Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new triclinic polymorphic modification of the title compound, [Ag(C3H5OS2)(C18H15P)2], has been found and compared with the previously known orthorhombic modification [Tiekink (1988). Coord. Chem. 17, 239–243]. The two polymorphs have the same molecular shape, viz. a distorted tetrahedral geometry, with a chelating di­thio­carbonate (xanthate) and two PPh3 ligands bonded to the Ag atom. However, in this new polymorph, the xanthate ligand is bonded asymmetrically to the Ag atom, with Ag—S distances of 2.5489 (6) and 2.8055 (7) Å, while for the orthorhombic polymorph these distances are 2.686 (4) and 2.601 (4) Å. The Ag—P distances are similar in both structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103003445/jz1546sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103003445/jz1546Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270103003445/jz1546sup3.pdf
Supplementary material

CCDC reference: 208002

Comment top

In chemistry, the term polymorphism refers to the existence of more than one crystal structure for a chemical substance. In recent years, there has been a growing interest in the preparation and study of polymorphs, not only because they are an intrinsically interesting phenomenon that involve diverse scientific branches (mineralogy, material science, supramolecular chemistry, thermodynamics), but also because polymorphism has become a major issue in the pharmaceutical, optoelectronic, and dyes and pigments industries.

The addition of various ligands to suspensions of polymeric metal xanthates (dithiocarbonates) often results in the formation of monomeric adducts of different stoichiometries and structures. For instance, [Cu(S2COEt)(PPh3)2] is tetracoordinated, with a chelating xanthate ligand (Bianchini et al., 1985); [Hg(S2COEt)2(PPh3)] is five-coordinated (Watanabe, 1981); and the linear system [Au(S2COMe)(PPh3)] features a monodentate mode of coordination for the xanthate ligand (Tiekink, 1985). Complex [Ag(S2COEt)(PPh3)2] was first prepared by the addition of PPh3 to a suspension of Ag(S2COEt) (Kowala & Swan, 1966), although the crystal structure was determined later (Tiekink, 1988). The complex crystallizes in the orthorhombic system, with the Ag atom in a distorted tetrahedral environment formed by two S atoms derived from the chelating S2COEt ligand and by two PPh3 groups, as in [Cu(S2COEt)(PPh3)2] (Bianchini et al., 1985). The Ag—P distances [2.4193 (6) and 2.4614 (6) Å] are very similar and lie in the range expected for Ag-PPh3 bonds (2.363–2.529 Å). The two Ag—S distances are also similar [2.686 (4) and 2.601 (4) Å], although they are a little longer than the distances found in other comparable Ag coordination compounds (Müller et al., 1979). Planes S1—Ag1—S2 and P1—Ag1—P2 are almost perpendicular (89.81 °).

We report here a new polymorph of [Ag(S2COEt)(PPh3)2], (I), that crystallizes in the triclinic system. Compound (I) has the same general molecular shape as the orthorhombic polymorph, i.e. the Ag atom has a distorted tetrahedral environment, the distortion being due in part to the restricted bite angle of the chelating xanthate ligand [67.345 (19) °]. The Ag—P distances (Table 1) are comparable in both cases. The main difference between the two polymorphs is that (I) features an asymmetrically chelating xanthate ligand, with Ag—S distances of 2.5489 (6) and 2.8055 (7) Å. The latter is a very long Ag—S bond, although similar values have been found in other complexes (Drew et al., 1987). This difference cannot be attibuted to packing forces. The bite distance of the xanthate is 2.9764 (9) Å. The angle between planes S1—Ag1—S2 and P1—Ag1—P2 is 75.55 (2) °. Thus, the coordination sphere of the Ag atom in (I) is highly irregular, with a wide variation in bond lengths and angles. There are also some differences in the orientation of the phenyl groups between the two forms. The dihedral angles between the planes of the phenyl rings bonded to P1 and P2 and the plane P1—Ag1—P2 are 86.96 (6), 54.51 (6), 20.76 (8), 53.84 (5), 79.96 (6) and 47.38 (6)°, respectively, in (I). These angles are 69.39, 79.38, 38.47, 31.08, 59.22 and 74.79° for the orthorhombic polymorph.

There is no clear evidence of intermolecular hydrogen bonding; the shortest potential hydrogen-bond interaction involves atoms C8 and S2 at a separation of 3.568 (3) Å, with the corresponding H···S distance being 2.76 Å. This contact could be considered as a weak electrostatic interaction, since the separation is some 0.3 Å shorter than the sum of the Van der Waals radii for H (1.2 Å) and S (1.85 Å) (Whuler et al., 1980). In addition there is a weak intramolecular interaction S1···H2A of 2.76 Å that may be associated with the long distance Ag1—S1.

Experimental top

Compound (I) was obtained from the reaction of [Zn(S2COEt)2] (0.200 g, 0.651 mmol) with AgClPPh3 (0.528 g, 1.302 mmol) in dichloromethane (20 ml) at room temperature. After 30 min, the solid product [a mixture of Ag(S2COEt) and ZnCl2] was filtered off and the filtrate evaporated to dryness. The addition of isopropyl alcohol to the residue gave (I) as a white solid (yield = 66%). Analysis; calculated for C39H35AgOP2S2: C 62.17, N 4.64, S 8.49; found: C 61.90, N 4.54, S 8.59. Single crystals were obtained by slow diffusion of n-hexane into a dichloromethane solution of (I) at room temperature.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP, SHELXTL (Bruker, 2000); software used to prepare material for publication: XCIF, SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing displacement ellipsoids at the 50% probability level and the atom-numbering scheme. H atoms have been omitted for clarity
(O-ethyldithiocarbonato-κ2S,S')bis(triphenylphosphine-κP)silver(I) top
Crystal data top
[Ag(C3H5OS2)(C18H15P)2]Z = 2
Mr = 753.60F(000) = 772
Triclinic, P1Dx = 1.454 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3302 (6) ÅCell parameters from 4690 reflections
b = 12.8582 (7) Åθ = 2.3–26.4°
c = 13.8270 (8) ŵ = 0.83 mm1
α = 87.432 (1)°T = 100 K
β = 74.956 (1)°Prism, pale yellow
γ = 76.067 (1)°0.25 × 0.18 × 0.16 mm
V = 1721.17 (17) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6873 independent reflections
Radiation source: fine-focus sealed tube5720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.26 pixels mm-1θmax = 26.4°, θmin = 1.5°
ω–scanh = 1212
Absorption correction: multi-scan
SADABS (Bruker, 1999)
k = 1610
Tmin = 0.819, Tmax = 0.879l = 1717
10445 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0289P)2]
where P = (Fo2 + 2Fc2)/3
6873 reflections(Δ/σ)max = 0.001
406 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ag(C3H5OS2)(C18H15P)2]γ = 76.067 (1)°
Mr = 753.60V = 1721.17 (17) Å3
Triclinic, P1Z = 2
a = 10.3302 (6) ÅMo Kα radiation
b = 12.8582 (7) ŵ = 0.83 mm1
c = 13.8270 (8) ÅT = 100 K
α = 87.432 (1)°0.25 × 0.18 × 0.16 mm
β = 74.956 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6873 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 1999)
5720 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.879Rint = 0.019
10445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 0.94Δρmax = 0.79 e Å3
6873 reflectionsΔρmin = 0.49 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.078862 (18)0.338615 (16)0.258549 (14)0.01725 (6)
S10.03573 (6)0.19811 (6)0.41849 (5)0.02165 (16)
S20.16351 (6)0.30637 (6)0.30286 (5)0.02031 (15)
P10.10533 (6)0.51915 (5)0.27054 (5)0.01546 (15)
P20.24930 (6)0.20063 (5)0.14396 (5)0.01576 (15)
O10.21572 (16)0.16904 (14)0.43733 (13)0.0212 (4)
C10.1170 (2)0.2192 (2)0.39022 (18)0.0178 (6)
C20.1904 (3)0.0939 (2)0.5157 (2)0.0273 (7)
H2A0.15910.12730.56580.033*
H2B0.11850.02930.48690.033*
C30.3247 (3)0.0645 (3)0.5636 (2)0.0341 (8)
H3A0.31200.01320.61700.051*
H3B0.35480.03200.51310.051*
H3C0.39470.12910.59210.051*
C40.2519 (2)0.5257 (2)0.31782 (17)0.0146 (5)
C50.2519 (3)0.6031 (2)0.38452 (19)0.0199 (6)
H50.17020.65700.41030.024*
C60.3714 (3)0.6020 (2)0.41364 (19)0.0239 (6)
H60.37120.65470.45970.029*
C70.4905 (3)0.5240 (2)0.37542 (19)0.0218 (6)
H70.57250.52420.39440.026*
C80.4908 (3)0.4458 (2)0.30978 (19)0.0216 (6)
H80.57260.39210.28390.026*
C90.3717 (2)0.4464 (2)0.28219 (18)0.0195 (6)
H90.37140.39180.23820.023*
C100.1461 (2)0.5772 (2)0.14646 (18)0.0158 (5)
C110.0471 (3)0.5942 (2)0.09196 (19)0.0209 (6)
H110.04100.58070.12170.025*
C120.0761 (3)0.6307 (2)0.0056 (2)0.0241 (6)
H120.00760.64260.04200.029*
C130.2042 (3)0.6498 (2)0.05001 (19)0.0240 (6)
H130.22400.67480.11670.029*
C140.3034 (3)0.6322 (2)0.00349 (19)0.0224 (6)
H140.39180.64480.02690.027*
C150.2750 (2)0.5966 (2)0.10063 (18)0.0181 (6)
H150.34390.58520.13660.022*
C160.0424 (2)0.6188 (2)0.34006 (18)0.0157 (5)
C170.1461 (2)0.5843 (2)0.40994 (18)0.0208 (6)
H170.13750.50990.42200.025*
C180.2625 (3)0.6585 (2)0.4621 (2)0.0258 (6)
H180.33260.63480.51070.031*
C190.2764 (3)0.7658 (2)0.4437 (2)0.0259 (7)
H190.35700.81600.47840.031*
C200.1730 (3)0.8017 (2)0.37432 (19)0.0239 (6)
H200.18230.87600.36180.029*
C210.0571 (3)0.7279 (2)0.32404 (19)0.0206 (6)
H210.01430.75210.27740.025*
C220.2954 (2)0.2296 (2)0.01008 (18)0.0166 (6)
C230.3112 (3)0.1549 (2)0.06383 (19)0.0217 (6)
H230.29880.08520.04570.026*
C240.3451 (3)0.1814 (2)0.1643 (2)0.0260 (6)
H240.35500.12990.21450.031*
C250.3645 (3)0.2819 (2)0.1914 (2)0.0264 (7)
H250.38760.29980.26020.032*
C260.3501 (3)0.3565 (2)0.1183 (2)0.0252 (6)
H260.36530.42550.13690.030*
C270.3137 (3)0.3313 (2)0.0179 (2)0.0221 (6)
H270.30130.38380.03200.026*
C280.4152 (2)0.1666 (2)0.17535 (18)0.0161 (5)
C290.4172 (3)0.1675 (2)0.27561 (19)0.0224 (6)
H290.33280.18470.32610.027*
C300.5408 (3)0.1436 (2)0.3024 (2)0.0244 (6)
H300.54050.14380.37120.029*
C310.6646 (2)0.1194 (2)0.23020 (19)0.0209 (6)
H310.74930.10290.24890.025*
C320.6641 (2)0.1195 (2)0.13038 (19)0.0201 (6)
H320.74900.10350.08030.024*
C330.5405 (2)0.1427 (2)0.10282 (19)0.0194 (6)
H330.54140.14230.03400.023*
C340.2035 (2)0.0723 (2)0.14536 (18)0.0163 (5)
C350.2907 (3)0.0244 (2)0.15798 (18)0.0193 (6)
H350.37680.02520.17090.023*
C360.2538 (3)0.1205 (2)0.15195 (19)0.0226 (6)
H360.31440.18650.16090.027*
C370.1284 (3)0.1197 (2)0.13286 (18)0.0216 (6)
H370.10410.18520.12610.026*
C380.0391 (3)0.0233 (2)0.1237 (2)0.0235 (6)
H380.04800.02270.11240.028*
C390.0745 (2)0.0724 (2)0.13063 (19)0.0213 (6)
H390.01140.13830.12540.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01452 (10)0.01736 (11)0.01931 (11)0.00492 (8)0.00235 (8)0.00053 (8)
S10.0155 (3)0.0302 (4)0.0212 (4)0.0070 (3)0.0077 (3)0.0065 (3)
S20.0148 (3)0.0243 (4)0.0233 (4)0.0060 (3)0.0073 (3)0.0072 (3)
P10.0133 (3)0.0165 (4)0.0162 (3)0.0041 (3)0.0028 (3)0.0012 (3)
P20.0143 (3)0.0163 (4)0.0165 (3)0.0042 (3)0.0031 (3)0.0009 (3)
O10.0178 (9)0.0246 (11)0.0231 (10)0.0104 (8)0.0049 (8)0.0076 (8)
C10.0159 (12)0.0187 (14)0.0174 (13)0.0042 (11)0.0013 (11)0.0036 (11)
C20.0265 (14)0.0290 (17)0.0284 (16)0.0100 (13)0.0096 (13)0.0134 (14)
C30.0285 (15)0.0366 (19)0.0364 (18)0.0118 (14)0.0056 (14)0.0163 (15)
C40.0137 (11)0.0166 (14)0.0146 (13)0.0063 (11)0.0037 (10)0.0061 (11)
C50.0191 (13)0.0194 (15)0.0196 (14)0.0027 (11)0.0040 (11)0.0021 (12)
C60.0287 (14)0.0263 (16)0.0214 (14)0.0129 (13)0.0086 (12)0.0004 (12)
C70.0184 (13)0.0294 (16)0.0223 (14)0.0114 (12)0.0095 (12)0.0083 (13)
C80.0161 (12)0.0256 (16)0.0212 (14)0.0030 (12)0.0036 (11)0.0035 (12)
C90.0194 (13)0.0207 (15)0.0182 (14)0.0041 (11)0.0048 (11)0.0003 (12)
C100.0164 (12)0.0121 (13)0.0177 (13)0.0027 (10)0.0028 (11)0.0007 (11)
C110.0162 (12)0.0233 (15)0.0228 (14)0.0047 (11)0.0043 (11)0.0010 (12)
C120.0277 (14)0.0253 (16)0.0225 (15)0.0040 (13)0.0143 (12)0.0002 (12)
C130.0327 (15)0.0210 (15)0.0159 (14)0.0049 (13)0.0036 (12)0.0010 (12)
C140.0215 (13)0.0214 (15)0.0230 (15)0.0085 (12)0.0004 (12)0.0008 (12)
C150.0173 (12)0.0177 (14)0.0193 (14)0.0034 (11)0.0054 (11)0.0006 (11)
C160.0139 (12)0.0203 (14)0.0134 (13)0.0044 (11)0.0042 (10)0.0004 (11)
C170.0217 (13)0.0227 (15)0.0175 (14)0.0075 (12)0.0018 (11)0.0011 (12)
C180.0196 (13)0.0380 (18)0.0194 (14)0.0110 (13)0.0000 (12)0.0012 (13)
C190.0174 (13)0.0347 (18)0.0225 (15)0.0022 (13)0.0060 (12)0.0077 (13)
C200.0284 (14)0.0200 (15)0.0209 (14)0.0009 (12)0.0084 (12)0.0002 (12)
C210.0198 (13)0.0233 (15)0.0176 (14)0.0060 (12)0.0023 (11)0.0015 (12)
C220.0117 (11)0.0201 (14)0.0175 (13)0.0026 (11)0.0044 (10)0.0023 (11)
C230.0237 (13)0.0204 (15)0.0226 (14)0.0072 (12)0.0069 (12)0.0018 (12)
C240.0317 (15)0.0278 (17)0.0177 (14)0.0057 (13)0.0059 (12)0.0028 (13)
C250.0266 (14)0.0324 (18)0.0190 (14)0.0055 (13)0.0058 (12)0.0060 (13)
C260.0272 (14)0.0210 (15)0.0258 (15)0.0076 (13)0.0035 (13)0.0073 (13)
C270.0224 (13)0.0212 (15)0.0219 (14)0.0057 (12)0.0038 (12)0.0007 (12)
C280.0171 (12)0.0134 (13)0.0186 (13)0.0052 (11)0.0048 (11)0.0022 (11)
C290.0173 (12)0.0274 (16)0.0195 (14)0.0044 (12)0.0009 (11)0.0026 (12)
C300.0240 (14)0.0305 (17)0.0204 (14)0.0083 (13)0.0071 (12)0.0012 (13)
C310.0162 (12)0.0213 (15)0.0262 (15)0.0049 (11)0.0070 (12)0.0003 (12)
C320.0149 (12)0.0208 (15)0.0234 (14)0.0063 (11)0.0012 (11)0.0001 (12)
C330.0198 (13)0.0211 (15)0.0177 (14)0.0065 (12)0.0041 (11)0.0000 (12)
C340.0162 (12)0.0189 (14)0.0127 (13)0.0068 (11)0.0007 (10)0.0002 (11)
C350.0196 (13)0.0212 (15)0.0181 (14)0.0072 (12)0.0047 (11)0.0022 (12)
C360.0268 (14)0.0161 (14)0.0220 (15)0.0038 (12)0.0032 (12)0.0039 (12)
C370.0274 (14)0.0202 (15)0.0176 (14)0.0129 (12)0.0004 (12)0.0003 (12)
C380.0163 (13)0.0276 (16)0.0264 (15)0.0087 (12)0.0022 (12)0.0012 (13)
C390.0179 (13)0.0196 (15)0.0254 (15)0.0040 (12)0.0040 (12)0.0000 (12)
Geometric parameters (Å, º) top
Ag1—P12.4196 (7)C16—C171.390 (3)
Ag1—P22.4612 (7)C17—C181.391 (4)
Ag1—S22.5489 (6)C17—H170.9500
Ag1—S12.8055 (7)C18—C191.372 (4)
S1—C11.680 (2)C18—H180.9500
S2—C11.693 (3)C19—C201.392 (4)
P1—C161.817 (3)C19—H190.9500
P1—C41.818 (2)C20—C211.378 (3)
P1—C101.827 (2)C20—H200.9500
P2—C341.820 (3)C21—H210.9500
P2—C281.823 (2)C22—C231.385 (4)
P2—C221.833 (2)C22—C271.390 (4)
O1—C11.347 (3)C23—C241.390 (3)
O1—C21.452 (3)C23—H230.9500
C2—C31.502 (3)C24—C251.375 (4)
C2—H2A0.9900C24—H240.9500
C2—H2B0.9900C25—C261.381 (4)
C3—H3A0.9800C25—H250.9500
C3—H3B0.9800C26—C271.386 (3)
C3—H3C0.9800C26—H260.9500
C4—C51.387 (3)C27—H270.9500
C4—C91.391 (3)C28—C331.392 (3)
C5—C61.391 (3)C28—C291.393 (3)
C5—H50.9500C29—C301.381 (3)
C6—C71.383 (4)C29—H290.9500
C6—H60.9500C30—C311.379 (3)
C7—C81.383 (4)C30—H300.9500
C7—H70.9500C31—C321.382 (3)
C8—C91.378 (3)C31—H310.9500
C8—H80.9500C32—C331.387 (3)
C9—H90.9500C32—H320.9500
C10—C111.392 (3)C33—H330.9500
C10—C151.396 (3)C34—C351.382 (3)
C11—C121.390 (3)C34—C391.399 (3)
C11—H110.9500C35—C361.389 (4)
C12—C131.382 (4)C35—H350.9500
C12—H120.9500C36—C371.385 (3)
C13—C141.384 (3)C36—H360.9500
C13—H130.9500C37—C381.379 (4)
C14—C151.380 (3)C37—H370.9500
C14—H140.9500C38—C391.379 (4)
C15—H150.9500C38—H380.9500
C16—C211.387 (4)C39—H390.9500
P1—Ag1—P2123.04 (2)C21—C16—C17118.9 (2)
P1—Ag1—S2118.85 (2)C21—C16—P1122.41 (19)
P2—Ag1—S2113.08 (2)C17—C16—P1118.7 (2)
P1—Ag1—S1125.71 (2)C16—C17—C18120.1 (3)
P2—Ag1—S194.25 (2)C16—C17—H17120.0
S2—Ag1—S167.345 (19)C18—C17—H17120.0
C1—S1—Ag180.29 (9)C19—C18—C17120.1 (2)
C1—S2—Ag188.26 (9)C19—C18—H18119.9
C16—P1—C4107.20 (11)C17—C18—H18119.9
C16—P1—C10103.25 (11)C18—C19—C20120.4 (3)
C4—P1—C10102.67 (11)C18—C19—H19119.8
C16—P1—Ag1117.95 (8)C20—C19—H19119.8
C4—P1—Ag1113.43 (8)C21—C20—C19119.1 (3)
C10—P1—Ag1110.80 (8)C21—C20—H20120.5
C34—P2—C28103.73 (11)C19—C20—H20120.5
C34—P2—C22102.82 (12)C20—C21—C16121.4 (2)
C28—P2—C22103.39 (11)C20—C21—H21119.3
C34—P2—Ag1114.89 (8)C16—C21—H21119.3
C28—P2—Ag1111.97 (8)C23—C22—C27118.9 (2)
C22—P2—Ag1118.37 (8)C23—C22—P2122.8 (2)
C1—O1—C2119.32 (19)C27—C22—P2118.3 (2)
O1—C1—S1122.45 (18)C22—C23—C24120.4 (3)
O1—C1—S2113.66 (17)C22—C23—H23119.8
S1—C1—S2123.87 (15)C24—C23—H23119.8
O1—C2—C3106.7 (2)C25—C24—C23120.3 (3)
O1—C2—H2A110.4C25—C24—H24119.9
C3—C2—H2A110.4C23—C24—H24119.9
O1—C2—H2B110.4C24—C25—C26119.7 (2)
C3—C2—H2B110.4C24—C25—H25120.2
H2A—C2—H2B108.6C26—C25—H25120.2
C2—C3—H3A109.5C25—C26—C27120.3 (3)
C2—C3—H3B109.5C25—C26—H26119.8
H3A—C3—H3B109.5C27—C26—H26119.8
C2—C3—H3C109.5C26—C27—C22120.3 (3)
H3A—C3—H3C109.5C26—C27—H27119.8
H3B—C3—H3C109.5C22—C27—H27119.8
C5—C4—C9119.2 (2)C33—C28—C29118.4 (2)
C5—C4—P1124.95 (19)C33—C28—P2122.61 (19)
C9—C4—P1115.87 (19)C29—C28—P2118.93 (19)
C4—C5—C6120.0 (2)C30—C29—C28120.7 (2)
C4—C5—H5120.0C30—C29—H29119.6
C6—C5—H5120.0C28—C29—H29119.6
C7—C6—C5119.9 (3)C31—C30—C29120.5 (2)
C7—C6—H6120.0C31—C30—H30119.7
C5—C6—H6120.0C29—C30—H30119.7
C8—C7—C6120.4 (2)C30—C31—C32119.4 (2)
C8—C7—H7119.8C30—C31—H31120.3
C6—C7—H7119.8C32—C31—H31120.3
C9—C8—C7119.5 (2)C31—C32—C33120.5 (2)
C9—C8—H8120.2C31—C32—H32119.8
C7—C8—H8120.2C33—C32—H32119.8
C8—C9—C4121.0 (2)C32—C33—C28120.5 (2)
C8—C9—H9119.5C32—C33—H33119.8
C4—C9—H9119.5C28—C33—H33119.8
C11—C10—C15118.5 (2)C35—C34—C39118.8 (2)
C11—C10—P1118.03 (18)C35—C34—P2123.35 (19)
C15—C10—P1123.19 (18)C39—C34—P2117.80 (19)
C12—C11—C10120.6 (2)C34—C35—C36120.8 (2)
C12—C11—H11119.7C34—C35—H35119.6
C10—C11—H11119.7C36—C35—H35119.6
C13—C12—C11120.3 (2)C37—C36—C35119.8 (2)
C13—C12—H12119.9C37—C36—H36120.1
C11—C12—H12119.9C35—C36—H36120.1
C12—C13—C14119.5 (2)C38—C37—C36119.6 (3)
C12—C13—H13120.3C38—C37—H37120.2
C14—C13—H13120.3C36—C37—H37120.2
C15—C14—C13120.6 (2)C39—C38—C37120.8 (2)
C15—C14—H14119.7C39—C38—H38119.6
C13—C14—H14119.7C37—C38—H38119.6
C14—C15—C10120.6 (2)C38—C39—C34120.0 (2)
C14—C15—H15119.7C38—C39—H39120.0
C10—C15—H15119.7C34—C39—H39120.0
P1—Ag1—S1—C1112.92 (9)P1—C10—C15—C14174.6 (2)
P2—Ag1—S1—C1110.46 (9)C4—P1—C16—C2173.5 (2)
S2—Ag1—S1—C12.80 (9)C10—P1—C16—C2134.5 (2)
P1—Ag1—S2—C1122.23 (9)Ag1—P1—C16—C21157.06 (18)
P2—Ag1—S2—C182.07 (9)C4—P1—C16—C17108.3 (2)
S1—Ag1—S2—C12.74 (9)C10—P1—C16—C17143.7 (2)
P2—Ag1—P1—C16168.55 (9)Ag1—P1—C16—C1721.2 (2)
S2—Ag1—P1—C1615.40 (9)C21—C16—C17—C180.3 (4)
S1—Ag1—P1—C1666.23 (9)P1—C16—C17—C18178.02 (19)
P2—Ag1—P1—C464.95 (9)C16—C17—C18—C191.1 (4)
S2—Ag1—P1—C4141.90 (8)C17—C18—C19—C201.5 (4)
S1—Ag1—P1—C460.27 (9)C18—C19—C20—C210.4 (4)
P2—Ag1—P1—C1049.92 (9)C19—C20—C21—C161.0 (4)
S2—Ag1—P1—C10103.24 (8)C17—C16—C21—C201.3 (4)
S1—Ag1—P1—C10175.13 (8)P1—C16—C21—C20176.93 (19)
P1—Ag1—P2—C34177.95 (9)C34—P2—C22—C2310.1 (2)
S2—Ag1—P2—C3423.41 (9)C28—P2—C22—C2397.6 (2)
S1—Ag1—P2—C3443.75 (9)Ag1—P2—C22—C23137.93 (18)
P1—Ag1—P2—C2864.07 (9)C34—P2—C22—C27169.28 (19)
S2—Ag1—P2—C28141.40 (8)C28—P2—C22—C2783.0 (2)
S1—Ag1—P2—C2874.24 (9)Ag1—P2—C22—C2741.4 (2)
P1—Ag1—P2—C2256.04 (10)C27—C22—C23—C240.1 (4)
S2—Ag1—P2—C2298.50 (9)P2—C22—C23—C24179.46 (19)
S1—Ag1—P2—C22165.66 (9)C22—C23—C24—C250.6 (4)
C2—O1—C1—S10.1 (3)C23—C24—C25—C260.0 (4)
C2—O1—C1—S2178.61 (19)C24—C25—C26—C271.3 (4)
Ag1—S1—C1—O1176.8 (2)C25—C26—C27—C221.9 (4)
Ag1—S1—C1—S24.69 (15)C23—C22—C27—C261.3 (4)
Ag1—S2—C1—O1176.26 (18)P2—C22—C27—C26179.27 (19)
Ag1—S2—C1—S15.09 (16)C34—P2—C28—C3392.1 (2)
C1—O1—C2—C3171.7 (2)C22—P2—C28—C3314.9 (2)
C16—P1—C4—C58.0 (2)Ag1—P2—C28—C33143.4 (2)
C10—P1—C4—C5100.4 (2)C34—P2—C28—C2989.8 (2)
Ag1—P1—C4—C5140.01 (19)C22—P2—C28—C29163.1 (2)
C16—P1—C4—C9172.58 (18)Ag1—P2—C28—C2934.6 (2)
C10—P1—C4—C979.0 (2)C33—C28—C29—C301.0 (4)
Ag1—P1—C4—C940.6 (2)P2—C28—C29—C30179.1 (2)
C9—C4—C5—C61.1 (4)C28—C29—C30—C310.6 (4)
P1—C4—C5—C6178.27 (19)C29—C30—C31—C320.1 (4)
C4—C5—C6—C70.5 (4)C30—C31—C32—C330.5 (4)
C5—C6—C7—C81.2 (4)C31—C32—C33—C280.2 (4)
C6—C7—C8—C90.3 (4)C29—C28—C33—C320.6 (4)
C7—C8—C9—C41.3 (4)P2—C28—C33—C32178.6 (2)
C5—C4—C9—C82.0 (4)C28—P2—C34—C355.8 (2)
P1—C4—C9—C8177.41 (19)C22—P2—C34—C35101.6 (2)
C16—P1—C10—C1162.6 (2)Ag1—P2—C34—C35128.4 (2)
C4—P1—C10—C11173.9 (2)C28—P2—C34—C39175.62 (19)
Ag1—P1—C10—C1164.7 (2)C22—P2—C34—C3976.9 (2)
C16—P1—C10—C15123.0 (2)Ag1—P2—C34—C3953.1 (2)
C4—P1—C10—C1511.7 (2)C39—C34—C35—C362.7 (4)
Ag1—P1—C10—C15109.8 (2)P2—C34—C35—C36175.81 (19)
C15—C10—C11—C120.6 (4)C34—C35—C36—C370.1 (4)
P1—C10—C11—C12175.3 (2)C35—C36—C37—C382.4 (4)
C10—C11—C12—C130.5 (4)C36—C37—C38—C391.7 (4)
C11—C12—C13—C140.0 (4)C37—C38—C39—C341.2 (4)
C12—C13—C14—C150.4 (4)C35—C34—C39—C383.4 (4)
C13—C14—C15—C100.3 (4)P2—C34—C39—C38175.2 (2)
C11—C10—C15—C140.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S2i0.952.763.568 (3)144
C13—H13···S2ii0.952.793.632 (3)148
C31—H31···S2i0.953.143.625 (3)113
C5—H5···S1iii0.953.083.943 (3)152
C2—H2A···S10.992.762.963 (3)92
C29—H29···S10.952.973.856 (3)156
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C3H5OS2)(C18H15P)2]
Mr753.60
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.3302 (6), 12.8582 (7), 13.8270 (8)
α, β, γ (°)87.432 (1), 74.956 (1), 76.067 (1)
V3)1721.17 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.25 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 1999)
Tmin, Tmax0.819, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
10445, 6873, 5720
Rint0.019
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.067, 0.94
No. of reflections6873
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.49

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP, SHELXTL (Bruker, 2000), XCIF, SHELXTL (Bruker, 2000).

Selected geometric parameters (Å, º) top
Ag1—P12.4196 (7)S1—C11.680 (2)
Ag1—P22.4612 (7)S2—C11.693 (3)
Ag1—S22.5489 (6)O1—C11.347 (3)
Ag1—S12.8055 (7)
P1—Ag1—P2123.04 (2)C1—S1—Ag180.29 (9)
P1—Ag1—S2118.85 (2)C1—S2—Ag188.26 (9)
P2—Ag1—S2113.08 (2)O1—C1—S1122.45 (18)
P1—Ag1—S1125.71 (2)O1—C1—S2113.66 (17)
P2—Ag1—S194.25 (2)S1—C1—S2123.87 (15)
S2—Ag1—S167.345 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S2i0.952.763.568 (3)143.5
C13—H13···S2ii0.952.793.632 (3)148.2
C2—H2A···S10.992.762.963 (3)91.9
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds