Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Cu4(C2H3O2)6(OH)2(C5H11N)4]·2H2O, possesses an unusual inversion-symmetric tetra­nuclear copper framework, with each CuII atom displaying a square-pyramidal geometry and one additional long Cu...O contact. The four piperidine ligands are terminal, one at each CuII atom, and the two hydroxide ligands are triply bridging. The six acetate ligands exhibit two distinct coordination modes, namely as two monodentate acetates and four bridging acetates that bridge the two inequivalent copper centres. The noncoordinating acetate O atom is involved in intra­molecular hydrogen bonding with H atoms from the hy­drox­ide and one piperidine ligand. In addition, extensive inter­molecular hydrogen bonding involving the solvent water mol­ecules is observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111007918/jz3201sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111007918/jz3201Isup2.hkl
Contains datablock I

CCDC reference: 824037

Comment top

We have recently been interested in the preparation of oxindoles using copper catalysis (Klein et al., 2010). In the course of this investigation, we found that the addition of piperidine assisted turnover of the catalyst under certain reaction conditions. In an attempt to isolate the active copper species, we treated Cu(OAc)2.H2O with piperidine in dimethylformamide (or toluene), which resulted in the formation of a dark-blue solution. After solvent removal and crystallization, we reproducibly obtained the title complex, [Cu4(C2H3O2)6(OH)2(C5H11N)4].2H2O, (I). Tetrameric complexes of Cu that possess bridging O atoms have been reported previously. Most of these complexes display a cubane-type structure [for a recent example containing µ3-hydroxide O atoms, see Eberhardt et al. (2005)].

The title complex, (I) (Fig. 1), is inversion symmetric; the asymmetric unit contains the bis-copper(II) moiety [Cu2(OAc)3OH(C5H11N)2] and a water of crystallization. Ignoring weak Cu···O contacts > 2.5 Å (see below), the acetate ligand based on atoms O1 and O2 is monodentate via O1 at Cu1, the bridging acetate based on atoms O3 and O4 bridges Cu1 and Cu2i, and the bridging acetate based on atoms O5 and O6 bridges Cu1 and Cu2 within the asymmetric unit. Hydroxide atom O7 bridges Cu1, Cu2 and Cu2i [symmetry code: (i) -x+1, -y+1, -z+1]. Each piperidine ligand is coordinated to one copper centre in the usual fashion.

The geometry about both Cu1 and Cu2 is, in both cases, a distorted square-based pyramid with an additional long contact that completes a highly distorted octahedron. For Cu1 (Table 2), the principal coordinating atoms are N1, O1, O3 and O7, which are approximately coplanar (r.m.s. deviation = 0.20 Å), forming the base of the square pyramid. Atom O6 lies at the apex of the square pyramid with a longer Cu—O bond of 2.2434 (10) Å associated with Jahn–Teller distortion. On the other side of the pyramid base, atom O4 has a weak contact of 2.6905 (11) Å to Cu1, although the Cu—O distance is long and the angle of 60.6° of Cu1···O4 to the plane deviates significantly from an ideal right angle. Similarly, for Cu2, the pyramid base is formed by N2, O5, O7 and O7i (Table 3; r.m.s. deviation from the plane = 0.21 Å). Atom O4i lies at the apex and is approximately perpendicular to the plane, whereby again the Cu2–Ayom O3 lies on the opposite side of the pyramid base with a still weaker contact of 2.8452 (10) Å.

The simplified framework of the tetranuclear unit is shown in Fig. 2. If the more distant apical ligands with Cu···O > 2 Å are ignored, the overall geometry within the tetracopper structure can be regarded as consisting of a central planar dimeric copper complex based on two Cu2 units, with two planar monocopper complexes based on Cu1 to either side. The dimeric complex centres about the inversion-symmetric four-membered ring formed by two Cu2 atoms and two hydroxide O7 atoms. The angle between the monomeric and dimeric planes is 75.40 (3)°. The three components are joined not only by the shared hydroxide ligands, but also by apical acetate O atoms, viz. Cu1—O6 and Cu2—O4. This construction differs from that of the previously reported tetrameric Cu–Schiff base complex (Pradeep et al., 2006), which can be regarded as consisting of a pair of planar dimeric copper complexes that are parallel and linked by four long axial Cu—O bridges.

Acetate atom O2 is not involved in coordination to the metal centres. Instead, it accepts two intramolecular hydrogen bonds, one from a hydroxide H atom, and one from the H atom at N2i. The water of crystallization, O8, forms four hydrogen bonds, acting as an acceptor for N1, a donor to O6 and forming a three-centre hydrogen bond from H8D to O4 and O5 (for details and symmetry codes, see Table 1).

The packing is largely governed by the hydrogen-bonding framework with each complex bonding to four waters which, in turn, hydrogen bond to four adjacent complexes. This produces a two-dimensional hydrogen-bonded layer of the complexes parallel to (100) (Fig. 3), and concomitantly a hydrophobic region where the methylenes of the piperidines from adjacent layers are in close proximity and are partially interleaved (Fig. 4).

Related literature top

For related literature, see: Eberhardt et al. (2005); Klein et al. (2010); Pradeep et al. (2006).

Experimental top

Piperidine (9.90 ml, 10 mmol, 10 equivalents) was added dropwise to a stirred suspension of Cu(OAc)2.H2O (2.00 g, 10 mmol, 1 equivalent) in dimethylformamide or toluene (10 ml). The resulting mixture was stirred for 15 min at room temperature, filtered through a plug of cotton wool and the solvent was removed under reduced pressure at room temperature followed by co-evaporation with n-pentane (2 × 5 ml). Trituration with n-pentane (25 ml) resulted in a blue solid, which was filtered off and washed with n-pentane (2 × 50 ml). The resulting solid was dissolved in a minimum amount of CH2Cl2 and was layered with n-pentane to give crystals suitable for X-ray analysis. Repeated preparation of the complex resulted in samples with the same unit cell, confirming the reproducibility of the above procedure. Attempts to record the 1H and 13C NMR spectra of the complex proved impossible, consistent with its paramagnetic nature.

Refinement top

The methylene H atoms were placed at calculated positions, with C—H = 0.99 Å and H—C—H = 109.5°, and refined using a riding model. Methyl groups of the acetate ligands were modelled as rigid groups (C—H = 0.98 Å and H—C—H = 109.5°) that were allowed to rotate but not tip. U(H) values were fixed to mUeq(C), with m = 1.2 for methylene and 1.5 for methyl H atoms. The hydroxide and amine H atoms were located in difference maps and refined freely. The water H atoms were also located in difference maps and were refined with O—H bond lengths fixed to be 1.2Ueq(O8).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 for Windows (Farrugia, 1998) and Mercury (CCDC, 2010); software used to prepare material for publication: SHELXTL (Bruker, 2003).

Figures top
[Figure 1] Fig. 1. View of the of the title tetranuclear copper complex. H atoms and solvent water molecules have been omitted, as have Cu···O contacts >2.5 Å. The asymmetric unit corresponds to half the complex. Ellipsoids are drawn at 50% probability levels. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. A simplified view of the central core of the complex showing ligand atoms coordinating to the Cu atoms. Long Cu···O contacts are indicated as pale bonds. Ellipsoids are drawn at 50% probability levels. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 3] Fig. 3. Packing diagram for the tetranuclear complex (H atoms omitted), viewed perpendicular to (100). Hydrogen bonds are indicated as thin lines.
[Figure 4] Fig. 4. Packing of the tetranuclear complex (H atoms omitted), viewed parallel to the b axis, showing hydrogen-bonded layers with intercalation of piperidine rings between these layers.
Tetra-µ2-acetato-diacetatodi-µ3-hydroxido-tetrakis[piperidinecopper(II)] dihydrate top
Crystal data top
[Cu4(C2H3O2)6(OH)2(C5H11N)4]·2H2OF(000) = 1064
Mr = 1019.06Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8995 reflections
a = 11.6024 (6) Åθ = 2.3–30.0°
b = 14.0371 (7) ŵ = 1.94 mm1
c = 17.2020 (9) ÅT = 110 K
β = 126.970 (1)°Shard, blue
V = 2238.3 (2) Å30.45 × 0.30 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
6505 independent reflections
Radiation source: fine-focus sealed tube5935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1616
Tmin = 0.600, Tmax = 0.747k = 1919
33084 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.7472P]
where P = (Fo2 + 2Fc2)/3
6505 reflections(Δ/σ)max = 0.002
276 parametersΔρmax = 0.84 e Å3
2 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu4(C2H3O2)6(OH)2(C5H11N)4]·2H2OV = 2238.3 (2) Å3
Mr = 1019.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.6024 (6) ŵ = 1.94 mm1
b = 14.0371 (7) ÅT = 110 K
c = 17.2020 (9) Å0.45 × 0.30 × 0.15 mm
β = 126.970 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6505 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
5935 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.747Rint = 0.018
33084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0242 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.84 e Å3
6505 reflectionsΔρmin = 0.37 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The piperidine methylene H atoms were placed using a riding model with C—H fixed at 0.990 Å (AFIX 23). Methyl groups of the acetates were modelled as having ideal tetrahedral geometry with the C—H distance fixed at 0.980 Å but allowing rotation about the C—C bond to find the optimal fit (AFIX 137). The hydroxide and amine H atoms were located by difference map. The water H atoms were initially located by difference map with subsequent restraint of the O—H bond length to 0.8 Å (DFIX) and U fixed to be 1.2 times that of the O(8).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20139 (17)0.81097 (10)0.46823 (13)0.0325 (3)
H1A0.19750.77000.51340.039*
H1B0.13960.78170.40280.039*
C20.14298 (18)0.90940 (12)0.46461 (14)0.0369 (3)
H2A0.04060.90400.43890.044*
H2B0.19790.93590.53130.044*
C30.15495 (18)0.97625 (11)0.40050 (12)0.0358 (3)
H3A0.12781.04150.40570.043*
H3B0.08720.95570.33180.043*
C40.30791 (18)0.97692 (10)0.43045 (13)0.0334 (3)
H4A0.31081.01540.38340.040*
H4B0.37341.00690.49530.040*
C50.35992 (15)0.87639 (9)0.43407 (10)0.0247 (2)
H5A0.29970.84840.36800.030*
H5B0.46080.87880.45620.030*
C60.09941 (16)0.46431 (12)0.43232 (13)0.0349 (3)
H6A0.09660.51790.39380.042*
H6B0.11430.49130.49090.042*
C70.04439 (17)0.41199 (15)0.37190 (13)0.0433 (4)
H7A0.06540.39180.30940.052*
H7B0.12220.45560.35730.052*
C80.04154 (16)0.32495 (12)0.42584 (12)0.0333 (3)
H8A0.03650.34570.48280.040*
H8B0.13160.28800.38230.040*
C90.08714 (18)0.26204 (12)0.45963 (15)0.0407 (4)
H9A0.07400.23320.40230.049*
H9B0.09240.20980.50030.049*
C100.22795 (16)0.31788 (10)0.51804 (13)0.0315 (3)
H10A0.24710.34030.57940.038*
H10B0.30820.27550.53510.038*
C110.74580 (14)0.73664 (9)0.69675 (9)0.0223 (2)
C120.83696 (17)0.81439 (10)0.76974 (11)0.0335 (3)
H12A0.90450.78620.83440.050*
H12B0.77430.86000.77120.050*
H12C0.89110.84740.75080.050*
C130.31039 (13)0.63027 (8)0.34403 (9)0.0204 (2)
C140.19224 (16)0.59459 (11)0.24345 (10)0.0320 (3)
H14A0.21120.61550.19780.048*
H14B0.09940.62030.22310.048*
H14C0.18930.52480.24410.048*
C150.42512 (13)0.58563 (9)0.67819 (9)0.0203 (2)
C160.46164 (19)0.58676 (11)0.77854 (11)0.0329 (3)
H16A0.56660.58480.82760.049*
H16B0.41840.53110.78630.049*
H16C0.42360.64510.78680.049*
Cu10.452872 (15)0.691296 (10)0.527242 (10)0.01652 (5)
Cu20.407910 (15)0.472901 (10)0.531821 (10)0.01642 (5)
N10.35205 (12)0.81564 (7)0.50067 (8)0.01904 (19)
H10.4038 (19)0.8393 (12)0.5566 (14)0.025 (4)*
N20.22266 (12)0.40079 (9)0.46275 (8)0.0234 (2)
H20.210 (2)0.3801 (15)0.4130 (15)0.037 (5)*
O10.63363 (10)0.76474 (6)0.61512 (7)0.02353 (18)
O20.78464 (12)0.65165 (7)0.71836 (7)0.0315 (2)
O30.28229 (10)0.63318 (7)0.40558 (7)0.02241 (17)
O40.42947 (10)0.65394 (7)0.36486 (7)0.02379 (18)
O50.40339 (12)0.50442 (7)0.63911 (7)0.02562 (19)
O60.41930 (13)0.66251 (7)0.64062 (8)0.0308 (2)
O70.55572 (9)0.56712 (6)0.56166 (6)0.01633 (15)
H70.622 (2)0.5816 (14)0.6134 (16)0.037 (5)*
O80.4748 (2)0.85087 (9)0.70745 (10)0.0554 (4)
H8C0.465 (3)0.7938 (7)0.706 (2)0.073 (9)*
H8D0.480 (3)0.8649 (19)0.7540 (13)0.065 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0270 (7)0.0285 (7)0.0507 (9)0.0015 (5)0.0281 (7)0.0022 (6)
C20.0314 (7)0.0358 (8)0.0501 (9)0.0098 (6)0.0279 (7)0.0013 (7)
C30.0340 (8)0.0309 (7)0.0326 (8)0.0138 (6)0.0148 (6)0.0043 (6)
C40.0417 (8)0.0216 (6)0.0396 (8)0.0067 (6)0.0258 (7)0.0094 (5)
C50.0288 (6)0.0230 (6)0.0267 (6)0.0044 (5)0.0190 (5)0.0069 (5)
C60.0242 (7)0.0363 (8)0.0428 (8)0.0014 (6)0.0195 (6)0.0141 (6)
C70.0235 (7)0.0642 (12)0.0364 (8)0.0048 (7)0.0148 (6)0.0129 (8)
C80.0269 (7)0.0413 (8)0.0369 (8)0.0116 (6)0.0218 (6)0.0052 (6)
C90.0358 (8)0.0277 (7)0.0654 (12)0.0125 (6)0.0340 (9)0.0114 (7)
C100.0277 (7)0.0203 (6)0.0481 (9)0.0040 (5)0.0236 (7)0.0013 (6)
C110.0227 (6)0.0218 (6)0.0198 (5)0.0003 (4)0.0115 (5)0.0029 (4)
C120.0305 (7)0.0270 (7)0.0256 (7)0.0007 (5)0.0077 (6)0.0076 (5)
C130.0214 (5)0.0161 (5)0.0186 (5)0.0018 (4)0.0093 (4)0.0018 (4)
C140.0300 (7)0.0306 (7)0.0208 (6)0.0039 (6)0.0075 (5)0.0012 (5)
C150.0234 (5)0.0228 (6)0.0198 (5)0.0009 (4)0.0158 (5)0.0003 (4)
C160.0531 (9)0.0291 (7)0.0249 (7)0.0017 (6)0.0278 (7)0.0006 (5)
Cu10.01874 (8)0.01434 (7)0.01759 (8)0.00009 (5)0.01151 (6)0.00008 (5)
Cu20.01935 (8)0.01644 (7)0.01742 (8)0.00285 (5)0.01315 (6)0.00214 (5)
N10.0205 (5)0.0184 (5)0.0194 (5)0.0008 (4)0.0126 (4)0.0014 (4)
N20.0230 (5)0.0291 (6)0.0237 (5)0.0074 (4)0.0170 (4)0.0068 (4)
O10.0227 (4)0.0186 (4)0.0206 (4)0.0017 (3)0.0084 (4)0.0001 (3)
O20.0318 (5)0.0219 (5)0.0231 (5)0.0040 (4)0.0070 (4)0.0004 (4)
O30.0205 (4)0.0223 (4)0.0237 (4)0.0018 (3)0.0129 (4)0.0018 (3)
O40.0231 (4)0.0260 (5)0.0214 (4)0.0002 (3)0.0129 (4)0.0038 (3)
O50.0389 (5)0.0223 (4)0.0282 (5)0.0073 (4)0.0268 (5)0.0050 (4)
O60.0550 (7)0.0209 (4)0.0344 (5)0.0051 (4)0.0364 (5)0.0030 (4)
O70.0179 (4)0.0160 (4)0.0158 (4)0.0011 (3)0.0105 (3)0.0007 (3)
O80.1089 (13)0.0304 (6)0.0414 (7)0.0010 (7)0.0528 (8)0.0092 (5)
Geometric parameters (Å, º) top
C1—N11.4825 (17)C11—C121.5129 (18)
C1—C21.524 (2)C12—H12A0.9800
C1—H1A0.9900C12—H12B0.9800
C1—H1B0.9900C12—H12C0.9800
C2—C31.517 (2)C13—O41.2459 (16)
C2—H2A0.9900C13—O31.2823 (16)
C2—H2B0.9900C13—C141.5068 (18)
C3—C41.522 (2)C14—H14A0.9800
C3—H3A0.9900C14—H14B0.9800
C3—H3B0.9900C14—H14C0.9800
C4—C51.5213 (19)C15—O61.2386 (15)
C4—H4A0.9900C15—O51.2692 (15)
C4—H4B0.9900C15—C161.5099 (18)
C5—N11.4744 (16)C16—H16A0.9800
C5—H5A0.9900C16—H16B0.9800
C5—H5B0.9900C16—H16C0.9800
C6—N21.4878 (19)Cu1—O11.9833 (9)
C6—C71.522 (2)Cu1—O71.9908 (8)
C6—H6A0.9900Cu1—O31.9951 (9)
C6—H6B0.9900Cu1—N11.9952 (10)
C7—C81.523 (2)Cu1—O62.2434 (10)
C7—H7A0.9900Cu2—O51.9289 (9)
C7—H7B0.9900Cu2—O71.9735 (9)
C8—C91.517 (2)Cu2—O7i1.9737 (8)
C8—H8A0.9900Cu2—N21.9961 (11)
C8—H8B0.9900Cu2—O4i2.4198 (10)
C9—C101.523 (2)Cu2—Cu2i3.0262 (3)
C9—H9A0.9900N1—H10.838 (19)
C9—H9B0.9900N2—H20.83 (2)
C10—N21.4808 (18)O4—Cu2i2.4198 (10)
C10—H10A0.9900O7—Cu2i1.9737 (8)
C10—H10B0.9900O7—H70.78 (2)
C11—O21.2502 (16)O8—H8C0.808 (10)
C11—O11.2740 (15)O8—H8D0.79 (3)
N1—C1—C2111.72 (12)H12B—C12—H12C109.5
N1—C1—H1A109.3O4—C13—O3122.86 (11)
C2—C1—H1A109.3O4—C13—C14120.31 (12)
N1—C1—H1B109.3O3—C13—C14116.82 (12)
C2—C1—H1B109.3C13—C14—H14A109.5
H1A—C1—H1B107.9C13—C14—H14B109.5
C3—C2—C1110.96 (13)H14A—C14—H14B109.5
C3—C2—H2A109.4C13—C14—H14C109.5
C1—C2—H2A109.4H14A—C14—H14C109.5
C3—C2—H2B109.4H14B—C14—H14C109.5
C1—C2—H2B109.4O6—C15—O5125.10 (12)
H2A—C2—H2B108.0O6—C15—C16118.49 (11)
C2—C3—C4110.84 (12)O5—C15—C16116.41 (11)
C2—C3—H3A109.5C15—C16—H16A109.5
C4—C3—H3A109.5C15—C16—H16B109.5
C2—C3—H3B109.5H16A—C16—H16B109.5
C4—C3—H3B109.5C15—C16—H16C109.5
H3A—C3—H3B108.1H16A—C16—H16C109.5
C5—C4—C3111.18 (13)H16B—C16—H16C109.5
C5—C4—H4A109.4O1—Cu1—O793.36 (4)
C3—C4—H4A109.4O1—Cu1—O3159.93 (4)
C5—C4—H4B109.4O7—Cu1—O389.60 (4)
C3—C4—H4B109.4O1—Cu1—N185.72 (4)
H4A—C4—H4B108.0O7—Cu1—N1176.48 (4)
N1—C5—C4111.09 (11)O3—Cu1—N192.43 (4)
N1—C5—H5A109.4O1—Cu1—O695.04 (4)
C4—C5—H5A109.4O7—Cu1—O688.29 (4)
N1—C5—H5B109.4O3—Cu1—O6104.89 (4)
C4—C5—H5B109.4N1—Cu1—O688.41 (4)
H5A—C5—H5B108.0O5—Cu2—O796.71 (4)
N2—C6—C7112.21 (14)O5—Cu2—O7i170.72 (4)
N2—C6—H6A109.2O7—Cu2—O7i79.89 (4)
C7—C6—H6A109.2O5—Cu2—N292.68 (4)
N2—C6—H6B109.2O7—Cu2—N2161.96 (4)
C7—C6—H6B109.2O7i—Cu2—N292.98 (4)
H6A—C6—H6B107.9O5—Cu2—O4i85.63 (4)
C6—C7—C8110.97 (13)O7—Cu2—O4i97.49 (3)
C6—C7—H7A109.4O7i—Cu2—O4i86.26 (3)
C8—C7—H7A109.4N2—Cu2—O4i98.56 (4)
C6—C7—H7B109.4O5—Cu2—Cu2i136.04 (3)
C8—C7—H7B109.4O7—Cu2—Cu2i39.95 (2)
H7A—C7—H7B108.0O7i—Cu2—Cu2i39.94 (2)
C9—C8—C7110.87 (13)N2—Cu2—Cu2i130.84 (3)
C9—C8—H8A109.5O4i—Cu2—Cu2i92.43 (2)
C7—C8—H8A109.5C5—N1—C1110.06 (11)
C9—C8—H8B109.5C5—N1—Cu1112.47 (8)
C7—C8—H8B109.5C1—N1—Cu1116.34 (8)
H8A—C8—H8B108.1C5—N1—H1109.0 (12)
C8—C9—C10111.79 (13)C1—N1—H1108.6 (12)
C8—C9—H9A109.3Cu1—N1—H199.6 (12)
C10—C9—H9A109.3C10—N2—C6110.90 (11)
C8—C9—H9B109.3C10—N2—Cu2113.73 (9)
C10—C9—H9B109.3C6—N2—Cu2111.63 (9)
H9A—C9—H9B107.9C10—N2—H2107.6 (14)
N2—C10—C9111.54 (14)C6—N2—H2108.3 (14)
N2—C10—H10A109.3Cu2—N2—H2104.3 (14)
C9—C10—H10A109.3C11—O1—Cu1126.17 (8)
N2—C10—H10B109.3C13—O3—Cu1107.15 (8)
C9—C10—H10B109.3C13—O4—Cu2i104.77 (8)
H10A—C10—H10B108.0C15—O5—Cu2126.99 (8)
O2—C11—O1124.74 (12)C15—O6—Cu1128.83 (8)
O2—C11—C12119.64 (12)Cu2—O7—Cu2i100.11 (4)
O1—C11—C12115.61 (12)Cu2—O7—Cu1103.75 (4)
C11—C12—H12A109.5Cu2i—O7—Cu1112.99 (4)
C11—C12—H12B109.5Cu2—O7—H7125.4 (15)
H12A—C12—H12B109.5Cu2i—O7—H7117.5 (15)
C11—C12—H12C109.5Cu1—O7—H796.6 (15)
H12A—C12—H12C109.5H8C—O8—H8D102 (3)
N1—C1—C2—C355.70 (19)O6—Cu1—O1—C1154.28 (11)
C1—C2—C3—C452.19 (19)O4—C13—O3—Cu14.96 (15)
C2—C3—C4—C552.98 (18)C14—C13—O3—Cu1176.16 (9)
C3—C4—C5—N156.90 (16)O1—Cu1—O3—C1319.86 (16)
N2—C6—C7—C855.10 (19)O7—Cu1—O3—C1378.85 (8)
C6—C7—C8—C952.6 (2)N1—Cu1—O3—C13104.03 (8)
C7—C8—C9—C1053.0 (2)O6—Cu1—O3—C13166.97 (8)
C8—C9—C10—N255.37 (19)O3—C13—O4—Cu2i72.20 (13)
C4—C5—N1—C159.35 (15)C14—C13—O4—Cu2i106.65 (11)
C4—C5—N1—Cu1169.18 (10)O6—C15—O5—Cu218.2 (2)
C2—C1—N1—C559.01 (17)C16—C15—O5—Cu2161.45 (10)
C2—C1—N1—Cu1171.58 (11)O7—Cu2—O5—C1531.74 (12)
O1—Cu1—N1—C576.75 (9)O7i—Cu2—O5—C1599.6 (2)
O7—Cu1—N1—C5151.6 (6)N2—Cu2—O5—C15132.83 (12)
O3—Cu1—N1—C583.23 (9)O4i—Cu2—O5—C15128.78 (12)
O6—Cu1—N1—C5171.93 (9)Cu2i—Cu2—O5—C1539.81 (14)
O1—Cu1—N1—C1155.00 (11)O5—C15—O6—Cu125.3 (2)
O7—Cu1—N1—C180.1 (7)C16—C15—O6—Cu1154.29 (11)
O3—Cu1—N1—C145.01 (10)O1—Cu1—O6—C15112.68 (13)
O6—Cu1—N1—C159.83 (11)O7—Cu1—O6—C1519.46 (13)
C9—C10—N2—C656.67 (17)O3—Cu1—O6—C1569.66 (13)
C9—C10—N2—Cu2176.55 (10)N1—Cu1—O6—C15161.75 (13)
C7—C6—N2—C1057.05 (17)O5—Cu2—O7—Cu2i171.27 (4)
C7—C6—N2—Cu2175.02 (11)O7i—Cu2—O7—Cu2i0.0
O5—Cu2—N2—C1061.34 (10)N2—Cu2—O7—Cu2i67.85 (14)
O7—Cu2—N2—C10177.24 (11)O4i—Cu2—O7—Cu2i84.82 (4)
O7i—Cu2—N2—C10111.31 (10)O5—Cu2—O7—Cu171.85 (5)
O4i—Cu2—N2—C1024.65 (10)O7i—Cu2—O7—Cu1116.87 (5)
Cu2i—Cu2—N2—C10125.42 (9)N2—Cu2—O7—Cu149.02 (14)
O5—Cu2—N2—C665.06 (10)O4i—Cu2—O7—Cu1158.31 (4)
O7—Cu2—N2—C656.36 (18)Cu2i—Cu2—O7—Cu1116.87 (5)
O7i—Cu2—N2—C6122.30 (10)O1—Cu1—O7—Cu2156.30 (4)
O4i—Cu2—N2—C6151.05 (9)O3—Cu1—O7—Cu243.56 (4)
Cu2i—Cu2—N2—C6108.19 (9)N1—Cu1—O7—Cu281.6 (7)
O2—C11—O1—Cu129.24 (19)O6—Cu1—O7—Cu261.34 (4)
C12—C11—O1—Cu1152.12 (11)O1—Cu1—O7—Cu2i96.24 (5)
O7—Cu1—O1—C1134.30 (11)O3—Cu1—O7—Cu2i63.90 (5)
O3—Cu1—O1—C11132.35 (12)N1—Cu1—O7—Cu2i170.9 (6)
N1—Cu1—O1—C11142.30 (11)O6—Cu1—O7—Cu2i168.81 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O80.838 (19)2.206 (19)2.9718 (17)152.0 (16)
N2—H2···O2i0.83 (2)2.34 (2)3.1523 (16)166.8 (19)
O7—H7···O20.78 (2)1.92 (2)2.6678 (13)161 (2)
O8—H8C···O60.81 (1)2.06 (2)2.7994 (16)153 (3)
O8—H8D···O4ii0.79 (3)2.33 (2)3.0539 (17)154 (3)
O8—H8D···O5iii0.79 (3)2.46 (2)3.0206 (16)129 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu4(C2H3O2)6(OH)2(C5H11N)4]·2H2O
Mr1019.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)11.6024 (6), 14.0371 (7), 17.2020 (9)
β (°) 126.970 (1)
V3)2238.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.94
Crystal size (mm)0.45 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.600, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
33084, 6505, 5935
Rint0.018
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.05
No. of reflections6505
No. of parameters276
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.37

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-32 for Windows (Farrugia, 1998) and Mercury (CCDC, 2010), SHELXTL (Bruker, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O80.838 (19)2.206 (19)2.9718 (17)152.0 (16)
N2—H2···O2i0.83 (2)2.34 (2)3.1523 (16)166.8 (19)
O7—H7···O20.78 (2)1.92 (2)2.6678 (13)161 (2)
O8—H8C···O60.808 (10)2.056 (16)2.7994 (16)153 (3)
O8—H8D···O4ii0.79 (3)2.325 (15)3.0539 (17)154 (3)
O8—H8D···O5iii0.79 (3)2.46 (2)3.0206 (16)129 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+3/2.
Table 2. Cu1–ligand distances (Å) and angles (°). top
Cu1—N11.9952 (10)Cu1—O71.9908 (8)
Cu1—O11.9833 (9)Cu1—O62.2434 (10)
Cu1—O31.9951 (9)Cu1—O42.6905 (11)
N1—Cu1—O185.72 (4)O1—Cu1—O793.36 (4)
N1—Cu1—O392.43 (4)O3—Cu1—O454.15 (5)
N1—Cu1—O4104.69 (4)O3—Cu1—O6104.89 (4)
N1—Cu1—O688.41 (4)O3—Cu1—O789.60 (4)
N1—Cu1—O7176.48 (4)O4—Cu1—O6154.92 (4)
O1—Cu1—O3159.93 (4)O4—Cu1—O778.83 (3)
O1—Cu1—O4107.02 (4)O6—Cu1—O788.29 (4)
O1—Cu1—O695.04 (4)
Table 3. Cu2–ligand distances (Å) and angles (°). top
Cu2—N21.9961 (11)Cu2—O71.9735 (9)
Cu2—O32.8452 (10)Cu2—O7i1.9737 (8)
Cu2—O4i2.4198 (10)Cu2···Cu2i3.0262 (3)
Cu2—O51.9289 (9)
N2—Cu2—O394.16 (4)O3—Cu2—O7i82.31 (3)
N2—Cu2—O4i98.56 (4)O4i—Cu2—O585.63 (4)
N2—Cu2—O592.69 (6)O4i—Cu2—O797.49 (3)
N2—Cu2—O7161.94 (4)O4i—Cu2—O7i86.26 (3)
N2—Cu2—O7i92.96 (5)O5—Cu2—O796.71 (4)
O3—Cu2—O4i163.28 (4)O5—Cu2—O7i170.71 (5)
O3—Cu2—O5104.63 (4)O7—Cu2—O7i79.89 (4)
O3—Cu2—O768.56 (4)Cu2—O7—Cu2i100.11 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds