Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, [Co4(C9H3O6)2(OH)2(C8H6N4)(H2O)2]·2H2O, contains three separate species, namely the μ5-bridging C9H3O63− anion, the doubly chelating and therefore μ2-bridging C8H6N4 ligand (bi­pyrimidine, BPM), and the dihydrated di­aqua­di­hydroxy tetranuclear cationic cluster, [Co4(OH)2(H2O)2]6+·2H2O, which lies on a crystallographic centre of symmetry, as does the BPM ligand with, in this case, the centre of symmetry coincident with the midpoint of the C—C bond joining the six-membered rings. Within the cation cluster, the Co atoms of one pair are five-coordinate and those of the other six-coordinate.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102014804/jz1519sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102014804/jz1519Isup2.hkl
Contains datablock I

CCDC reference: 197312

Comment top

The plethora of relevant entries in the Cambridge Structural Database (CSD, Release?; Allen & Kennard, 1993) is a clear indication of the popularity of benzene-1,3,5-tricarboxylic acid, H3BTC, for the preparation of materials by self-assembly, also referred to, perhaps optimistically, as crystal engineering. In many cases, as shown for example by Plater et al. (2001) and references therein, transition metal elements and additional ligand species are also involved. Some structures of this type have provoked the use of nomenclature which is positively lyrical, as in the `molecular floral lace conformer' of tris[diaqua(cyclam)nickel(II)] bis(1,3,5-benzenetricarboxylate) hydrate clathrate (CSD refcode GOQTIP; Choi et al., 1999) or the `molecular honeycomb conformer' of catena{bis(µ3-1,3,5-benzenetricarboxylato-O,O',O'')- tris[1,8-bis(2-hydroxyethyl)-1,3,6,8,10,13-hexaazacyclotetradecane]nickel(II) pyridine solvate tetradecahydrate} (JEDQOY; Choi & Suh, 1998).

While the title compound, (I), is clearly generally similar in type to the examples cited above, its structure possesses some special features. The first and perhaps most obvious of these is the centrosymmetric site symmetry of both the cationic cluster and the 2,2'-bipyrimidine (BPM) ligand. The choice of atom-labelling scheme to accommodate this is shown in Fig. 1, and selected bond lengths and angles are given in Table 1. \sch

The dihydrated diaquadihydroxytetracobalt cation, [Co4(OH-)2(H2O)2]6+·2H2O (Fig. 2 and Table 1), displays its own special features. Among these, other than merely the presence of four Co atoms, are (i) the µ3 hydroxyl atom O7, (ii) the trigonal-bipyramidal coordination of atom Co1 with axial atoms O1 and O3 from two different BTC3- anions [Co1—O1 2.3031 (9) Å, notably the longest of any Co—O/N bond in this structure] and equatorial atom O5 from a third anion, along with hydroxyl atom O7 and water molecule O8, and (iii) the octahedral Co2 atom with the chelated BPM ligand, with both N atoms trans to hydroxyl atom O7, and carboxylate atoms Correct? O1 and O6, again from two different anions, completing its coordination.

The centrosymmetric site symmetry of the BPM ligand demands that it chelates not one but two Co2 atoms. Thus BPM has a µ2-bridging function in addition to its chelate action. The shortest Co—Co distances within the cluster [Co2—Co2i 3.0392 (3) and Co1—Co2 3.2196 (2) Å; symmetry code: (i) 1 - x, -y, -z Correct?] lie across the shared edges of the coordination polyhedra. The hydrate water molecule, O9, is not shown in Fig. 2 but is associated with the cluster by virtue of its participation as acceptor in the O8—H···O9 hydrogen bond (Table 2).

All three carboxylate groups of the BTC3- anion contribute, in different ways, to the coordination of the Co atoms (Fig. 3). Atom O1 of the C11/O1/O2 carboxylate group bonds to two Co atoms in a monodentate but bridging manner, while atom O2 acts purely as a hydrogen-bond acceptor. In the C12/O3/O4 group, which is also monodentate, atom O3 bonds to a single Co atom while atom O4 participates in hydrogen-bond formation. The C13/O5/O6 group, on the other hand, has a bidentate but bridging function. Thus, overall, the BTC3- anion, in terms of the Co—O bonds it forms, is a µ5 species, but is µ3 in terms of the tetracobalt clusters.

The three carboxylate groups differ also in the angles between the planes defined by their constituent atoms and that of the benzene ring nucleus of the anion, with values, based on unit weight least-squares plane calculations, of 33.09 (8), 15.8 (2) and 2.84 (19)°, respectively, for carboxylate groups C11/O1/O2, C12/O3/O4 and C13/O5/O6. Disparity between these values and the relevant torsion angles in Table 1 is indicative of displacement of atoms from the plane of the benzene ring, in addition to any rotation of the carboxylate groups relative to the benzene ring about the C—C bond joining them. The effect of this displacement is particularly marked for the C11/O1/O2 group.

The overall connectivity of the structure can be thought of in terms of layers parallel to (010) (Fig. 4), in which the hexavalent diaquadihydroxytetracobalt cations are interconnected to form two sets of mutually orthogonal chains. The sets of chains differ in the way in which the cations are connected. In one case, the cation clusters are linked by centrosymmetric doubly bidentate µ2 bridging BPM ligands. In the other, bridging connectivity is achieved by means of one edge of each of two centrosymmetrically related BTC3- triangles, where the triangle concept is a gross simplification of the overall µ3 connectivity of the BTC3- anions noted above. The layers are then stacked in the b direction in such a way that the remaining vertices of the anion triangles bond to cation clusters in n-glide- (or equivalently twofold screw-axis-) related neighbouring layers. In this way, the anion triangles of one layer are oriented antiparallel to those in the neighbouring layers and the cation clusters are distributed in a body-centred manner. Further, with this arrangement, the cation clusters and BTC3- anions by themselves suffice to provide a completely connected three-dimensional structure, with cavities which accommodate the BPM ligands and allow them to complete the coordination of the Co2 atoms.

Experimental top

A mixture of benzene-1,3,5-tricarboxylic acid (102 mg, 0.485 mmol), cobalt(II) acetate tetrahydrate (122 mg, 0.489 mmol), 2,2'-bipyrimidinyl (37 mg, 0.234 mmol) and water (10 ml) was sealed in a 23 ml PTFE-lined metal Parr acid digestion bomb. The bomb was then heated at a rate of 100 K h-1 to 453 K and maintained at this temperature for 2 h. Thereafter, the bomb was cooled at 3 K h-1 to 293 K. After opening, the solid products were collected by filtration, washed with copious amounts of water and finally air dried. A few dark-red crystals of (I), suitable for analysis, were separated mechanically from the largely non- or microcrystalline product.

Refinement top

Aryl H atoms were placed in calculated positions with C—H = 0.93 Å, and were refined as riding, with Uiso(H) = 1.2Ueq(C). Hydroxyl (O7) and water (O8 and O9) H atoms were found in difference maps. The H atoms attached to O7 and O8 were refined isotropically in the usual manner, but with O—H and H···H of the latter constrained to, respectively, 1.0 and 1.5418 times a free variable whose final refined value was 0.74 (2) Å. The H atoms associated with the hydrate water (O9) were refined using a riding model, with Uiso(H) = 1.5Ueq(O9). The positions of atoms H9A and H9B coincide with the second and third largest features in the difference map obtained prior to their introduction into the model. While they create a reasonable representation of the water molecule, no suitable acceptor is available to permit atom H9B to participate in hydrogen-bond formation. The largest feature at this stage, and still present in the final difference map as a peak of 1.02 e Å-3, 0.76 Å from O4, was considered as one, and indeed the most likely, of several possible alternative sites for H9B in a number of unsuccessful attempts to provide a more complete hydrogen-bonding scheme. This particular site, however, is too close to C12 (approximately 1.46 Å), and must therefore be regarded as an artefact.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), extended in order to complete the BPM molecule by symmetry [symmetry code: (i) 2 - x, -y, -z], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line represents the O8—H8B.·O9 hydrogen bond.
[Figure 2] Fig. 2. The centrosymmetric tetranuclear cation cluster of (I), showing the coordination of the Co atoms. Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms have been omitted and only fragments of the BPM ligand and the BTC3- anion are shown. Dashed lines indicate the shared edges of the coordination polyhedra [symmetry codes: (i)-(v) as in Table 1; (vi) 3/2 - x, y - 1/2, 1/2 - z; (vii) x - 1, y, z].
[Figure 3] Fig. 3. The BTC3- anion of (I) and the Co—O bonds it forms. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity [symmetry codes: (i) 1 - x, -y, 1 - z; (ii) x, y, z + 1; (iii) x + 1/2, 1/2 - y, z + 1/2].
[Figure 4] Fig. 4. A layer of the polymeric structure of (I) viewed down b (up out of the page), b/2 in thickness and centred on y = 0. Displacement ellipsoids are drawn at the 50% probability level and the H atoms of the water and hydroxyl groups are shown as small spheres of arbitrary radii. The directions of the cell edges are indicated.
diaqua-µ2-2,2'-bipyrimidinyl-κ4N1,N1':N3,N3')-di- µ3-hydroxy-bis(µ5-benzene-1,3,5-tricarboxylato- κ5O1:O2:O3:O3:O5)tetracobalt(II) dihydrate top
Crystal data top
[Co4(C9H3O6)2(OH)2(C8H6N4)(H2O)2]·2H2OF(000) = 916
Mr = 914.20Dx = 2.054 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7476 (4) ÅCell parameters from 5004 reflections
b = 15.3691 (6) Åθ = 2.7–32.5°
c = 11.0972 (4) ŵ = 2.30 mm1
β = 97.759 (1)°T = 298 K
V = 1478.28 (10) Å3Block, dark red
Z = 20.50 × 0.40 × 0.22 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5315 independent reflections
Radiation source: fine-focus sealed tube4765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 32.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.507, Tmax = 0.603k = 2323
15056 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: geom and difmap
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.037P)2 + 0.6519P]
where P = (Fo2 + 2Fc2)/3
5315 reflections(Δ/σ)max = 0.002
248 parametersΔρmax = 1.02 e Å3
3 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Co4(C9H3O6)2(OH)2(C8H6N4)(H2O)2]·2H2OV = 1478.28 (10) Å3
Mr = 914.20Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.7476 (4) ŵ = 2.30 mm1
b = 15.3691 (6) ÅT = 298 K
c = 11.0972 (4) Å0.50 × 0.40 × 0.22 mm
β = 97.759 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5315 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4765 reflections with I > 2σ(I)
Tmin = 0.507, Tmax = 0.603Rint = 0.015
15056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0243 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.02 e Å3
5315 reflectionsΔρmin = 0.54 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.6548 (0.0026) x - 1.9261 (0.0169) y - 2.2905 (0.0255) z = 5.5883 (0.0072)

* 0.0000 (0.0000) C11 * 0.0000 (0.0000) O1 * 0.0000 (0.0000) O2

Rms deviation of fitted atoms = 0.0000

6.9379 (0.0029) x - 8.6333 (0.0069) y + 1.4000 (0.0060) z = 5.7932 (0.0032)

Angle to previous plane (with approximate e.s.d.) = 33.09 (0.08)

* -0.0218 (0.0009) C5 * 0.0149 (0.0009) C6 * 0.0044 (0.0009) C7 * -0.0167 (0.0010) C8 * 0.0096 (0.0009) C9 * 0.0097 (0.0009) C10 - 0.1845 (0.0020) C11 - 0.0725 (0.0022) C12 - 0.0266 (0.0021) C13 - 0.8730 (0.0022) O1 0.3009 (0.0024) O2 - 0.4112 (0.0024) O3 0.1666 (0.0028) O4 - 0.0262 (0.0023) O5 - 0.0777 (0.0025) O6

Rms deviation of fitted atoms = 0.0140

6.3726 (0.0149) x - 7.3540 (0.0418) y + 4.2991 (0.0100) z = 7.0274 (0.0230)

Angle to previous plane (with approximate e.s.d.) = 15.85 (1/4)

* 0.0000 (0.0000) C12 * 0.0000 (0.0000) O3 * 0.0000 (0.0000) O4

Rms deviation of fitted atoms = 0.0000

6.9379 (0.0029) x - 8.6333 (0.0069) y + 1.4000 (0.0060) z = 5.7932 (0.0032)

Angle to previous plane (with approximate e.s.d.) = 15.85 (1/4)

* -0.0218 (0.0009) C5 * 0.0149 (0.0009) C6 * 0.0044 (0.0009) C7 * -0.0167 (0.0010) C8 * 0.0096 (0.0009) C9 * 0.0097 (0.0009) C10

Rms deviation of fitted atoms = 0.0140

6.8135 (0.0119) x - 8.6036 (0.0153) y + 1.9419 (0.0251) z = 6.0739 (0.0125)

Angle to previous plane (with approximate e.s.d.) = 2.84 (0.19)

* 0.0000 (0.0000) C13 * 0.0000 (0.0000) O5 * 0.0000 (0.0000) O6

Rms deviation of fitted atoms = 0.0000

0.0724 (0.0009) x + 9.5724 (0.0008) y - 8.6144 (0.0006) z = 0.0362 (0.0005)

Angle to previous plane (with approximate e.s.d.) = 55.71 (0.13)

* 0.0000 (0.0000) Co1 * 0.0000 (0.0000) Co1_$1 * 0.0000 (0.0000) Co2 * 0.0000 (0.0000) Co2_$1 0.8231 (0.0009) O7 - 0.8231 (0.0009) O7_$1 - 1.3742 (0.0009) O1 1.3742 (0.0009) O1_$1

Rms deviation of fitted atoms = 0.0000

'Linear' torsion angles excluded as per PLATON alerts O7 Co2 N2 C1 - 66.0 (3).. . . ? O7 Co2 N2 C2 114.4 (2).. . . ? O3 Co1 O1 C11 162.0 (13) 2_454.. . ? O3 Co1 O1 Co2 - 54.0 (14) 2_454.. . ? N2 Co2 O7 Co1 - 7.5 (2).. . . ? N2 Co2 O7 Co2 - 125.1 (2).. . 3_655 ?

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Anisotropic displacement parameters refined for all non-H atoms. Aryl H atoms placed in calculated positions with C—H 0.93 Å and refined riding with Uiso 1.2 Ueq of attached C. H atoms of hydroxyl (O7) and water (O8 and O9) found in difference maps. H attached to O7 and O8 refined isotropically in the usual manner but with O—H and H—H of the latter constrained, respectively, to 1.0 and 1.5418 times a free variable whose final refined value was 0.74 (2) Å. H of the hydrate water molecule (O9) refined riding (AFIX 3) with Uiso 1.5Ueq of O.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.55941 (2)0.150246 (11)0.167454 (16)0.01587 (5)
Co20.673730 (18)0.001189 (10)0.000140 (14)0.01227 (4)
N11.13732 (12)0.08735 (7)0.01545 (10)0.01577 (18)
N20.86730 (12)0.08583 (7)0.02143 (10)0.01615 (18)
C11.00127 (13)0.04785 (8)0.00981 (11)0.01361 (19)
C20.87065 (16)0.17165 (9)0.04411 (13)0.0213 (2)
H20.77930.20050.05280.026*
C31.00733 (17)0.21793 (9)0.05472 (14)0.0239 (3)
H31.00980.27720.07190.029*
C41.14030 (16)0.17313 (9)0.03887 (13)0.0212 (2)
H41.23350.20290.04450.025*
O10.70037 (11)0.02326 (6)0.18706 (8)0.01657 (16)
O20.68609 (15)0.11419 (6)0.24870 (10)0.0276 (2)
O30.93933 (14)0.23631 (7)0.64647 (10)0.0285 (2)
O41.03370 (19)0.21724 (9)0.47397 (13)0.0460 (4)
O50.55660 (12)0.10716 (6)0.70015 (9)0.02240 (19)
O60.66246 (15)0.00226 (7)0.81350 (9)0.0280 (2)
C50.74740 (15)0.00324 (7)0.39855 (11)0.0153 (2)
C60.84010 (15)0.07040 (8)0.41948 (11)0.0181 (2)
H60.88660.09380.35620.022*
C70.86411 (15)0.10940 (8)0.53350 (12)0.0178 (2)
C80.79623 (16)0.07264 (8)0.62814 (11)0.0191 (2)
H80.80920.09910.70420.023*
C90.70917 (15)0.00327 (8)0.61023 (11)0.0162 (2)
C100.68487 (14)0.04152 (8)0.49490 (11)0.0164 (2)
H100.62720.09230.48250.020*
C110.70920 (14)0.03591 (8)0.27018 (11)0.0153 (2)
C120.95342 (17)0.19299 (9)0.55149 (13)0.0213 (2)
C130.63804 (14)0.03912 (8)0.71580 (11)0.0161 (2)
O70.50202 (10)0.09200 (6)0.00670 (8)0.01381 (15)
H70.482 (3)0.1219 (15)0.048 (2)0.034 (6)*
O80.75843 (14)0.21665 (7)0.20882 (13)0.0305 (3)
H8A0.763 (3)0.2649 (13)0.210 (2)0.047 (7)*
H8B0.836 (2)0.1999 (16)0.223 (2)0.045 (7)*
O91.0777 (2)0.18299 (14)0.24162 (15)0.0630 (5)
H9A1.08010.19010.32130.094*
H9B1.16840.21120.21770.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02095 (8)0.01291 (7)0.01456 (8)0.00142 (6)0.00535 (6)0.00144 (5)
Co20.01208 (7)0.01388 (8)0.01122 (8)0.00002 (5)0.00294 (5)0.00125 (5)
N10.0148 (4)0.0151 (4)0.0180 (5)0.0018 (3)0.0040 (4)0.0009 (4)
N20.0153 (4)0.0136 (4)0.0204 (5)0.0000 (3)0.0055 (4)0.0008 (4)
C10.0141 (5)0.0123 (4)0.0149 (5)0.0005 (4)0.0033 (4)0.0001 (4)
C20.0229 (6)0.0152 (5)0.0271 (6)0.0018 (4)0.0080 (5)0.0016 (5)
C30.0283 (6)0.0148 (5)0.0300 (7)0.0025 (5)0.0091 (5)0.0045 (5)
C40.0211 (6)0.0170 (5)0.0262 (6)0.0054 (4)0.0054 (5)0.0037 (5)
O10.0240 (4)0.0153 (4)0.0105 (4)0.0009 (3)0.0025 (3)0.0010 (3)
O20.0492 (7)0.0147 (4)0.0185 (5)0.0004 (4)0.0023 (4)0.0011 (3)
O30.0445 (6)0.0200 (5)0.0219 (5)0.0128 (4)0.0073 (4)0.0043 (4)
O40.0679 (9)0.0319 (6)0.0460 (8)0.0274 (6)0.0364 (7)0.0143 (6)
O50.0319 (5)0.0166 (4)0.0209 (5)0.0068 (4)0.0118 (4)0.0015 (3)
O60.0389 (6)0.0349 (6)0.0116 (4)0.0147 (5)0.0078 (4)0.0048 (4)
C50.0200 (5)0.0152 (5)0.0110 (5)0.0003 (4)0.0024 (4)0.0004 (4)
C60.0232 (6)0.0176 (5)0.0139 (5)0.0039 (4)0.0041 (4)0.0017 (4)
C70.0238 (6)0.0146 (5)0.0152 (5)0.0052 (4)0.0036 (4)0.0003 (4)
C80.0270 (6)0.0177 (5)0.0129 (5)0.0061 (5)0.0042 (4)0.0019 (4)
C90.0219 (5)0.0158 (5)0.0114 (5)0.0033 (4)0.0038 (4)0.0008 (4)
C100.0221 (5)0.0144 (5)0.0129 (5)0.0032 (4)0.0030 (4)0.0002 (4)
C110.0197 (5)0.0149 (5)0.0113 (5)0.0010 (4)0.0024 (4)0.0001 (4)
C120.0273 (6)0.0154 (5)0.0218 (6)0.0060 (4)0.0051 (5)0.0009 (4)
C130.0193 (5)0.0171 (5)0.0124 (5)0.0003 (4)0.0044 (4)0.0017 (4)
O70.0161 (4)0.0123 (3)0.0131 (4)0.0007 (3)0.0023 (3)0.0016 (3)
O80.0261 (5)0.0140 (4)0.0490 (7)0.0011 (4)0.0039 (5)0.0007 (4)
O90.0551 (10)0.0957 (14)0.0376 (8)0.0082 (10)0.0045 (7)0.0060 (9)
Geometric parameters (Å, º) top
Co1—O71.9985 (9)C4—H40.9300
Co1—O5i2.0075 (10)O1—C111.2902 (15)
Co1—O82.0168 (12)O2—C111.2379 (15)
Co1—O3ii2.0326 (10)O3—C121.2667 (17)
Co1—O12.3031 (9)O4—C121.2391 (18)
Co1—Co23.2196 (2)O5—C131.2640 (15)
Co1—Co2iii3.4413 (2)O6—C131.2502 (16)
Co1—Co1iii5.9312 (4)C5—C61.3934 (17)
Co2—O6iv2.0609 (10)C5—C101.3951 (17)
Co2—O7iii2.0702 (9)C5—C111.5048 (17)
Co2—O72.0838 (9)C6—C71.3902 (18)
Co2—O12.0899 (9)C6—H60.9300
Co2—N22.1230 (11)C7—C81.3940 (17)
Co2—N1v2.1658 (11)C7—C121.5029 (18)
Co2—Co2iii3.0392 (3)C8—C91.3927 (17)
N1—C11.3299 (15)C8—H80.9300
N1—C41.3433 (17)C9—C101.3983 (17)
N2—C11.3310 (15)C9—C131.5033 (17)
N2—C21.3424 (16)C10—H100.9300
C1—C1v1.487 (2)O7—H70.76 (2)
C2—C31.3825 (19)O8—H8A0.74 (2)
C2—H20.9300O8—H8B0.72 (2)
C3—C41.383 (2)O9—H9A0.8880
C3—H30.9300O9—H9B0.9723
O7—Co1—O5i114.50 (4)C1—N2—C2116.86 (11)
O7—Co1—O8122.34 (5)C1—N2—Co2114.84 (8)
O5i—Co1—O8120.43 (5)C2—N2—Co2128.30 (9)
O7—Co1—O3ii102.61 (4)N1—C1—N2126.11 (11)
O5i—Co1—O3ii93.57 (4)N1—C1—C1v117.01 (13)
O8—Co1—O3ii90.51 (5)N2—C1—C1v116.88 (12)
O7—Co1—O176.79 (3)N2—C2—C3121.21 (12)
O5i—Co1—O188.19 (4)N2—C2—H2119.4
O8—Co1—O188.43 (4)C3—C2—H2119.4
O3ii—Co1—O1178.23 (4)C2—C3—C4117.75 (12)
O7—Co1—Co238.88 (3)C2—C3—H3121.1
O5i—Co1—Co2114.24 (3)C4—C3—H3121.1
O8—Co1—Co299.86 (4)N1—C4—C3121.23 (12)
O3ii—Co1—Co2138.59 (3)N1—C4—H4119.4
O1—Co1—Co240.35 (2)C3—C4—H4119.4
O7—Co1—Co2iii32.89 (3)C11—O1—Co2124.80 (8)
O5i—Co1—Co2iii81.64 (3)C11—O1—Co1130.12 (8)
O8—Co1—Co2iii152.91 (4)Co2—O1—Co194.13 (3)
O3ii—Co1—Co2iii104.46 (4)C12—O3—Co1vi116.06 (9)
O1—Co1—Co2iii75.97 (2)C13—O5—Co1i120.24 (8)
Co2—Co1—Co2iii54.172 (6)C13—O6—Co2vii146.91 (10)
O7—Co1—Co1iii24.53 (3)C6—C5—C10119.63 (11)
O5i—Co1—Co1iii97.96 (3)C6—C5—C11118.60 (11)
O8—Co1—Co1iii127.56 (4)C10—C5—C11121.66 (11)
O3ii—Co1—Co1iii123.50 (3)C7—C6—C5120.99 (11)
O1—Co1—Co1iii56.34 (2)C7—C6—H6119.5
Co2—Co1—Co1iii28.061 (4)C5—C6—H6119.5
Co2iii—Co1—Co1iii26.111 (3)C6—C7—C8118.92 (11)
O6iv—Co2—O7iii92.63 (4)C6—C7—C12120.10 (11)
O6iv—Co2—O794.62 (4)C8—C7—C12120.87 (11)
O7iii—Co2—O785.95 (4)C9—C8—C7120.82 (11)
O6iv—Co2—O1167.60 (4)C9—C8—H8119.6
O7iii—Co2—O198.07 (4)C7—C8—H8119.6
O7—Co2—O179.98 (4)C8—C9—C10119.70 (11)
O6iv—Co2—N293.26 (5)C8—C9—C13118.14 (11)
O7iii—Co2—N299.68 (4)C10—C9—C13122.10 (11)
O7—Co2—N2170.10 (4)C5—C10—C9119.82 (11)
O1—Co2—N291.11 (4)C5—C10—H10120.1
O6iv—Co2—N1v80.63 (4)C9—C10—H10120.1
O7iii—Co2—N1v172.58 (4)O2—C11—O1123.70 (12)
O7—Co2—N1v97.61 (4)O2—C11—C5121.08 (11)
O1—Co2—N1v88.98 (4)O1—C11—C5115.21 (10)
N2—Co2—N1v77.76 (4)O4—C12—O3123.21 (13)
O6iv—Co2—Co2iii94.96 (4)O4—C12—C7119.87 (13)
O7iii—Co2—Co2iii43.15 (2)O3—C12—C7116.91 (12)
O7—Co2—Co2iii42.80 (2)O6—C13—O5124.55 (12)
O1—Co2—Co2iii88.64 (3)O6—C13—C9116.68 (11)
N2—Co2—Co2iii142.18 (3)O5—C13—C9118.76 (11)
N1v—Co2—Co2iii140.02 (3)Co1—O7—Co2iii115.50 (4)
O6iv—Co2—Co1125.77 (4)Co1—O7—Co2104.10 (4)
O7iii—Co2—Co1102.80 (3)Co2iii—O7—Co294.05 (4)
O7—Co2—Co137.01 (2)Co1—O7—H7116.1 (17)
O1—Co2—Co145.52 (3)Co2iii—O7—H7106.9 (17)
N2—Co2—Co1133.15 (3)Co2—O7—H7118.5 (17)
N1v—Co2—Co183.78 (3)Co1—O8—H8A123.2 (19)
Co2iii—Co2—Co166.638 (6)Co1—O8—H8B129 (2)
C1—N1—C4116.80 (11)H8A—O8—H8B108 (2)
C1—N1—Co2v113.40 (8)H9A—O9—H9B107.9
C4—N1—Co2v129.57 (9)
O7—Co1—Co2—O6iv37.75 (6)N1v—Co2—O1—C11130.89 (10)
O5i—Co1—Co2—O6iv137.30 (5)Co2iii—Co2—O1—C1189.03 (10)
O8—Co1—Co2—O6iv92.75 (6)Co1—Co2—O1—C11146.84 (12)
O3ii—Co1—Co2—O6iv9.42 (7)O6iv—Co2—O1—Co149.4 (2)
O1—Co1—Co2—O6iv168.41 (5)O7iii—Co2—O1—Co1100.04 (4)
Co2iii—Co1—Co2—O6iv78.75 (4)O7—Co2—O1—Co115.64 (3)
Co1iii—Co1—Co2—O6iv78.75 (4)N2—Co2—O1—Co1160.01 (4)
O7—Co1—Co2—O7iii65.06 (6)N1v—Co2—O1—Co182.27 (4)
O5i—Co1—Co2—O7iii34.49 (4)Co2iii—Co2—O1—Co157.81 (3)
O8—Co1—Co2—O7iii164.44 (5)O7—Co1—O1—C11127.51 (11)
O3ii—Co1—Co2—O7iii93.39 (6)O5i—Co1—O1—C1111.82 (11)
O1—Co1—Co2—O7iii88.78 (4)O8—Co1—O1—C11108.70 (11)
Co2iii—Co1—Co2—O7iii24.06 (3)Co2—Co1—O1—C11144.03 (12)
Co1iii—Co1—Co2—O7iii24.06 (3)Co2iii—Co1—O1—C1193.66 (10)
O5i—Co1—Co2—O799.55 (5)Co1iii—Co1—O1—C11112.63 (11)
O8—Co1—Co2—O7130.50 (6)O7—Co1—O1—Co216.52 (4)
O3ii—Co1—Co2—O728.33 (7)O5i—Co1—O1—Co2132.21 (4)
O1—Co1—Co2—O7153.84 (6)O8—Co1—O1—Co2107.27 (5)
Co2iii—Co1—Co2—O741.00 (4)Co2iii—Co1—O1—Co250.37 (3)
Co1iii—Co1—Co2—O741.00 (4)Co1iii—Co1—O1—Co231.392 (17)
O7—Co1—Co2—O1153.84 (6)C10—C5—C6—C73.8 (2)
O5i—Co1—Co2—O154.29 (5)C11—C5—C6—C7172.34 (12)
O8—Co1—Co2—O175.66 (5)C5—C6—C7—C81.3 (2)
O3ii—Co1—Co2—O1177.83 (7)C5—C6—C7—C12174.84 (13)
Co2iii—Co1—Co2—O1112.84 (4)C6—C7—C8—C91.8 (2)
Co1iii—Co1—Co2—O1112.84 (4)C12—C7—C8—C9177.84 (13)
O7—Co1—Co2—N2178.23 (6)C7—C8—C9—C102.3 (2)
O5i—Co1—Co2—N282.22 (5)C7—C8—C9—C13179.52 (12)
O8—Co1—Co2—N247.73 (5)C6—C5—C10—C93.22 (19)
O3ii—Co1—Co2—N2149.90 (7)C11—C5—C10—C9172.76 (12)
O1—Co1—Co2—N227.93 (5)C8—C9—C10—C50.25 (19)
Co2iii—Co1—Co2—N2140.77 (4)C13—C9—C10—C5176.88 (12)
Co1iii—Co1—Co2—N2140.77 (4)Co2—O1—C11—O28.20 (19)
O7—Co1—Co2—N1v111.46 (5)Co1—O1—C11—O2126.28 (13)
O5i—Co1—Co2—N1v148.99 (4)Co2—O1—C11—C5172.91 (8)
O8—Co1—Co2—N1v19.04 (5)Co1—O1—C11—C552.61 (15)
O3ii—Co1—Co2—N1v83.13 (6)C6—C5—C11—O2149.92 (14)
O1—Co1—Co2—N1v94.70 (5)C10—C5—C11—O234.06 (19)
Co2iii—Co1—Co2—N1v152.46 (3)C6—C5—C11—O131.16 (17)
Co1iii—Co1—Co2—N1v152.46 (3)C10—C5—C11—O1144.86 (12)
O7—Co1—Co2—Co2iii41.00 (4)Co1vi—O3—C12—O40.7 (2)
O5i—Co1—Co2—Co2iii58.55 (4)Co1vi—O3—C12—C7179.31 (9)
O8—Co1—Co2—Co2iii171.50 (4)C6—C7—C12—O415.8 (2)
O3ii—Co1—Co2—Co2iii69.33 (6)C8—C7—C12—O4168.16 (16)
O1—Co1—Co2—Co2iii112.84 (4)C6—C7—C12—O3162.88 (14)
Co1iii—Co1—Co2—Co2iii0.0C8—C7—C12—O313.2 (2)
O6iv—Co2—N2—C176.65 (9)Co2vii—O6—C13—O524.6 (3)
O7iii—Co2—N2—C1169.88 (9)Co2vii—O6—C13—C9156.60 (15)
O1—Co2—N2—C191.74 (9)Co1i—O5—C13—O65.38 (19)
N1v—Co2—N2—C13.02 (9)Co1i—O5—C13—C9173.37 (9)
Co2iii—Co2—N2—C1179.04 (6)C8—C9—C13—O60.03 (18)
Co1—Co2—N2—C172.21 (10)C10—C9—C13—O6177.21 (13)
O6iv—Co2—N2—C2102.93 (12)C8—C9—C13—O5178.81 (12)
O7iii—Co2—N2—C29.70 (12)C10—C9—C13—O51.63 (19)
O1—Co2—N2—C288.68 (12)O5i—Co1—O7—Co2iii2.72 (6)
N1v—Co2—N2—C2177.40 (13)O8—Co1—O7—Co2iii164.03 (5)
Co2iii—Co2—N2—C20.54 (15)O3ii—Co1—O7—Co2iii97.20 (5)
Co1—Co2—N2—C2108.21 (11)O1—Co1—O7—Co2iii84.52 (5)
C4—N1—C1—N22.24 (19)Co2—Co1—O7—Co2iii101.57 (6)
Co2v—N1—C1—N2177.31 (10)Co1iii—Co1—O7—Co2iii53.53 (5)
C4—N1—C1—C1v176.96 (13)O5i—Co1—O7—Co298.85 (5)
Co2v—N1—C1—C1v1.89 (17)O8—Co1—O7—Co262.47 (6)
C2—N2—C1—N11.85 (19)O3ii—Co1—O7—Co2161.24 (4)
Co2—N2—C1—N1177.78 (10)O1—Co1—O7—Co217.05 (4)
C2—N2—C1—C1v177.35 (13)Co2iii—Co1—O7—Co2101.57 (6)
Co2—N2—C1—C1v3.02 (17)Co1iii—Co1—O7—Co248.03 (4)
C1—N2—C2—C30.0 (2)O6iv—Co2—O7—Co1150.11 (4)
Co2—N2—C2—C3179.55 (11)O7iii—Co2—O7—Co1117.57 (5)
N2—C2—C3—C41.2 (2)O1—Co2—O7—Co118.63 (4)
C1—N1—C4—C30.8 (2)N1v—Co2—O7—Co168.98 (5)
Co2v—N1—C4—C3174.93 (11)Co2iii—Co2—O7—Co1117.57 (5)
C2—C3—C4—N10.8 (2)O6iv—Co2—O7—Co2iii92.32 (4)
O6iv—Co2—O1—C11163.80 (19)O7iii—Co2—O7—Co2iii0.0
O7iii—Co2—O1—C1146.79 (10)O1—Co2—O7—Co2iii98.94 (4)
O7—Co2—O1—C11131.20 (10)N1v—Co2—O7—Co2iii173.46 (4)
N2—Co2—O1—C1153.15 (10)Co1—Co2—O7—Co2iii117.57 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x, y, z1; (v) x+2, y, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O2iii0.76 (2)2.50 (2)3.0980 (14)136 (2)
O7—H7···O4ii0.76 (2)2.52 (2)2.9718 (17)120 (2)
O8—H8A···O2viii0.74 (2)1.95 (2)2.6749 (15)164 (3)
O8—H8B···O90.72 (2)2.11 (2)2.815 (2)164 (3)
O9—H9A···O40.891.842.709 (2)165
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z; (viii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co4(C9H3O6)2(OH)2(C8H6N4)(H2O)2]·2H2O
Mr914.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.7476 (4), 15.3691 (6), 11.0972 (4)
β (°) 97.759 (1)
V3)1478.28 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.50 × 0.40 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.507, 0.603
No. of measured, independent and
observed [I > 2σ(I)] reflections
15056, 5315, 4765
Rint0.015
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.04
No. of reflections5315
No. of parameters248
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.02, 0.54

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Co1—O71.9985 (9)Co2—N22.1230 (11)
Co1—O5i2.0075 (10)Co2—N1v2.1658 (11)
Co1—O82.0168 (12)Co2—Co2iv3.0392 (3)
Co1—O3ii2.0326 (10)O1—C111.2902 (15)
Co1—O12.3031 (9)O2—C111.2379 (15)
Co1—Co23.2196 (2)O3—C121.2667 (17)
Co2—O6iii2.0609 (10)O4—C121.2391 (18)
Co2—O7iv2.0702 (9)O5—C131.2640 (15)
Co2—O72.0838 (9)O6—C131.2502 (16)
Co2—O12.0899 (9)
O7—Co1—O5i114.50 (4)O6iii—Co2—O1167.60 (4)
O7—Co1—O8122.34 (5)O7iv—Co2—O198.07 (4)
O5i—Co1—O8120.43 (5)O7—Co2—O179.98 (4)
O7—Co1—O3ii102.61 (4)O6iii—Co2—N293.26 (5)
O5i—Co1—O3ii93.57 (4)O7iv—Co2—N299.68 (4)
O8—Co1—O3ii90.51 (5)O7—Co2—N2170.10 (4)
O7—Co1—O176.79 (3)O1—Co2—N291.11 (4)
O5i—Co1—O188.19 (4)O6iii—Co2—N1v80.63 (4)
O8—Co1—O188.43 (4)O7iv—Co2—N1v172.58 (4)
O3ii—Co1—O1178.23 (4)O7—Co2—N1v97.61 (4)
O6iii—Co2—O7iv92.63 (4)O1—Co2—N1v88.98 (4)
O6iii—Co2—O794.62 (4)N2—Co2—N1v77.76 (4)
O7iv—Co2—O785.95 (4)
C6—C5—C11—O2149.92 (14)C6—C7—C12—O3162.88 (14)
C10—C5—C11—O234.06 (19)C8—C7—C12—O313.2 (2)
C6—C5—C11—O131.16 (17)C8—C9—C13—O60.03 (18)
C10—C5—C11—O1144.86 (12)C10—C9—C13—O6177.21 (13)
C6—C7—C12—O415.8 (2)C8—C9—C13—O5178.81 (12)
C8—C7—C12—O4168.16 (16)C10—C9—C13—O51.63 (19)
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z1; (iv) x+1, y, z; (v) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O2iv0.76 (2)2.50 (2)3.0980 (14)136 (2)
O7—H7···O4ii0.76 (2)2.52 (2)2.9718 (17)120 (2)
O8—H8A···O2vi0.74 (2)1.95 (2)2.6749 (15)164 (3)
O8—H8B···O90.72 (2)2.11 (2)2.815 (2)164 (3)
O9—H9A···O40.891.842.709 (2)165
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iv) x+1, y, z; (vi) x+3/2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds