.2 (4)
O1—Cu—N1187.75 (12)C7—C2—S1110.1 (3)
O2—Cu—O1181.17 (10)C6—C7—N1126.3 (4)
O2—Cu—O12133.15 (9)C2—C7—N1114.5 (3)
O2—Cu—N1102.25 (11)O1—C8—O2123.0 (4)
O2—Cu—N11117.82 (11)C11—S11—C1288.9 (2)
O11—Cu—O1255.36 (9)C11—N11—C17111.8 (3)
O11—Cu—N195.97 (12)N11—C11—N12124.9 (4)
O11—Cu—N11154.90 (12)N11—C11—S11115.5 (3)
O12—Cu—N199.11 (11)N12—C11—S11119.6 (3)
O12—Cu—N11100.77 (11)C13—C12—S11129.4 (4)
N1—Cu—N1195.60 (13)C17—C12—S11110.6 (3)
C1—S1—C289.04 (19)N11—C17—C12113.2 (4)
C1—N1—C7111.1 (3)O11—C18—O12122.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O20.84 (5)2.01 (5)2.852 (5)176 (5)
N2—H22···O12i0.81 (4)2.12 (4)2.890 (5)159 (5)
N12—H121···O120.84 (5)2.09 (5)2.894 (5)161 (5)
N12—H122···O1ii0.82 (5)2.09 (5)2.859 (5)157 (5)
C14—H14···Cgiii0.91 (5)2.693.563162
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds