Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the three title isomers, namely 4-(2-methyl­anilino)pyridine-3-sulfonamide, (I), 4-(3-methyl­anilino)pyridine-3-sulfonamide, (II), and 4-(4-methyl­anilino)pyridine-3-sulfonamide, (III), all C12H13N3O2S, differ in their hydrogen-bonding arrangements. In all three mol­ecules, the conformation of the 4-amino­pyridine-3-sulfon­amide moiety is conserved by an intra­molecular N—H...O hydrogen bond and a C—H...O inter­action. In the supra­mol­ecular structures of all three isomers, similar C(6) chains are formed via inter­molecular N—H...N hydrogen bonds. N—H...O hydrogen bonds lead to C(4) chains in (I), and to R22(8) centrosymmetric dimers in (II) and (III). In each isomer, the overall effect of all hydrogen bonds is to form layer structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105031902/jz1757sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105031902/jz1757Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105031902/jz1757IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105031902/jz1757IIIsup4.hkl
Contains datablock III

CCDC references: 290574; 290575; 290576

Comment top

Sulfonamides constitute an important class of drugs, with several types of pharmacological agents possessing, for example, antibacterial, anti-carbonic anhydrase, diuretic, hypoglycaemic, antithyroid and anticancer activities. From a structural point of view, sulfonamides are interesting because of their tendency to form different hydrogen-bond systems in the solid state by introducing various hydrogen-bond donors and acceptors as substituents into simple sulfonamide molecules. The most common hydrogen-bond motifs, widely observed in crystal structures of simple benzenesulfonamide, are realised via N—H···O hydrogen bonds constituting chains or rings, C(4) and R22(8) types (Etter et al., 1990; Bernstein et al., 1995). A search of the Cambridge Structural Database (CSD, Version 5.26 plus three updates; Allen, 2002) for sulfonamide structures involving R22(8) and C(4) hydrogen-bond motifs (restricting H···O contact distances from 1.0 to 2.7 Å, organic molecules only, redeterminations omitted) identified 13 structures containing R22(8) dimers and 36 structures containing C(4) chains. Only in the crystal structure of GUFQED (Tremayne et al., 1999) are both hydrogen-bond motifs present.

Here, we report the synthesis and structure of three pyridinesulfonamide isomers, (I), (II) and (III). These pyridinesulfonamides are known as intermediates and potential impurities of the drug torasemide, which is widely used as a loop diuretic (Danilovski et al., 2001).

The X-ray analyses of (I), (II) and (III) (Figs. 1–3) unambiguously confirm their ortho-, meta- and para-substitution patterns. The three isomers differ primarily in their phenyl-ring orientation with respect to the pyridine ring (Fig. 4). The dihedral angles between the best planes of the pyridyl and phenyl rings are 93.95 (7), 117.75 (5) and 122.40 (5)° in (I), (II) and (III), respectively. The conformation of the 4-aminopyridine-3-sulfonamide part of the molecule is conserved by an intramolecular N4—H4···O32 hydrogen bond and the C2—H2···O33 interaction in all three isomers. The C4—C3—S31—N34 torsion angles amount to 65.22 (17), 77.27 (13) and 58.82 (17)° in (I), (II) and (III), respectively.

Although the same intermolecular hydrogen-bonding types (sulfonamide NH2 groups as donors to sulfonamide O or pyridine N atoms) are observed in all three structures (Tables 1–3), their supramolecular structures are appreciably different.

In compound (I), two major chains, C(4) and C(6), are formed via N34—H342···O33 and N34—H341···N1 hydrogen bonds, respectively. Both chains run parallel to the b axis and combine to form a tetramolecular R44(18) motif. Additional linking across these 18-membered rings is realised by weak C6—H6···O32 interactions forming a C(7) chain parallel to the a axis. These three chains combine to form layers parallel to (001) (Fig. 5).

The observed C(4) chain motif is characteristic of simple sulfonamides. The most characteristic hydrogen-bond motif of sulfonamides, the R22(8) ring (for a discussion of both types, see Glidewell et al., 2004, and references cited therein) is, however, not observed for (I), but only for the structures of (II) and (III).

In contrast with (I), where the C(4) and C(6) chains are helical, the C(6) chains in compound (II) are formed by pure translation parallel to the a axis (Fig. 6), whereby the N34—H341···N1 hydrogen bond connects the molecules (denoted A, B, C, D, etc.). The second chain is built up from molecules (denoted A', B', C', D', etc.) related to the first chain by inversion. Centrosymmetrically related molecules B/B', etc., are connected by intermolecular N4—H4···O32 hydrogen bonds to form dimers involving R22(4) rings. By these interactions, two antiparallel C(6) chains form one ribbon through each unit cell. Two adjacent ribbons, related by translation in the b direction, are bridged by centrosymmetrically related intermolecular N34—H342···O33 hydrogen bonds, forming R22(8) rings. The net effect of these hydrogen-bonding arrangements is to form layers parallel to (001).

In compound (III) (Fig. 7), the sulfonamide group participates in the same type of centrosymmetric N—H···O hydrogen bonds as found in (II), and there are N—H···N hydrogen-bonded chains such as were observed in both (I) and (II). The overall packing of the molecule of (III) shows a network of molecules interlinked via classical and non-classical hydrogen bonds. The characteristic R22(8) hydrogen-bond motif is formed via N34—H342···O33 hydrogen bonds connecting two molecules to centrosymmetric dimers at (0, 1/2, 1/2). The dimers are further linked to each other by three additional interactions: the intermolecular N34—H341···N1 hydrogen bond forms C(6) chains parallel to the c axis, N4—H4···N1 can be considered as a weak component of a three-centre hydrogen bond, and C42—H42···O33 interactions additionally stabilize the structure. The overall effect is to form layers parallel to (100).

Experimental top

A mixture of 4-chloro-3-pyridinesulfonamide (36.0 g, 0.19 mol), o-, m- or p-toluidine (21.6 ml, 0.2 mol) and methanol (240 ml) was refluxed for 2 h, and then for a further 3.5 h after addition of additional o-toluidine (6.0 ml, 0.06 mol) for (I), or the mixture was stirred at 313 K for 3 h for (II) and (III), and cooled to room temperature. Water was added to the mixture and the pH was adjusted to 7 with dilute NaOH. The resulting suspension was stirred under the same conditions for an additional 1 h. Crude crystalline (I), (II) or (III) were separated by suction, washed with water and dried in a vacuum oven at 333 K and 2.7 kPa for 3 h. Yield of (I): 46.6 g (94.7%); m.p. 457–459 K. Yield of (II): 48.0 g (96.5%); m.p. 440–442 K. Yield of (III): 48.2 g (97.9%); m.p. 493–495 K. Single crystals suitable for X-ray analysis were obtained by slow evaporation from methanol solutions for (I) and (III), and from an acetone solution for (II).

Refinement top

The sulfonamide H and amine H atoms were located in difference Fourier maps and refined. The methyl H atoms were found in a difference Fourier map and subsequently refined as part of rigid rotating groups, with Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions and allowed to refine as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

For all compounds, data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: PLATON2000 (Spek, 2003) and WebLab ViewerPro (Accelrys, 2000) for (I); PLATON2000 (Spek, 2003) for (II), (III). For all compounds, software used to prepare material for publication: SHELXL97 and PARST96 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the molecule of (II), shown with 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. A view of the molecule of (III), shown with 50% probability displacement ellipsoids.
[Figure 4] Fig. 4. Superimposition of (I), (II) and (III), showing the different phenyl ring orientations. Compound (I) is shown with solid lines, (II) with dashed lines and (III) with dotted lines (WebLab ViewerPro; Accelrys, 2000).
[Figure 5] Fig. 5. Part of the unit-cell packing in (I), viewed perpendicular to the ab plane, showing the hydrogen-bonded layer in the region around z = 1/4. Methylphenyl C atoms, and H atoms not involved in hydrogen bonds, have been omitted for clarity. Atoms marked with an asterisk (*), hash (#) or dollar sign ($) are at the symmetry positions (5/2 − x, 1/2 + y, 1/2 − z), (3/2 − x, 1/2 + y, 1/2 − z), and (x − 1, y, z), respectively.
[Figure 6] Fig. 6. Part of the unit-cell packing in (II), viewed perpendicular to the ab plane, showing the hydrogen-bonded layer in the region around z = 1/2. Methylphenyl C atoms, and H atoms not involved in hydrogen bonds, have been omitted for clarity. Atoms marked with an asterisk (*), hash (#) or dollar sign ($) are at the symmetry positions (1 + x, y, z), (2 − x, 1 − y, 1 − z), and (2 − x, 1 − y, 1 − z), respectively.
[Figure 7] Fig. 7. Part of the unit-cell packing in (III), viewed perpendicular to the bc plane, showing the hydrogen-bonded layer in the region around x = 1. Methylphenyl C atoms, and H atoms not involved in hydrogen bonds, have been omitted for clarity. Atoms marked with an asterisk (*), hash (#) or dollar sign ($) are at the symmetry positions (2 − x, −y, 1 − z), (x, 1/2 − y, 1/2 + z), and (2 − x, 1/2 + y, 3/2 − z), respectively.
(I) 4-(2-methylanilino)pyridine-3-sulfonamide top
Crystal data top
C12H13N3O2SF(000) = 552
Mr = 263.31Dx = 1.350 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 36 reflections
a = 8.5118 (7) Åθ = 8.1–14.7°
b = 7.2369 (13) ŵ = 0.25 mm1
c = 21.181 (5) ÅT = 295 K
β = 96.714 (15)°Block, colourless
V = 1295.8 (4) Å30.60 × 0.24 × 0.13 mm
Z = 4
Data collection top
Philips PW1100, updated by Stoe
diffractometer
Rint = 0.001
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 3.0°
Graphite monochromatorh = 1111
ω scansk = 010
7502 measured reflectionsl = 029
3751 independent reflections3 standard reflections every 90 min
2396 reflections with I > 2σ(I) intensity decay: 4.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.4643P]
where P = (Fo2 + 2Fc2)/3
3751 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H13N3O2SV = 1295.8 (4) Å3
Mr = 263.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5118 (7) ŵ = 0.25 mm1
b = 7.2369 (13) ÅT = 295 K
c = 21.181 (5) Å0.60 × 0.24 × 0.13 mm
β = 96.714 (15)°
Data collection top
Philips PW1100, updated by Stoe
diffractometer
Rint = 0.001
7502 measured reflections3 standard reflections every 90 min
3751 independent reflections intensity decay: 4.2%
2396 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
3751 reflectionsΔρmin = 0.20 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6113 (2)0.4532 (3)0.19545 (9)0.0529 (5)
C20.7662 (2)0.4715 (3)0.21237 (9)0.0416 (4)
H20.80900.41900.25060.050*
C30.86740 (19)0.5634 (2)0.17668 (8)0.0330 (3)
C40.8080 (2)0.6439 (3)0.11770 (9)0.0353 (4)
C50.6437 (2)0.6247 (3)0.10094 (10)0.0495 (5)
H50.59610.67540.06310.059*
C60.5544 (2)0.5320 (3)0.13996 (12)0.0561 (6)
H60.44640.52250.12730.067*
S311.06857 (5)0.57920 (7)0.20629 (2)0.03636 (13)
O321.16523 (16)0.5336 (2)0.15706 (7)0.0492 (4)
O331.09061 (18)0.4710 (3)0.26349 (7)0.0602 (4)
N341.0888 (2)0.7967 (3)0.21814 (9)0.0472 (4)
H3421.189 (3)0.834 (4)0.2218 (12)0.066 (8)*
H3411.033 (3)0.840 (4)0.2481 (13)0.071 (8)*
N40.89991 (19)0.7320 (3)0.07944 (8)0.0429 (4)
H40.991 (3)0.738 (3)0.0914 (11)0.052 (7)*
C410.8353 (2)0.8420 (3)0.02616 (9)0.0399 (4)
C420.7811 (3)1.0192 (3)0.03619 (10)0.0481 (5)
C430.7196 (3)1.1207 (3)0.01762 (11)0.0569 (6)
H430.68351.24040.01240.068*
C440.7113 (3)1.0482 (4)0.07740 (11)0.0581 (6)
H440.66911.11790.11220.070*
C450.7657 (3)0.8718 (4)0.08625 (11)0.0619 (6)
H450.75980.82200.12690.074*
C460.8288 (3)0.7692 (3)0.03436 (10)0.0532 (5)
H460.86700.65070.04020.064*
C4210.7854 (4)1.0996 (4)0.10168 (12)0.0782 (9)
H4210.69691.05430.12140.117*
H4220.78001.23180.09890.117*
H4230.88201.06400.12670.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0391 (8)0.0583 (11)0.0632 (11)0.0051 (8)0.0140 (8)0.0157 (9)
C20.0401 (9)0.0440 (10)0.0417 (10)0.0023 (8)0.0092 (8)0.0080 (8)
C30.0306 (7)0.0350 (9)0.0333 (8)0.0026 (7)0.0036 (6)0.0015 (7)
C40.0312 (8)0.0359 (9)0.0384 (9)0.0002 (7)0.0029 (7)0.0032 (7)
C50.0334 (9)0.0590 (13)0.0541 (12)0.0010 (9)0.0033 (8)0.0179 (10)
C60.0291 (8)0.0646 (14)0.0741 (15)0.0050 (9)0.0040 (9)0.0180 (12)
S310.0297 (2)0.0449 (3)0.0339 (2)0.00596 (18)0.00132 (14)0.00222 (19)
O320.0359 (7)0.0624 (9)0.0505 (8)0.0096 (6)0.0103 (6)0.0134 (7)
O330.0496 (8)0.0805 (12)0.0478 (8)0.0092 (8)0.0054 (7)0.0195 (8)
N340.0368 (8)0.0523 (10)0.0535 (10)0.0054 (8)0.0090 (7)0.0193 (8)
N40.0312 (8)0.0557 (10)0.0414 (8)0.0016 (7)0.0020 (6)0.0138 (8)
C410.0378 (9)0.0446 (10)0.0373 (9)0.0016 (8)0.0045 (7)0.0084 (8)
C420.0523 (11)0.0496 (12)0.0420 (10)0.0035 (9)0.0044 (8)0.0002 (9)
C430.0643 (14)0.0484 (12)0.0573 (13)0.0123 (10)0.0035 (11)0.0079 (10)
C440.0629 (14)0.0646 (15)0.0456 (11)0.0068 (11)0.0016 (10)0.0155 (11)
C450.0801 (17)0.0688 (15)0.0356 (10)0.0055 (13)0.0020 (10)0.0029 (10)
C460.0667 (14)0.0486 (12)0.0447 (11)0.0073 (10)0.0077 (10)0.0019 (9)
C4210.114 (2)0.0649 (17)0.0538 (15)0.0191 (16)0.0020 (15)0.0141 (12)
Geometric parameters (Å, º) top
N1—C21.332 (2)N4—C411.437 (2)
N1—C61.344 (3)N4—H40.79 (2)
C2—C31.381 (2)C41—C461.381 (3)
C2—H20.9300C41—C421.387 (3)
C3—C41.417 (2)C42—C431.405 (3)
C3—S311.7571 (17)C42—C4211.501 (3)
C4—N41.350 (2)C43—C441.365 (3)
C4—C51.409 (2)C43—H430.9300
C5—C61.363 (3)C44—C451.378 (4)
C5—H50.9300C44—H440.9300
C6—H60.9300C45—C461.382 (3)
S31—O331.4363 (16)C45—H450.9300
S31—O321.4401 (14)C46—H460.9300
S31—N341.5997 (19)C421—H4210.9600
N34—H3420.89 (3)C421—H4220.9600
N34—H3410.89 (3)C421—H4230.9600
C2—N1—C6115.94 (17)C4—N4—H4116.7 (17)
N1—C2—C3124.14 (18)C41—N4—H4119.6 (18)
N1—C2—H2117.9C46—C41—C42121.12 (18)
C3—C2—H2117.9C46—C41—N4119.19 (19)
C2—C3—C4119.97 (16)C42—C41—N4119.69 (18)
C2—C3—S31118.67 (14)C41—C42—C43117.26 (19)
C4—C3—S31121.35 (13)C41—C42—C421121.8 (2)
N4—C4—C5121.52 (17)C43—C42—C421120.9 (2)
N4—C4—C3123.45 (16)C44—C43—C42121.7 (2)
C5—C4—C3115.03 (16)C44—C43—H43119.1
C6—C5—C4120.21 (18)C42—C43—H43119.1
C6—C5—H5119.9C43—C44—C45120.0 (2)
C4—C5—H5119.9C43—C44—H44120.0
N1—C6—C5124.69 (18)C45—C44—H44120.0
N1—C6—H6117.7C44—C45—C46119.7 (2)
C5—C6—H6117.7C44—C45—H45120.2
O33—S31—O32117.16 (10)C46—C45—H45120.2
O33—S31—N34113.75 (11)C41—C46—C45120.2 (2)
O32—S31—N34106.21 (10)C41—C46—H46119.9
O33—S31—C3106.94 (9)C45—C46—H46119.9
O32—S31—C3110.00 (8)C42—C421—H421109.5
N34—S31—C3101.68 (9)C42—C421—H422109.5
S31—N34—H342113.4 (17)H421—C421—H422109.5
S31—N34—H341113.6 (18)C42—C421—H423109.5
H342—N34—H341115 (2)H421—C421—H423109.5
C4—N4—C41122.54 (16)H422—C421—H423109.5
C6—N1—C2—C30.3 (3)C4—C3—S31—N3465.22 (17)
N1—C2—C3—C40.7 (3)C5—C4—N4—C4112.4 (3)
N1—C2—C3—S31178.81 (17)C3—C4—N4—C41168.01 (18)
C2—C3—C4—N4178.36 (19)C4—N4—C41—C46101.8 (2)
S31—C3—C4—N42.1 (3)C4—N4—C41—C4278.3 (3)
C2—C3—C4—C51.2 (3)C46—C41—C42—C430.0 (3)
S31—C3—C4—C5178.26 (15)N4—C41—C42—C43179.8 (2)
N4—C4—C5—C6178.8 (2)C46—C41—C42—C421179.2 (2)
C3—C4—C5—C60.8 (3)N4—C41—C42—C4211.0 (3)
C2—N1—C6—C50.7 (4)C41—C42—C43—C440.8 (4)
C4—C5—C6—N10.1 (4)C421—C42—C43—C44178.4 (3)
C2—C3—S31—O335.25 (18)C42—C43—C44—C450.7 (4)
C4—C3—S31—O33175.25 (15)C43—C44—C45—C460.2 (4)
C2—C3—S31—O32133.47 (16)C42—C41—C46—C450.8 (3)
C4—C3—S31—O3247.03 (17)N4—C41—C46—C45179.3 (2)
C2—C3—S31—N34114.28 (16)C44—C45—C46—C410.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O320.79 (3)2.42 (2)3.000 (2)132 (2)
N34—H342···O33i0.91 (3)2.10 (3)2.990 (2)169 (3)
N34—H341···N1ii0.86 (3)2.00 (3)2.875 (3)172 (3)
C2—H2···O330.932.412.845 (2)109
C6—H6···O32iii0.932.553.374 (2)148
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1, y, z.
(II) 4-(3-methylanilino)pyridine-3-sulfonamide top
Crystal data top
C12H13N3O2SZ = 2
Mr = 263.31F(000) = 276
Triclinic, P1Dx = 1.399 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7621 (9) ÅCell parameters from 40 reflections
b = 8.6521 (13) Åθ = 8.2–16.4°
c = 11.4715 (18) ŵ = 0.26 mm1
α = 98.523 (11)°T = 295 K
β = 102.398 (12)°Prism, colourless
γ = 102.991 (9)°0.45 × 0.30 × 0.27 mm
V = 624.97 (16) Å3
Data collection top
Philips PW1100, updated by Stoe
diffractometer
Rint = 0.001
Radiation source: fine-focus sealed tubeθmax = 28.9°, θmin = 2.5°
Graphite monochromatorh = 98
ω scansk = 1111
6556 measured reflectionsl = 015
3278 independent reflections3 standard reflections every 90 min
3014 reflections with I > 2σ(I) intensity decay: 1.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.079P)2 + 0.1589P]
where P = (Fo2 + 2Fc2)/3
3278 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C12H13N3O2Sγ = 102.991 (9)°
Mr = 263.31V = 624.97 (16) Å3
Triclinic, P1Z = 2
a = 6.7621 (9) ÅMo Kα radiation
b = 8.6521 (13) ŵ = 0.26 mm1
c = 11.4715 (18) ÅT = 295 K
α = 98.523 (11)°0.45 × 0.30 × 0.27 mm
β = 102.398 (12)°
Data collection top
Philips PW1100, updated by Stoe
diffractometer
Rint = 0.001
6556 measured reflections3 standard reflections every 90 min
3278 independent reflections intensity decay: 1.6%
3014 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.48 e Å3
3278 reflectionsΔρmin = 0.32 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2470 (2)0.32954 (18)0.68429 (14)0.0437 (3)
C20.3465 (2)0.27697 (18)0.60477 (15)0.0384 (3)
H20.27440.18350.54610.046*
C30.5503 (2)0.35141 (17)0.60285 (12)0.0327 (3)
C40.6646 (2)0.49539 (17)0.68929 (13)0.0338 (3)
C50.5581 (3)0.5494 (2)0.77355 (15)0.0423 (3)
H50.62430.64240.83370.051*
C60.3568 (3)0.4651 (2)0.76688 (16)0.0454 (4)
H60.29160.50490.82380.055*
S310.66125 (5)0.25495 (4)0.49696 (3)0.03266 (13)
O320.79591 (18)0.37859 (13)0.45777 (10)0.0421 (3)
O330.49120 (18)0.13769 (14)0.40784 (10)0.0444 (3)
N340.8089 (2)0.15843 (17)0.56700 (13)0.0389 (3)
H3410.925 (4)0.212 (3)0.609 (2)0.047 (5)*
H3420.748 (4)0.085 (3)0.592 (2)0.061 (7)*
N40.8635 (2)0.57610 (17)0.69146 (13)0.0415 (3)
H40.900 (4)0.558 (3)0.627 (2)0.064 (7)*
C410.9877 (2)0.71423 (17)0.78238 (14)0.0361 (3)
C421.0395 (3)0.70311 (19)0.90431 (14)0.0411 (3)
H420.98910.60530.92610.049*
C431.1653 (3)0.8356 (2)0.99439 (15)0.0450 (4)
C441.2389 (3)0.9789 (2)0.95904 (18)0.0513 (4)
H441.32221.06911.01780.062*
C451.1912 (3)0.9906 (2)0.83813 (19)0.0535 (4)
H451.24421.08790.81640.064*
C461.0648 (3)0.8586 (2)0.74872 (16)0.0443 (3)
H461.03240.86700.66730.053*
C4311.2201 (4)0.8202 (3)1.12567 (18)0.0692 (6)
H4311.32150.75831.13730.104*
H4321.09580.76631.14630.104*
H4331.27810.92611.17720.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0324 (6)0.0462 (7)0.0540 (8)0.0081 (5)0.0158 (6)0.0117 (6)
C20.0320 (7)0.0356 (7)0.0442 (8)0.0025 (5)0.0097 (6)0.0085 (6)
C30.0302 (6)0.0323 (6)0.0332 (6)0.0039 (5)0.0081 (5)0.0064 (5)
C40.0313 (6)0.0323 (6)0.0355 (6)0.0052 (5)0.0083 (5)0.0051 (5)
C50.0382 (7)0.0406 (8)0.0452 (8)0.0096 (6)0.0124 (6)0.0008 (6)
C60.0393 (8)0.0503 (9)0.0512 (9)0.0156 (7)0.0191 (7)0.0074 (7)
S310.03133 (19)0.03083 (19)0.02946 (19)0.00222 (13)0.00819 (13)0.00224 (13)
O320.0448 (6)0.0388 (6)0.0377 (5)0.0037 (4)0.0165 (4)0.0063 (4)
O330.0405 (6)0.0427 (6)0.0352 (5)0.0078 (5)0.0051 (4)0.0014 (4)
N340.0341 (6)0.0349 (6)0.0449 (7)0.0034 (5)0.0118 (5)0.0058 (5)
N40.0363 (6)0.0398 (7)0.0384 (6)0.0038 (5)0.0126 (5)0.0056 (5)
C410.0317 (6)0.0331 (7)0.0380 (7)0.0036 (5)0.0087 (5)0.0011 (5)
C420.0430 (8)0.0366 (7)0.0412 (8)0.0073 (6)0.0112 (6)0.0049 (6)
C430.0418 (8)0.0489 (9)0.0392 (7)0.0132 (7)0.0056 (6)0.0016 (6)
C440.0455 (8)0.0395 (8)0.0543 (10)0.0032 (7)0.0036 (7)0.0091 (7)
C450.0528 (10)0.0348 (8)0.0641 (11)0.0004 (7)0.0114 (8)0.0065 (7)
C460.0456 (8)0.0400 (8)0.0430 (8)0.0044 (6)0.0102 (6)0.0080 (6)
C4310.0736 (14)0.0816 (15)0.0417 (10)0.0190 (12)0.0021 (9)0.0016 (10)
Geometric parameters (Å, º) top
N1—C21.330 (2)N4—C411.4229 (18)
N1—C61.342 (2)N4—H40.83 (3)
C2—C31.3902 (19)C41—C461.385 (2)
C2—H20.9300C41—C421.390 (2)
C3—C41.4157 (19)C42—C431.392 (2)
C3—S311.7629 (15)C42—H420.9300
C4—N41.3620 (19)C43—C441.381 (3)
C4—C51.410 (2)C43—C4311.505 (3)
C5—C61.372 (2)C44—C451.379 (3)
C5—H50.9300C44—H440.9300
C6—H60.9300C45—C461.387 (2)
S31—O321.4339 (11)C45—H450.9300
S31—O331.4353 (11)C46—H460.9300
S31—N341.6028 (15)C431—H4310.9600
N34—H3410.82 (2)C431—H4320.9600
N34—H3420.80 (3)C431—H4330.9600
C2—N1—C6115.49 (13)C4—N4—H4116.4 (17)
N1—C2—C3124.84 (14)C41—N4—H4117.7 (17)
N1—C2—H2117.6C46—C41—C42119.79 (14)
C3—C2—H2117.6C46—C41—N4119.84 (14)
C2—C3—C4119.45 (13)C42—C41—N4120.32 (14)
C2—C3—S31117.97 (11)C41—C42—C43121.29 (15)
C4—C3—S31122.48 (10)C41—C42—H42119.4
N4—C4—C5122.20 (14)C43—C42—H42119.4
N4—C4—C3122.59 (13)C44—C43—C42117.99 (16)
C5—C4—C3115.21 (13)C44—C43—C431121.73 (17)
C6—C5—C4120.12 (15)C42—C43—C431120.27 (18)
C6—C5—H5119.9C45—C44—C43121.21 (16)
C4—C5—H5119.9C45—C44—H44119.4
N1—C6—C5124.88 (15)C43—C44—H44119.4
N1—C6—H6117.6C44—C45—C46120.62 (17)
C5—C6—H6117.6C44—C45—H45119.7
O32—S31—O33119.23 (7)C46—C45—H45119.7
O32—S31—N34106.65 (8)C41—C46—C45119.08 (16)
O33—S31—N34107.68 (8)C41—C46—H46120.5
O32—S31—C3107.83 (7)C45—C46—H46120.5
O33—S31—C3106.93 (7)C43—C431—H431109.5
N34—S31—C3108.11 (7)C43—C431—H432109.5
S31—N34—H341116.6 (15)H431—C431—H432109.5
S31—N34—H342114.6 (18)C43—C431—H433109.5
H341—N34—H342118 (2)H431—C431—H433109.5
C4—N4—C41123.83 (13)H432—C431—H433109.5
C6—N1—C2—C30.3 (2)C4—C3—S31—N3477.27 (13)
N1—C2—C3—C41.0 (2)C5—C4—N4—C414.5 (2)
N1—C2—C3—S31175.54 (12)C3—C4—N4—C41175.30 (14)
C2—C3—C4—N4178.91 (14)C4—N4—C41—C46122.31 (18)
S31—C3—C4—N44.7 (2)C4—N4—C41—C4260.5 (2)
C2—C3—C4—C51.3 (2)C46—C41—C42—C431.1 (2)
S31—C3—C4—C5175.10 (11)N4—C41—C42—C43178.32 (14)
N4—C4—C5—C6179.21 (16)C41—C42—C43—C440.4 (2)
C3—C4—C5—C61.0 (2)C41—C42—C43—C431179.67 (17)
C2—N1—C6—C50.1 (3)C42—C43—C44—C450.6 (3)
C4—C5—C6—N10.3 (3)C431—C43—C44—C45178.6 (2)
C2—C3—S31—O32145.90 (12)C43—C44—C45—C460.9 (3)
C4—C3—S31—O3237.68 (14)C42—C41—C46—C450.7 (2)
C2—C3—S31—O3316.55 (14)N4—C41—C46—C45177.96 (16)
C4—C3—S31—O33167.04 (12)C44—C45—C46—C410.3 (3)
C2—C3—S31—N3499.15 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O320.83 (2)2.17 (2)2.843 (2)138 (2)
N4—H4···O32i0.83 (2)2.45 (3)3.143 (2)142 (2)
N34—H341···N1ii0.82 (3)2.11 (3)2.917 (2)168 (2)
N34—H342···O33iii0.80 (3)2.22 (3)2.983 (2)159 (3)
C2—H2···O330.932.432.861 (2)108
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1.
(III) 4-(4-methylanilino)pyridine-3-sulfonamide top
Crystal data top
C12H13N3O2SF(000) = 552
Mr = 263.31Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 39 reflections
a = 10.7730 (19) Åθ = 8.9–16.7°
b = 9.271 (4) ŵ = 0.26 mm1
c = 12.5769 (16) ÅT = 295 K
β = 95.71 (2)°Prism, colourless
V = 1249.9 (6) Å30.53 × 0.20 × 0.15 mm
Z = 4
Data collection top
Philips PW1100, updated by Stoe
diffractometer
Rint = 0.001
Radiation source: fine-focus sealed tubeθmax = 29.9°, θmin = 2.7°
Graphite monochromatorh = 1515
ω scansk = 013
7224 measured reflectionsl = 017
3612 independent reflections3 standard reflections every 90 min
2432 reflections with I > 2σ(I) intensity decay: 5.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.3511P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3612 reflectionsΔρmax = 0.32 e Å3
176 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (3)
Crystal data top
C12H13N3O2SV = 1249.9 (6) Å3
Mr = 263.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7730 (19) ŵ = 0.26 mm1
b = 9.271 (4) ÅT = 295 K
c = 12.5769 (16) Å0.53 × 0.20 × 0.15 mm
β = 95.71 (2)°
Data collection top
Philips PW1100, updated by Stoe
diffractometer
Rint = 0.001
7224 measured reflections3 standard reflections every 90 min
3612 independent reflections intensity decay: 5.0%
2432 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
3612 reflectionsΔρmin = 0.28 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.87305 (15)0.39979 (17)0.35781 (12)0.0456 (4)
C20.95088 (17)0.32681 (19)0.42746 (13)0.0392 (4)
H21.02460.29210.40430.047*
C30.92843 (15)0.29968 (19)0.53233 (12)0.0349 (3)
C40.81965 (16)0.3553 (2)0.57152 (13)0.0405 (4)
C50.73750 (18)0.4300 (2)0.49756 (15)0.0484 (4)
H50.66310.46680.51790.058*
C60.7677 (2)0.4485 (2)0.39468 (15)0.0510 (5)
H60.71130.49810.34720.061*
S311.03370 (4)0.18905 (5)0.61178 (3)0.03591 (13)
O321.07394 (12)0.26519 (15)0.70858 (9)0.0458 (3)
O331.12483 (12)0.14309 (16)0.54305 (10)0.0481 (3)
N340.96097 (17)0.05030 (19)0.64689 (14)0.0467 (4)
H3410.925 (3)0.056 (3)0.698 (2)0.080 (9)*
H3420.9294 (19)0.003 (3)0.5955 (18)0.053 (6)*
N40.79914 (15)0.3386 (2)0.67605 (12)0.0510 (4)
H40.858 (2)0.323 (3)0.7169 (19)0.061*
C410.68244 (16)0.3430 (2)0.71949 (13)0.0403 (4)
C420.67788 (16)0.4015 (2)0.82022 (14)0.0428 (4)
H420.74810.44530.85520.051*
C430.56814 (17)0.3945 (2)0.86876 (14)0.0476 (4)
H430.56660.43250.93700.057*
C440.46088 (17)0.3328 (2)0.81906 (15)0.0465 (4)
C450.46679 (19)0.2766 (3)0.71782 (17)0.0551 (5)
H450.39570.23550.68210.066*
C460.57616 (19)0.2802 (2)0.66829 (16)0.0539 (5)
H460.57810.24030.60060.065*
C4410.3427 (2)0.3262 (4)0.8744 (2)0.0752 (8)
H4410.36260.29810.94750.113*
H4420.28660.25700.83890.113*
H4430.30370.41950.87170.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0566 (9)0.0476 (9)0.0334 (7)0.0031 (7)0.0087 (6)0.0040 (6)
C20.0439 (9)0.0428 (9)0.0325 (8)0.0010 (7)0.0113 (6)0.0001 (7)
C30.0342 (7)0.0413 (9)0.0301 (7)0.0002 (7)0.0074 (6)0.0024 (6)
C40.0390 (8)0.0505 (10)0.0331 (8)0.0030 (7)0.0092 (6)0.0023 (7)
C50.0447 (9)0.0585 (12)0.0432 (9)0.0138 (8)0.0094 (7)0.0015 (8)
C60.0566 (11)0.0551 (12)0.0412 (9)0.0113 (9)0.0051 (8)0.0088 (8)
S310.0340 (2)0.0450 (2)0.02965 (19)0.00144 (17)0.00755 (13)0.00014 (16)
O320.0450 (7)0.0577 (8)0.0342 (6)0.0060 (6)0.0005 (5)0.0043 (6)
O330.0411 (7)0.0640 (8)0.0413 (7)0.0121 (6)0.0150 (5)0.0031 (6)
N340.0596 (10)0.0475 (9)0.0346 (8)0.0084 (8)0.0130 (7)0.0019 (7)
N40.0380 (8)0.0867 (13)0.0294 (7)0.0148 (8)0.0085 (6)0.0011 (8)
C410.0379 (8)0.0496 (10)0.0346 (8)0.0081 (7)0.0102 (6)0.0012 (7)
C420.0379 (8)0.0549 (11)0.0364 (8)0.0001 (8)0.0072 (6)0.0075 (8)
C430.0442 (9)0.0626 (12)0.0378 (9)0.0044 (9)0.0133 (7)0.0071 (8)
C440.0363 (8)0.0586 (12)0.0460 (10)0.0017 (8)0.0107 (7)0.0039 (8)
C450.0434 (10)0.0660 (13)0.0555 (12)0.0077 (9)0.0025 (8)0.0100 (10)
C460.0504 (11)0.0689 (13)0.0430 (10)0.0014 (10)0.0068 (8)0.0185 (9)
C4410.0407 (10)0.121 (2)0.0662 (14)0.0061 (13)0.0185 (10)0.0052 (15)
Geometric parameters (Å, º) top
N1—C21.335 (2)N4—C411.420 (2)
N1—C61.346 (2)N4—H40.79 (3)
C2—C31.387 (2)C41—C421.384 (2)
C2—H20.9300C41—C461.385 (3)
C3—C41.413 (2)C42—C431.385 (2)
C3—S311.7639 (18)C42—H420.9300
C4—N41.363 (2)C43—C441.382 (3)
C4—C51.401 (3)C43—H430.9300
C5—C61.376 (3)C44—C451.383 (3)
C5—H50.9300C44—C4411.512 (3)
C6—H60.9300C45—C461.387 (3)
S31—O331.4357 (12)C45—H450.9300
S31—O321.4365 (13)C46—H460.9300
S31—N341.5914 (18)C441—H4410.9600
N34—H3410.78 (3)C441—H4420.9600
N34—H3420.86 (2)C441—H4430.9600
C2—N1—C6116.11 (15)C4—N4—H4116.7 (18)
N1—C2—C3123.93 (16)C41—N4—H4116.3 (18)
N1—C2—H2118.0C42—C41—C46119.19 (16)
C3—C2—H2118.0C42—C41—N4118.48 (16)
C2—C3—C4119.63 (16)C46—C41—N4122.12 (16)
C2—C3—S31118.74 (13)C41—C42—C43119.65 (17)
C4—C3—S31121.56 (12)C41—C42—H42120.2
N4—C4—C5122.96 (16)C43—C42—H42120.2
N4—C4—C3120.95 (16)C44—C43—C42122.16 (17)
C5—C4—C3116.07 (15)C44—C43—H43118.9
C6—C5—C4119.55 (17)C42—C43—H43118.9
C6—C5—H5120.2C43—C44—C45117.34 (17)
C4—C5—H5120.2C43—C44—C441120.90 (18)
N1—C6—C5124.63 (18)C45—C44—C441121.76 (19)
N1—C6—H6117.7C44—C45—C46121.58 (18)
C5—C6—H6117.7C44—C45—H45119.2
O33—S31—O32119.30 (8)C46—C45—H45119.2
O33—S31—N34108.19 (9)C41—C46—C45120.07 (17)
O32—S31—N34106.11 (9)C41—C46—H46120.0
O33—S31—C3105.73 (8)C45—C46—H46120.0
O32—S31—C3108.49 (8)C44—C441—H441109.5
N34—S31—C3108.70 (9)C44—C441—H442109.5
S31—N34—H341118 (2)H441—C441—H442109.5
S31—N34—H342115.2 (15)C44—C441—H443109.5
H341—N34—H342118 (2)H441—C441—H443109.5
C4—N4—C41127.02 (16)H442—C441—H443109.5
C6—N1—C2—C30.2 (3)C4—C3—S31—N3458.82 (17)
N1—C2—C3—C42.3 (3)C5—C4—N4—C4124.2 (3)
N1—C2—C3—S31174.83 (14)C3—C4—N4—C41157.22 (19)
C2—C3—C4—N4175.64 (18)C4—N4—C41—C42145.0 (2)
S31—C3—C4—N47.3 (3)C4—N4—C41—C4640.4 (3)
C2—C3—C4—C53.0 (3)C46—C41—C42—C431.0 (3)
S31—C3—C4—C5174.03 (14)N4—C41—C42—C43173.75 (18)
N4—C4—C5—C6176.8 (2)C41—C42—C43—C441.2 (3)
C3—C4—C5—C61.8 (3)C42—C43—C44—C450.4 (3)
C2—N1—C6—C51.1 (3)C42—C43—C44—C441179.7 (2)
C4—C5—C6—N10.3 (3)C43—C44—C45—C460.8 (3)
C2—C3—S31—O332.31 (17)C441—C44—C45—C46178.6 (2)
C4—C3—S31—O33174.78 (15)C42—C41—C46—C450.1 (3)
C2—C3—S31—O32126.77 (14)N4—C41—C46—C45174.6 (2)
C4—C3—S31—O3256.14 (17)C44—C45—C46—C411.0 (3)
C2—C3—S31—N34118.27 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O320.79 (2)2.38 (2)3.025 (2)137 (2)
N34—H341···N1i0.80 (3)2.16 (3)2.940 (2)166 (3)
N34—H342···O33ii0.87 (2)2.19 (2)3.056 (2)172 (2)
C2—H2···O330.932.402.826 (3)108
C42—H42···O33iii0.932.563.430 (3)157
N4—H4···N1i0.79 (2)2.71 (2)3.222 (2)124 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x+2, y+1/2, z+3/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC12H13N3O2SC12H13N3O2SC12H13N3O2S
Mr263.31263.31263.31
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Monoclinic, P21/c
Temperature (K)295295295
a, b, c (Å)8.5118 (7), 7.2369 (13), 21.181 (5)6.7621 (9), 8.6521 (13), 11.4715 (18)10.7730 (19), 9.271 (4), 12.5769 (16)
α, β, γ (°)90, 96.714 (15), 9098.523 (11), 102.398 (12), 102.991 (9)90, 95.71 (2), 90
V3)1295.8 (4)624.97 (16)1249.9 (6)
Z424
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.250.260.26
Crystal size (mm)0.60 × 0.24 × 0.130.45 × 0.30 × 0.270.53 × 0.20 × 0.15
Data collection
DiffractometerPhilips PW1100, updated by Stoe
diffractometer
Philips PW1100, updated by Stoe
diffractometer
Philips PW1100, updated by Stoe
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7502, 3751, 2396 6556, 3278, 3014 7224, 3612, 2432
Rint0.0010.0010.001
(sin θ/λ)max1)0.7020.6800.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.02 0.045, 0.130, 1.11 0.041, 0.121, 1.02
No. of reflections375132783612
No. of parameters175176176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.200.48, 0.320.32, 0.28

Computer programs: STADI4 (Stoe & Cie, 1996), STADI4, X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON2000 (Spek, 2003) and WebLab ViewerPro (Accelrys, 2000), PLATON2000 (Spek, 2003), SHELXL97 and PARST96 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O320.79 (3)2.42 (2)3.000 (2)132 (2)
N34—H342···O33i0.91 (3)2.10 (3)2.990 (2)169 (3)
N34—H341···N1ii0.86 (3)2.00 (3)2.875 (3)172 (3)
C2—H2···O330.932.412.845 (2)108.5
C6—H6···O32iii0.932.553.374 (2)148.4
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O320.83 (2)2.17 (2)2.843 (2)138 (2)
N4—H4···O32i0.83 (2)2.45 (3)3.143 (2)142 (2)
N34—H341···N1ii0.82 (3)2.11 (3)2.917 (2)168 (2)
N34—H342···O33iii0.80 (3)2.22 (3)2.983 (2)159 (3)
C2—H2···O330.932.432.861 (2)108
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O320.79 (2)2.38 (2)3.025 (2)137 (2)
N34—H341···N1i0.80 (3)2.16 (3)2.940 (2)166 (3)
N34—H342···O33ii0.87 (2)2.19 (2)3.056 (2)172 (2)
C2—H2···O330.932.402.826 (3)108
C42—H42···O33iii0.932.563.430 (3)157
N4—H4···N1i0.79 (2)2.71 (2)3.222 (2)124 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x+2, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds