Download citation
Download citation
link to html
The title compound, {[CuCl2(PhTz)2]·0.5PhTz}n (PhTz is 1-­phenyl­tetrazole, C7H6N4), has a polymeric structure, with uncoordinated disordered PhTz mol­ecules in the cavities. The coordination polyhedron of the Cu atom is a highly elongated octahedron. The equatorial positions are occupied by two Cl atoms [Cu—Cl = 2.2687 (9) and 2.2803 (7) Å] and two N atoms of the PhTz ligands [Cu—N = 2.0131 (19) and 2.0317 (18) Å]. The more distant axial positions are occupied by two Cl atoms [Cu—Cl = 3.0307 (12) and 2.8768 (11) Å] that lie in the equatorial planes of two neighbouring Cu octahedra. The [CuCl2(PhTz)2] units are linked by Cu—Cl bridges into infinite chains extending parallel to the a axis. The chains are linked into two-dimensional networks by intermolecular C—H...N interactions between the phenyl and tetrazole fragments, and by face-to-face π–π interactions between symmetry-related phenyl rings. These two-dimensional networks, which lie parallel to the ac plane, are connected by intermolecular π–π stacking interactions between phenyl rings, thus forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104014428/jz1625sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104014428/jz1625Isup2.hkl
Contains datablock I

CCDC reference: 248126

Comment top

This work continues our X-ray studies of transition metal complexes with bulky 1-alkyl- and 1-aryltetrazole ligands. Previously, we reported the structures of CuCl2 complexes with 1-tert-butyl- (Ivashkevich et al., 2002) and 1-(2,4,6-trimethylphenyl)tetrazole (Ivashkevich et al., 2003). The present paper is concerned with the crystal structure determination of a new complex, catena-poly[[bis(cis-1-phenyltetrazole-κN1) copper(II)]di-µ-chloro], which crystallizes as the 2:1 adduct, (I), with 1-phenyltetrazole; the asymmetric unit of (I) contains two 1-phenyltetrazole ligands (A and B) and an uncoordinated 1-phenyltetrazole molecule (C; Fig. 1).

The tetrazole rings of ligands A and B have very similar geometries, close to those previously observed for 1-substituted tetrazoles [Cambridge Structural Database (CSD); Version 5.25 of November 2003; Allen, 2002]. These rings are essentially planar, with mean deviations of tetrazole ring atoms from their least-squares planes of 0.004 (3) and 0.003 (2) Å for ligands A and B, respectively.

The interplanar angle between the phenyl and tetrazole rings is 15.23 (14)° for ligand A and 21.67 (16)° for ligand B. The N1—C6 bond lengths [1.439 (3) and 1.430 (3) Å for ligands A and B, respectively] are typical of N—Carom single bonds with cyclic pseudoaromatic nitrogen. A search of the CSD gives a mean bond length of 1.426 (18) Å for such bonds.

The bond lengths of ligands A and B are close to those of the free 1-phenyltetrazole ligand (Matsunaga et al., 1999). All of the corresponding values fall within the 3σ range. The corresponding bond angles differ slightly more, but fall within the 5σ range. The most important difference is observed in the interplanar angle between the tetrazole and phenyl rings; the value of 11.8 (1)° for the molecule in 1-phenyltetrazole crystal differs from those of ligands A and B.

The coordination polyhedron of the Cu atom is a highly elongated octahedron (Table 1). The equatorial positions are occupied by the two Cl atoms [Cu—Cl1 = 2.2687 (9) Å and Cu—Cl2 = 2.2803 (7) Å] and the two N4 atoms of the 1-phenyltetrazole ligands [Cu—N4A = 2.0131 (19) Å and Cu—N4B = 2.0317 (18) Å]. The ligands are coordinated in a cis orientation. The Cu—Cl distances for the axial Cl1i and Cl1ii atoms are 3.0307 (12) and 2.8768 (11) Å, respectively.

The coordination polyhedra of the adjacent Cu atoms share edges, forming a one-dimensional polymeric structure, [CuCl2(C7H6N4)2]n. These infinite chains extend parallel to the a axis (Fig. 2). C5B—H5B···Cl1i and C5A—H5A···Cl2ii hydrogen bonds (Steiner, 1996) are observed within the polymeric chains (Table 2).

In view of lack of classical hydrogen bonds in the structure of (I), the packing structure is determinated by weaker interactions. The infinite chains are linked into two-dimensional networks by C9A—H9A···N3Biii hydrogen bonds and by face-to-face ππ interactions between symmetry-related phenyl rings of ligands A [symmetry code: 1 − x, 1 − y, 2 − z], with an intercentroid distance of 3.704 (2) Å and offset an value of ca 1.48 Å. These two-dimensional networks, which are parallel to the xz plane, are linked by intermolecular ππ stacking interactions between symmetry-related benzene rings of ligands B [symmetry code: 2 − x, −y, 1 − z], with an intercentroid distance of 4.055 (2) Å and an offset value of ca 1.93 Å, to form a three-dimensional network (Fig. 2).

This three-dimensional network contains a potential `solvent accessible area' with a volume of ca 230 Å3 and a possible electron count of 75 per unit cell (Spek, 2003), which is consistent with the presence of one 1-phenyltetrazole molecule. Analysis of the ΔF map indeed showed that the `solvent accessible area' contained 1-phenyltetrazole molecule C. This molecule is associated with the 1 Wyckoff position, the C6C atom being displaced from the inversion center by ca 0.08 Å. As a consequence, the molecule is disordered over two positions, each with an occupancy of 0.5 (Fig. 2).

Comparison of the structure of (I) with those of previously investigated CuCl2L2 complexes, where L is 1-tert-butyl- (Ivashkevich et al., 2002) and 1-(2,4,6-trimethylphenyl)tetrazole (Ivashkevich et al., 2003), shows that all they form one-dimensional polymeric chains with a copper–chlorine skeleton. However, the polymeric chains in (I) are linked by intermolecular C—H···N and ππ interactions, forming a three-dimensional network, while the polymeric chains in the previously investigated CuCl2L2 complexes, which contain no guest molecules, are connected only by van der Waals interactions.

Experimental top

1-Phenyltetrazole was prepared by heterocyclization of aniline with ethylorthoformate and sodium azide in acetic acid (Gaponik et al., 1985). The title compound was prepared by adding CuCl2×2H2O (0.46 g) to a heated solution (303 K) of 1-phenyltetrazole (0.73 g) in ethanol (20 ml) with stirring. The reaction mixture was heated on a water bath for 5–7 min. Single crystals were grown by slow evaporation from the reaction mixture at 289–291 K for 1 month [0.8 g, yield 32%].

Refinement top

H atoms were included in idealized positions (C—H = 0.93 Å) and refined using a riding model [Uiso(H)=1.2Ueq(C)]. The disordered 1-phenyltetrazole molecule was refined using an appropriate series of restraints. Details are given in the final instruction file, which is included in the supplementary material.

Computing details top

Data collection: R3m software Nicolet (1980); cell refinement: R3m software; data reduction: R3m software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) and PLATON (Spek, 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of the crystal of (I). The monomeric unit is shown. Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Projection of the structure of (I) along the a axis, showing the 3three-dimensional network. Dashed lines show hydrogen bonds and ππ interactions. Disorder of the uncoordinated 1-phenyltetrazole molecule, C, is also shown.
catena-Poly[[[bis(cis-4-phenyltetrazole-κN1)copper(II)]-di-µ-chloro] 1-phenyltetrazole hemisolvate] top
Crystal data top
[CuCl2(C7H6N4)2]·0.5C7H6N4Z = 2
Mr = 499.84F(000) = 506
Triclinic, P1Dx = 1.600 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.264 (2) ÅCell parameters from 25 reflections
b = 11.669 (4) Åθ = 20.5–22.3°
c = 12.745 (3) ŵ = 1.34 mm1
α = 95.91 (2)°T = 293 K
β = 104.37 (2)°Prism, green
γ = 92.93 (3)°0.56 × 0.30 × 0.20 mm
V = 1037.6 (5) Å3
Data collection top
Nicolet R3m four-circle
diffractometer
4296 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 27.6°, θmin = 1.7°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 1515
Tmin = 0.521, Tmax = 0.776l = 1616
5185 measured reflections3 standard reflections every 100 reflections
4804 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.4065P]
where P = (Fo2 + 2Fc2)/3
4804 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.57 e Å3
33 restraintsΔρmin = 0.72 e Å3
Crystal data top
[CuCl2(C7H6N4)2]·0.5C7H6N4γ = 92.93 (3)°
Mr = 499.84V = 1037.6 (5) Å3
Triclinic, P1Z = 2
a = 7.264 (2) ÅMo Kα radiation
b = 11.669 (4) ŵ = 1.34 mm1
c = 12.745 (3) ÅT = 293 K
α = 95.91 (2)°0.56 × 0.30 × 0.20 mm
β = 104.37 (2)°
Data collection top
Nicolet R3m four-circle
diffractometer
4296 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.056
Tmin = 0.521, Tmax = 0.7763 standard reflections every 100 reflections
5185 measured reflections intensity decay: none
4804 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03733 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.57 e Å3
4804 reflectionsΔρmin = 0.72 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Some details of the refinement may be seen from the RES: TITL MMD2 in P-1 CELL 0.71073 7.264 11.669 12.745 95.91 104.37 92.93 ZERR 2.00 0.002 0.004 0.003 0.02 0.02 0.03 L A T T 1 SFAC C H N CL CU UNIT 35 30 20 4 2 L·S. 4 CONF BOND $H ACTA EQIV $1 − x + 1, −y + 2, −z EQIV $2 − x + 1, −y + 1, −z + 1 BIND CU CL1_$2 HTAB C5A Cl2_$2 EQIV $3 − x + 2, −y + 1, −z + 1 BIND CU CL2_$3 HTAB C5B Cl1_$3 EQIV $4 − x + 1, −y + 1, −z + 2 HTAB C9A N3B_$4 SIZE. 56. 30. 20 MPLA 5 N1A N2A N3A N4A C5A MPLA 6 C6A C7A C8A C9A C10A C11A MPLA 5 N1B N2B N3B N4B C5B MPLA 6 C6B C7B C8B C9B C10B C11B MPLA 5 N1C N2C N3C N4C C5C MPLA 6 C6C C7C C8C C9C C10C C11C WGHT 0.069500 0.406500 FVAR 1.83997 CU 5 0.776501 0.484227 0.558705 11.00000 0.04854 0.04184 = 0.03938 0.01060 0.01966 0.02021 C L1 4 0.619116 0.639749 0.505102 11.00000 0.04072 0.04282 = 0.06517 0.01990 0.02495 0.01638 C L2 4 0.829029 0.430816 0.392042 11.00000 0.03520 0.04323 = 0.03804 0.00522 0.01380 0.00664

N1A 3 0.703021 0.592071 0.863151 11.00000 0.03511 0.05415 = 0.04043 − 0.00075 0.01450 0.00340 N2A 3 0.886523 0.570074 0.888320 11.00000 0.03735 0.21841 = 0.04454 − 0.00424 0.00742 0.02752 N3A 3 0.927648 0.535104 0.798551 11.00000 0.04589 0.22801 = 0.04518 0.00859 0.01291 0.05258 N4A 3 0.774022 0.535384 0.714062 11.00000 0.04085 0.05697 = 0.04092 0.00554 0.01355 0.01603 C5A 1 0.637581 0.569604 0.756226 11.00000 0.03583 0.04765 = 0.04018 0.00422 0.01218 0.01023 AFIX 43 H5A 2 0.513262 0.577090 0.717156 11.00000 10.08000 AFIX 0 C6A 1 0.610433 0.627815 0.947257 11.00000 0.04579 0.04523 = 0.04491 − 0.00492 0.02214 − 0.00455 C7A 1 0.434749 0.672172 0.918494 11.00000 0.05046 0.06153 = 0.06390 − 0.00804 0.02634 0.00412 AFIX 43 H7A 2 0.375991 0.679900 0.846209 11.00000 10.08000 AFIX 0 C8A 1 0.348682 0.705037 1.002553 11.00000 0.06959 0.06935 = 0.10226 − 0.01632 0.05528 0.00046 AFIX 43 H8A 2 0.230665 0.735767 0.986436 11.00000 10.08000 AFIX 0 C9A 1 0.437723 0.692157 1.109180 11.00000 0.10853 0.07392 = 0.08270 − 0.01971 0.06968 − 0.02027 AFIX 43 H9A 2 0.379253 0.714421 1.164386 11.00000 10.08000 AFIX 0 C10A 1 0.610795 0.647056 1.134418 11.00000 0.11086 0.07313 = 0.05036 − 0.00456 0.04060 − 0.01860 AFIX 43 H10A 2 0.668994 0.638467 1.206578 11.00000 10.08000 AFIX 0 C11A 1 0.700008 0.614113 1.053596 11.00000 0.06774 0.05738 = 0.04801 0.00110 0.02102 − 0.00409 AFIX 43 H11A 2 0.817942 0.583346 1.070441 11.00000 10.08000 AFIX 0 N1B 3 0.995857 0.174666 0.638734 11.00000 0.04080 0.04103 = 0.04064 0.01289 0.01728 0.01211 N2B 3 0.850826 0.176453 0.687850 11.00000 0.07857 0.07375 = 0.09203 0.04995 0.06107 0.03976 N3B 3 0.772274 0.271149 0.669792 11.00000 0.08407 0.08032 = 0.09524 0.05300 0.06663 0.04670 N4B 3 0.862755 0.331913 0.609948 11.00000 0.04760 0.04638 = 0.04533 0.01720 0.02445 0.01817 C5B 1 0.999174 0.270848 0.590977 11.00000 0.03689 0.03615 = 0.04168 0.00833 0.01596 0.00868 AFIX 43 H5B 2 1.084275 0.291043 0.550917 11.00000 10.08000 AFIX 0 C6B 1 1.106732 0.076910 0.638037 11.00000 0.04421 0.03733 = 0.03554 0.00686 0.01002 0.01116 C7B 1 1.032122 − 0.027955 0.656815 11.00000 0.05276 0.04228 = 0.06122 0.01355 0.01200 0.00478 AFIX 43 H7B 2 0.913102 − 0.034334 0.671526 11.00000 10.08000 AFIX 0 C8B 1 1.136685 − 0.123383 0.653462 11.00000 0.07454 0.03652 = 0.06661 0.00730 0.00803 0.00876 AFIX 43 H8B 2 1.088685 − 0.194232 0.667032 11.00000 10.08000 AFIX 0 C9B 1 1.310222 − 0.113984 0.630295 11.00000 0.08494 0.05116 = 0.06186 0.00590 0.01973 0.03202 AFIX 43 H9B 2 1.378717 − 0.178785 0.626357 11.00000 10.08000 AFIX 0 C10B 1 1.383460 − 0.009126 0.612851 11.00000 0.06630 0.07316 = 0.08609 0.02555 0.03848 0.03397 AFIX 43 H10B 2 1.502212 − 0.003305 0.597747 11.00000 10.08000 AFIX 0 C11B 1 1.282768 0.088758 0.617406 11.00000 0.05141 0.05017 = 0.06898 0.02082 0.02672 0.01736 AFIX 43 H11B 2 1.333419 0.160171 0.606762 11.00000 10.08000 AFIX 0 REM **************************************************************************** PART −1 N1C 3 0.335938 1.055884 0.025822 10.50000 0.06568 0.06233 = 0.05124 0.00576 0.01410 − 0.00936 N2C 3 0.328244 1.076336 0.129746 10.50000 0.09193 0.14155 = 0.04896 0.01202 0.02701 0.01311 N3C 3 0.170125 1.124306 0.127458 10.50000 0.09066 0.12631 = 0.09534 0.00238 0.04398 0.00285 N4C 3 0.077400 1.139021 0.028308 10.50000 0.08248 0.07292 = 0.10851 0.00791 0.03849 0.00561 C5C 1 0.181651 1.091868 − 0.030695 10.50000 0.07554 0.08334 = 0.07942 0.02357 0.02814 0.00921 AFIX 43 H5C 2 0.148272 1.084705 − 0.106530 10.50000 10.08000 AFIX 0 F L A T C6C > C11C SAME C6C C11C < C7C SAME C7C > C11C C6C C6C 1 0.490520 1.002555 − 0.002969 10.50000 0.05566 0.05481 = 0.04882 0.00750 0.00837 − 0.00838 C7C 1 0.512931 1.003137 − 0.108104 10.50000 0.06376 0.09179 = 0.05419 0.01912 0.01369 0.00986 AFIX 43 H7C 2 0.421549 1.033672 − 0.160370 10.50000 10.08000 AFIX 0 C8C 1 0.670694 0.958495 − 0.135909 10.50000 0.07015 0.10900 = 0.07087 0.01804 0.02422 − 0.00276 AFIX 43 H8C 2 0.687318 0.961292 − 0.205665 10.50000 10.08000 AFIX 0 C9C 1 0.803832 0.909418 − 0.057786 10.50000 0.06346 0.06953 = 0.07826 − 0.00099 0.01989 − 0.00456 AFIX 43 H9C 2 0.906656 0.876284 − 0.076671 10.50000 10.08000 AFIX 0 C10C 1 0.783971 0.909664 0.048109 10.50000 0.06748 0.06344 = 0.05920 0.01277 0.00351 − 0.00636 AFIX 43 H10C 2 0.872006 0.876016 0.099651 10.50000 10.08000 AFIX 0 C11C 1 0.631041 0.960772 0.076059 10.50000 0.07669 0.07220 = 0.05146 0.01522 0.00560 − 0.00166 AFIX 43 H11C 2 0.622723 0.967036 0.148046 10.50000 10.08000 PART 0 REM **************************************************************************** HKLF 4

REM MMD2 in P-1 REM R1 = 0.0372 for 4296 Fo > 4sig(Fo) and 0.0410 for all 4804 data REM 325 parameters refined using 33 restraints

END

WGHT 0.0695 0.4065

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.77650 (4)0.48423 (2)0.558705 (19)0.04074 (11)
Cl10.61912 (7)0.63975 (5)0.50510 (5)0.04610 (14)
Cl20.82903 (7)0.43082 (4)0.39204 (4)0.03788 (12)
N1A0.7030 (2)0.59207 (17)0.86315 (15)0.0428 (4)
N2A0.8865 (3)0.5701 (4)0.8883 (2)0.1015 (13)
N3A0.9276 (4)0.5351 (4)0.7986 (2)0.1052 (13)
N4A0.7740 (3)0.53538 (17)0.71406 (15)0.0453 (4)
C5A0.6376 (3)0.56960 (19)0.75623 (17)0.0406 (4)
H5A0.51330.57710.71720.080*
C6A0.6104 (3)0.62781 (19)0.94726 (18)0.0445 (5)
C7A0.4347 (4)0.6722 (2)0.9185 (2)0.0577 (6)
H7A0.37600.67990.84620.080*
C8A0.3487 (5)0.7050 (3)1.0026 (3)0.0766 (9)
H8A0.23070.73580.98640.080*
C9A0.4377 (6)0.6922 (3)1.1092 (3)0.0834 (11)
H9A0.37930.71441.16440.080*
C10A0.6108 (6)0.6471 (3)1.1344 (2)0.0763 (10)
H10A0.66900.63851.20660.080*
C11A0.7000 (4)0.6141 (2)1.0536 (2)0.0573 (6)
H11A0.81790.58331.07040.080*
N1B0.9959 (2)0.17467 (15)0.63873 (14)0.0387 (4)
N2B0.8508 (4)0.1765 (2)0.6878 (2)0.0704 (7)
N3B0.7723 (4)0.2711 (2)0.6698 (2)0.0743 (8)
N4B0.8628 (3)0.33191 (16)0.60995 (15)0.0428 (4)
C5B0.9992 (3)0.27085 (17)0.59098 (16)0.0367 (4)
H5B1.08430.29100.55090.080*
C6B1.1067 (3)0.07691 (17)0.63804 (16)0.0386 (4)
C7B1.0321 (4)0.0280 (2)0.6568 (2)0.0520 (5)
H7B0.91310.03430.67150.080*
C8B1.1367 (4)0.1234 (2)0.6535 (2)0.0608 (7)
H8B1.08870.19420.66700.080*
C9B1.3102 (5)0.1140 (2)0.6303 (2)0.0649 (7)
H9B1.37870.17880.62640.080*
C10B1.3835 (4)0.0091 (3)0.6129 (3)0.0696 (8)
H10B1.50220.00330.59770.080*
C11B1.2828 (4)0.0888 (2)0.6174 (2)0.0534 (6)
H11B1.33340.16020.60680.080*
N1C0.3359 (7)1.0559 (4)0.0258 (4)0.0605 (11)0.50
N2C0.328 (2)1.0763 (16)0.1297 (11)0.092 (5)0.50
N3C0.1701 (11)1.1243 (8)0.1275 (7)0.101 (2)0.50
N4C0.0774 (10)1.1390 (6)0.0283 (6)0.0857 (17)0.50
C5C0.182 (3)1.092 (2)0.0307 (17)0.077 (4)0.50
H5C0.14831.08470.10650.080*0.50
C6C0.491 (3)1.003 (2)0.0030 (12)0.0543 (13)0.50
C7C0.5129 (9)1.0031 (6)0.1081 (5)0.0693 (15)0.50
H7C0.42151.03370.16040.080*0.50
C8C0.671 (2)0.9585 (18)0.1359 (15)0.082 (4)0.50
H8C0.68730.96130.20570.080*0.50
C9C0.8038 (10)0.9094 (6)0.0578 (6)0.0712 (16)0.50
H9C0.90670.87630.07670.080*0.50
C10C0.784 (2)0.9097 (16)0.0481 (11)0.066 (3)0.50
H10C0.87200.87600.09970.080*0.50
C11C0.6310 (9)0.9608 (5)0.0761 (5)0.0684 (15)0.50
H11C0.62270.96700.14800.080*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.04854 (17)0.04184 (16)0.03938 (16)0.02021 (11)0.01966 (12)0.01060 (11)
Cl10.0407 (3)0.0428 (3)0.0652 (3)0.0164 (2)0.0249 (2)0.0199 (2)
Cl20.0352 (2)0.0432 (3)0.0380 (2)0.00664 (18)0.01380 (18)0.00522 (18)
N1A0.0351 (8)0.0542 (10)0.0404 (9)0.0034 (7)0.0145 (7)0.0007 (7)
N2A0.0373 (11)0.218 (4)0.0445 (12)0.0275 (17)0.0074 (9)0.0042 (17)
N3A0.0459 (13)0.228 (4)0.0452 (12)0.0526 (18)0.0129 (10)0.0086 (18)
N4A0.0408 (9)0.0570 (11)0.0409 (9)0.0160 (8)0.0135 (7)0.0055 (8)
C5A0.0358 (9)0.0476 (11)0.0402 (10)0.0102 (8)0.0122 (8)0.0042 (8)
C6A0.0458 (11)0.0452 (11)0.0449 (11)0.0045 (9)0.0221 (9)0.0049 (9)
C7A0.0505 (13)0.0615 (15)0.0639 (15)0.0041 (11)0.0263 (11)0.0080 (12)
C8A0.0696 (18)0.0694 (18)0.102 (3)0.0005 (14)0.0553 (18)0.0163 (16)
C9A0.109 (3)0.074 (2)0.083 (2)0.0203 (18)0.070 (2)0.0197 (16)
C10A0.111 (3)0.0731 (19)0.0504 (15)0.0186 (18)0.0406 (16)0.0046 (13)
C11A0.0677 (16)0.0574 (14)0.0480 (13)0.0041 (12)0.0210 (11)0.0011 (10)
N1B0.0408 (9)0.0410 (9)0.0406 (8)0.0121 (7)0.0173 (7)0.0129 (7)
N2B0.0786 (15)0.0737 (15)0.0920 (17)0.0398 (12)0.0611 (14)0.0499 (14)
N3B0.0841 (16)0.0803 (16)0.0952 (18)0.0467 (13)0.0666 (15)0.0530 (14)
N4B0.0476 (10)0.0464 (10)0.0453 (9)0.0182 (8)0.0244 (8)0.0172 (7)
C5B0.0369 (9)0.0362 (9)0.0417 (10)0.0087 (7)0.0160 (8)0.0083 (7)
C6B0.0442 (10)0.0373 (10)0.0355 (9)0.0112 (8)0.0100 (8)0.0069 (7)
C7B0.0528 (13)0.0423 (11)0.0612 (14)0.0048 (9)0.0120 (11)0.0135 (10)
C8B0.0745 (17)0.0365 (11)0.0666 (16)0.0088 (11)0.0080 (13)0.0073 (10)
C9B0.085 (2)0.0512 (14)0.0619 (16)0.0320 (13)0.0197 (14)0.0059 (11)
C10B0.0663 (17)0.0732 (18)0.086 (2)0.0340 (14)0.0385 (15)0.0255 (15)
C11B0.0514 (13)0.0502 (13)0.0690 (15)0.0174 (10)0.0267 (11)0.0208 (11)
N1C0.066 (3)0.062 (3)0.051 (2)0.009 (2)0.014 (2)0.006 (2)
N2C0.092 (7)0.142 (13)0.049 (4)0.013 (7)0.027 (4)0.012 (5)
N3C0.091 (5)0.126 (6)0.095 (5)0.003 (4)0.044 (4)0.002 (5)
N4C0.082 (4)0.073 (4)0.109 (5)0.006 (3)0.038 (4)0.008 (3)
C5C0.076 (7)0.083 (7)0.079 (8)0.009 (5)0.028 (5)0.024 (5)
C6C0.056 (4)0.055 (3)0.049 (2)0.008 (2)0.008 (2)0.0075 (18)
C7C0.064 (3)0.092 (4)0.054 (3)0.010 (3)0.014 (3)0.019 (3)
C8C0.070 (6)0.109 (10)0.071 (7)0.003 (5)0.024 (5)0.018 (5)
C9C0.063 (4)0.070 (4)0.078 (5)0.005 (3)0.020 (4)0.001 (3)
C10C0.067 (7)0.063 (5)0.059 (6)0.006 (5)0.004 (5)0.013 (4)
C11C0.077 (4)0.072 (4)0.051 (3)0.002 (3)0.006 (3)0.015 (3)
Geometric parameters (Å, º) top
Cu—N4A2.0131 (19)C5B—H5B0.9300
Cu—N4B2.0317 (18)C6B—C11B1.371 (3)
Cu—Cl12.2687 (9)C6B—C7B1.380 (3)
Cu—Cl22.2803 (7)C7B—C8B1.383 (4)
Cu—Cl2i2.8768 (11)C7B—H7B0.9300
Cu—Cl1ii3.0307 (12)C8B—C9B1.366 (4)
N1A—C5A1.321 (3)C8B—H8B0.9300
N1A—N2A1.336 (3)C9B—C10B1.370 (4)
N1A—C6A1.439 (3)C9B—H9B0.9300
N2A—N3A1.285 (4)C10B—C11B1.391 (3)
N3A—N4A1.345 (3)C10B—H10B0.9300
N4A—C5A1.300 (3)C11B—H11B0.9300
C5A—H5A0.9300N1C—C5C1.29 (2)
C6A—C11A1.380 (4)N1C—N2C1.337 (14)
C6A—C7A1.380 (4)N1C—C6C1.42 (2)
C7A—C8A1.399 (4)N2C—N3C1.298 (15)
C7A—H7A0.9300N3C—N4C1.309 (10)
C8A—C9A1.380 (5)N4C—C5C1.297 (18)
C8A—H8A0.9300C5C—H5C0.9300
C9A—C10A1.365 (5)C6C—C7C1.390 (14)
C9A—H9A0.9300C6C—C11C1.391 (14)
C10A—C11A1.380 (4)C7C—C8C1.391 (13)
C10A—H10A0.9300C7C—H7C0.9300
C11A—H11A0.9300C8C—C9C1.397 (13)
N1B—C5B1.333 (3)C8C—H8C0.9300
N1B—N2B1.352 (3)C9C—C10C1.392 (12)
N1B—C6B1.430 (3)C9C—H9C0.9300
N2B—N3B1.285 (3)C10C—C11C1.392 (13)
N3B—N4B1.352 (3)C10C—H10C0.9300
N4B—C5B1.305 (3)C11C—H11C0.9300
N4A—Cu—N4B86.95 (8)C5B—N4B—Cu130.52 (14)
N4A—Cu—Cl189.77 (6)N3B—N4B—Cu122.71 (14)
N4B—Cu—Cl1167.82 (6)N4B—C5B—N1B108.44 (17)
N4A—Cu—Cl2171.19 (6)N4B—C5B—H5B125.8
N4B—Cu—Cl290.79 (6)N1B—C5B—H5B125.8
Cl1—Cu—Cl294.13 (3)C11B—C6B—C7B121.5 (2)
N4A—Cu—Cl2i89.50 (6)C11B—C6B—N1B119.58 (19)
N4B—Cu—Cl2i88.45 (6)C7B—C6B—N1B118.9 (2)
Cl1—Cu—Cl2i103.26 (3)C6B—C7B—C8B119.1 (2)
Cl2—Cu—Cl2i81.92 (3)C6B—C7B—H7B120.4
N4A—Cu—Cl1ii95.48 (6)C8B—C7B—H7B120.4
N4B—Cu—Cl1ii84.73 (6)C9B—C8B—C7B120.2 (2)
Cl1—Cu—Cl1ii83.91 (3)C9B—C8B—H8B119.9
Cl2—Cu—Cl1ii92.80 (3)C7B—C8B—H8B119.9
Cl2i—Cu—Cl1ii171.324 (17)C8B—C9B—C10B120.0 (2)
C5A—N1A—N2A107.50 (18)C8B—C9B—H9B120.0
C5A—N1A—C6A131.66 (19)C10B—C9B—H9B120.0
N2A—N1A—C6A120.8 (2)C9B—C10B—C11B121.0 (3)
N3A—N2A—N1A107.1 (2)C9B—C10B—H10B119.5
N2A—N3A—N4A110.0 (2)C11B—C10B—H10B119.5
C5A—N4A—N3A105.91 (19)C6B—C11B—C10B118.1 (2)
C5A—N4A—Cu131.24 (15)C6B—C11B—H11B121.0
N3A—N4A—Cu122.80 (16)C10B—C11B—H11B121.0
N4A—C5A—N1A109.41 (19)C5C—N1C—N2C105.4 (11)
N4A—C5A—H5A125.3C5C—N1C—C6C133.0 (11)
N1A—C5A—H5A125.3N2C—N1C—C6C121.6 (9)
C11A—C6A—C7A122.7 (2)N3C—N2C—N1C105.9 (11)
C11A—C6A—N1A118.3 (2)N2C—N3C—N4C112.3 (9)
C7A—C6A—N1A119.0 (2)C5C—N4C—N3C102.7 (12)
C6A—C7A—C8A117.3 (3)N1C—C5C—N4C113.6 (17)
C6A—C7A—H7A121.4N1C—C5C—H5C123.2
C8A—C7A—H7A121.4N4C—C5C—H5C123.2
C9A—C8A—C7A120.4 (3)C7C—C6C—C11C119.5 (15)
C9A—C8A—H8A119.8C7C—C6C—N1C119.7 (11)
C7A—C8A—H8A119.8C11C—C6C—N1C120.4 (11)
C10A—C9A—C8A120.6 (3)C6C—C7C—C8C120.6 (12)
C10A—C9A—H9A119.7C6C—C7C—H7C119.7
C8A—C9A—H9A119.7C8C—C7C—H7C119.7
C9A—C10A—C11A120.4 (3)C7C—C8C—C9C119.2 (12)
C9A—C10A—H10A119.8C7C—C8C—H8C120.4
C11A—C10A—H10A119.8C9C—C8C—H8C120.4
C6A—C11A—C10A118.5 (3)C10C—C9C—C8C120.6 (10)
C6A—C11A—H11A120.7C10C—C9C—H9C119.7
C10A—C11A—H11A120.7C8C—C9C—H9C119.7
C5B—N1B—N2B107.99 (17)C11C—C10C—C9C119.3 (11)
C5B—N1B—C6B130.95 (17)C11C—C10C—H10C120.3
N2B—N1B—C6B120.93 (17)C9C—C10C—H10C120.3
N3B—N2B—N1B106.65 (18)C6C—C11C—C10C120.4 (11)
N2B—N3B—N4B110.22 (19)C6C—C11C—H11C119.8
C5B—N4B—N3B106.70 (17)C10C—C11C—H11C119.8
C5A—N1A—N2A—N3A0.3 (4)Cl1—Cu—N4B—N3B24.4 (4)
C6A—N1A—N2A—N3A177.0 (3)Cl2—Cu—N4B—N3B138.3 (2)
N1A—N2A—N3A—N4A0.9 (5)Cl2i—Cu—N4B—N3B139.8 (2)
N2A—N3A—N4A—C5A1.2 (5)Cl1ii—Cu—N4B—N3B45.6 (2)
N2A—N3A—N4A—Cu179.1 (3)N3B—N4B—C5B—N1B0.7 (3)
N4B—Cu—N4A—C5A121.2 (2)Cu—N4B—C5B—N1B177.46 (15)
Cl1—Cu—N4A—C5A47.1 (2)N2B—N1B—C5B—N4B0.6 (3)
Cl2i—Cu—N4A—C5A150.4 (2)C6B—N1B—C5B—N4B176.2 (2)
Cl1ii—Cu—N4A—C5A36.8 (2)C5B—N1B—C6B—C11B23.9 (3)
N4B—Cu—N4A—N3A56.1 (3)N2B—N1B—C6B—C11B161.0 (2)
Cl1—Cu—N4A—N3A135.7 (3)C5B—N1B—C6B—C7B155.2 (2)
Cl2i—Cu—N4A—N3A32.4 (3)N2B—N1B—C6B—C7B19.8 (3)
Cl1ii—Cu—N4A—N3A140.5 (3)C11B—C6B—C7B—C8B0.7 (4)
N3A—N4A—C5A—N1A1.0 (3)N1B—C6B—C7B—C8B178.4 (2)
Cu—N4A—C5A—N1A178.63 (15)C6B—C7B—C8B—C9B0.9 (4)
N2A—N1A—C5A—N4A0.5 (3)C7B—C8B—C9B—C10B1.6 (4)
C6A—N1A—C5A—N4A177.4 (2)C8B—C9B—C10B—C11B0.6 (5)
C5A—N1A—C6A—C11A162.2 (2)C7B—C6B—C11B—C10B1.7 (4)
N2A—N1A—C6A—C11A14.3 (4)N1B—C6B—C11B—C10B177.4 (2)
C5A—N1A—C6A—C7A16.6 (4)C9B—C10B—C11B—C6B1.1 (5)
N2A—N1A—C6A—C7A166.9 (3)C5C—N1C—N2C—N3C0.6 (18)
C11A—C6A—C7A—C8A0.8 (4)C6C—N1C—N2C—N3C179.5 (19)
N1A—C6A—C7A—C8A179.5 (2)N1C—N2C—N3C—N4C1.8 (16)
C6A—C7A—C8A—C9A0.4 (4)N2C—N3C—N4C—C5C3.3 (17)
C7A—C8A—C9A—C10A0.1 (5)N2C—N1C—C5C—N4C3 (2)
C8A—C9A—C10A—C11A0.3 (5)C6C—N1C—C5C—N4C178.4 (17)
C7A—C6A—C11A—C10A0.6 (4)N3C—N4C—C5C—N1C4 (2)
N1A—C6A—C11A—C10A179.3 (2)C5C—N1C—C6C—C7C14 (4)
C9A—C10A—C11A—C6A0.0 (4)N2C—N1C—C6C—C7C167 (2)
C5B—N1B—N2B—N3B0.3 (3)C5C—N1C—C6C—C11C172.9 (18)
C6B—N1B—N2B—N3B176.4 (2)N2C—N1C—C6C—C11C6 (3)
N1B—N2B—N3B—N4B0.1 (4)C11C—C6C—C7C—C8C2 (2)
N2B—N3B—N4B—C5B0.5 (4)N1C—C6C—C7C—C8C176 (2)
N2B—N3B—N4B—Cu177.6 (2)C6C—C7C—C8C—C9C2.1 (16)
N4A—Cu—N4B—C5B133.4 (2)C7C—C8C—C9C—C10C3 (2)
Cl1—Cu—N4B—C5B151.98 (19)C8C—C9C—C10C—C11C1 (2)
Cl2—Cu—N4B—C5B38.0 (2)C7C—C6C—C11C—C10C6 (3)
Cl2i—Cu—N4B—C5B43.9 (2)N1C—C6C—C11C—C10C179.2 (16)
Cl1ii—Cu—N4B—C5B130.8 (2)C9C—C10C—C11C—C6C5 (2)
N4A—Cu—N4B—N3B50.2 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A···Cl2ii0.932.523.446 (2)173
C5B—H5B···Cl1i0.932.553.454 (2)164
C9A—H9A···N3Biii0.932.613.521 (4)167
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[CuCl2(C7H6N4)2]·0.5C7H6N4
Mr499.84
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.264 (2), 11.669 (4), 12.745 (3)
α, β, γ (°)95.91 (2), 104.37 (2), 92.93 (3)
V3)1037.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.56 × 0.30 × 0.20
Data collection
DiffractometerNicolet R3m four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.521, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
5185, 4804, 4296
Rint0.056
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.04
No. of reflections4804
No. of parameters325
No. of restraints33
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.72

Computer programs: R3m software Nicolet (1980), R3m software, SHELXS97 (Sheldrick, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON, SHELXL97.

Selected bond lengths (Å) top
Cu—N4A2.0131 (19)Cu—Cl22.2803 (7)
Cu—N4B2.0317 (18)Cu—Cl2i2.8768 (11)
Cu—Cl12.2687 (9)Cu—Cl1ii3.0307 (12)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A···Cl2ii0.932.523.446 (2)172.6
C5B—H5B···Cl1i0.932.553.454 (2)163.7
C9A—H9A···N3Biii0.932.613.521 (4)166.9
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds