Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [CuCl(C7H7O3S)(C12H8N2)(H2O)], the central Cu atom is coordinated by a water mol­ecule, a chloride ion, an O-monodentate p-toluene­sulfonate anion and an N,N′-bidentate 1,10-phenanthroline ligand. The copper environment is best described as a slightly distorted square pyramid, with bond distances Cu—Cl 2.2282 (9) Å, Cu—OW 1.984 (3) Å, and Cu—N 2.006 (3) and 2.028 (3) Å; the apical Cu—O distance is 2.281 (2) Å. In the supramolecular structure, π–π-stacking stabilization is observed, and classical and non-classical hydrogen bonds also play an important role.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102000458/jz1489sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000458/jz1489Isup2.hkl
Contains datablock I

CCDC reference: 182972

Comment top

In recent years, an important research topic of our group has been the electrochemical synthesis of neutral metal sulfonamide complexes. Neutral complexes can be easily obtained when a sacrificial anode is oxidized in a cell containing an appropriate proligand with a weak acidic character (García-Vázquez et al. 1999), e.g. sulfonamides (Cabaleiro et al., 2000). The title compound, (I), was obtained using this general method (see Experimental for details).

The electrochemical efficiency, defined as the molar amount of metal dissolved per Faraday, was close to 1.0. This fact, together with the formation of H2 gas at the cathode, is compatible with a reaction mechanism involving anodic oxidation to copper(I) and deprotonation of the ligand at the cathode.

Anode: Cu Cu+ + e-.

Cathode: HL + e- L- + 1/2H2,

where HL and L- are p-toluenesulfonic acid and its anion, respectively.

The Cu+ compound initially formed in the electrochemical process is further oxidized in solution to give the Cu2+ product. The presence of the chloride ligand is probably attributable to the perchlorate used as the background electrolyte, through a process which is far from clear. Such behaviour has, however, been observed in the synthesis of other compounds by electrochemical procedures (Pérez-Lourido et al., 1998).

The isolated compound consists of discrete [CuCl(CH3C6H4SO3)(C12H8N2)(H2O)] molecules, where the Cu atom is coordinated by one water molecule, one chloride ion, one p-toluenesulfonate ion and one N,N'-bidentate 1,10-phenanthroline ligand. The Cu atom is in a square-pyramidal environment. Bond distances in the basal positions are slightly shorter than the sum of covalent radii [Cu—O1W 1.984 (3) Å, Cu—N21 2.028 (3) Å, Cu—N22 2.006 (3) Å and Cu—Cl 2.2282 (9) Å], but the length of the bond in the apical position is longer [Cu—O3 2.281 (2) Å]. This is, in part, because the fifth coordination position in square-pyramidal arrangements is usually longer (Murase et al., 1991, Bailey et al., 1980) and is also probably associated with the low coordination capability of the benzenesulfonate and toluenesulfonate anions, for which only eight entries are found in the Cambridge Structural Database (Version 5.22, October 2001; Allen & Kennard, 1993), coordinating to CuII atoms (deviations: mean 2.443 Å, maximum 2.594 Å, minimum 2.153 Å). For comparison, a similar search for the trifluoromethanesulfonate ligand gave 44 hits (deviations: mean 2.359 Å, maximum 2.800 Å, minimum 1.948 Å).

The basal plane O1W/N21/N22/Cl is slightly distorted (r.m.s. deviation 0.105 Å), with a maximum deviation of 0.117 (1) Å for N21. The Cu atom lies 0.219 (1) Å out of the best plane formed by the four donor atoms, which subtends a small dihedral angle with the 1,10-phenanthroline best plane (r.m.s. deviation 0.020 Å) of 12.59 (8)°.

Some distortion is found around the tetrahedral S atom, with bond angles in the range 106.01 (16)–112.78 (16)°. In part, this distortion is probably associated with the hydrogen bond between the O2 atom of this SO3 group and the coordinated water molecule (see Table 2); furthermore, the O1 atom interacts with another water molecule of a neighbouring complex. This hydrogen bond plays an important role in the maintenance of the supramolecular structure, as do some ππ-stacking interactions and non-classical (Taylor & Kennard, 1982) hydrogen bonds between C29 and O3. In addition, the theoretical sixth coordination position of the Cu-atom environment is occupied by a π-cloud of the central benzene ring of 1,10-phenanthroline, with the centroid at 3.9648 (5) Å from the metal atom. Neverthless, this distance is longer than the sum of the van der Waals radii, 3.10 Å, considering the phenyl group in a perpendicular fashion (Huheey et al., 1993), so that this disposition could be due to geometrical constraints (see below).

ππ stacking (Janiak, 2001) is observed between the pyridine moieties of different 1,10-phenanthroline groups, so alternating layers of 1,10-phenanthroline are found. Thus, the N21/C21–C25 ring is above the N22/C26–C211 ring, with inter-centroid distances of 3.590 (2) and 4.343 (2) Å, and symmetry operators (2 - x, 1 - y, 1 - z) and (1 - x, 1 - y, 1 - z), respectively.

Experimental top

The electrochemical oxidation of a copper anode in an acetonitrile solution (50 ml) containing p-toluenesulfonic acid monohydrate (76.1 mg, 0.40 mmol), 1,10-phenanthroline monohydrate (70.5 mg, 0.40 mmol) and tetramethylammonium perchlorate (ca 10 mg) for 1 h at 8 V and 10 mA, resulted in a loss of 21.5 mg of copper from the anode and the formation of a green solution, which after concentration by slow evaporation at room temperature gave a crystalline solid.

Refinement top

Aryl and rigid rotating-group methyl H atoms were placed in calculated positions and refined with a riding model, with C—H distances of 0.93 and 0.96 Å, and Uiso values of 1.2Ueq and 1.5Ueq, respectively, of the C atoms to which they are attached. H atoms of the coordinated water molecule were located in a difference map and were refined isotropically with O—H distances restrained to 0.82 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the title molecule, including the atomic numbering scheme, drawn using ORTEP-3 (Farrugia, 1998). H atoms are represented as circles of arbitrary radii, with the non-H atoms as displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed parallel to the y axis.
aquochloro(1,10-phenanthroline-N,N')(4-methylphenylsulfonate-O)copper(II) top
Crystal data top
[CuCl(C7H7O3S)(C12H8N2)(H2O)]Z = 2
Mr = 468.40F(000) = 478
Triclinic, P1Dx = 1.601 Mg m3
a = 7.0887 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9723 (9) ÅCell parameters from 3380 reflections
c = 14.4170 (13) Åθ = 2.5–27.8°
α = 83.773 (2)°µ = 1.40 mm1
β = 78.629 (2)°T = 293 K
γ = 77.153 (2)°Prism, blue
V = 971.90 (16) Å30.55 × 0.36 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3249 independent reflections
Radiation source: fine-focus sealed tube2858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 87
Tmin = 0.506, Tmax = 0.778k = 1111
5013 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0943P)2]
where P = (Fo2 + 2Fc2)/3
3249 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 1.09 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[CuCl(C7H7O3S)(C12H8N2)(H2O)]γ = 77.153 (2)°
Mr = 468.40V = 971.90 (16) Å3
Triclinic, P1Z = 2
a = 7.0887 (7) ÅMo Kα radiation
b = 9.9723 (9) ŵ = 1.40 mm1
c = 14.4170 (13) ÅT = 293 K
α = 83.773 (2)°0.55 × 0.36 × 0.18 mm
β = 78.629 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3249 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
2858 reflections with I > 2σ(I)
Tmin = 0.506, Tmax = 0.778Rint = 0.036
5013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.09 e Å3
3249 reflectionsΔρmin = 0.80 e Å3
262 parameters
Special details top

Experimental. We have measured to theta(max) = 28.02 °. with 89.9% completeness, but the data are virtually 95% complete to 25 °.

Data were 95% complete to 2θ = 50°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.20979 (6)0.77450 (4)0.84191 (3)0.03153 (17)
Cl0.10985 (17)0.57819 (9)0.84060 (8)0.0571 (3)
O1W0.1351 (4)0.8465 (3)0.71753 (18)0.0388 (6)
H10.238 (5)0.829 (5)0.682 (3)0.082 (18)*
H20.044 (5)0.819 (5)0.709 (3)0.075 (16)*
O20.5005 (4)0.8066 (3)0.61529 (17)0.0446 (6)
O30.5350 (3)0.7226 (2)0.77580 (16)0.0390 (6)
O10.8077 (4)0.7975 (3)0.6680 (2)0.0516 (7)
S10.63699 (12)0.73579 (8)0.67733 (6)0.0343 (2)
C110.7225 (5)0.5667 (4)0.6395 (2)0.0402 (8)
C120.9144 (6)0.5009 (4)0.6355 (3)0.0554 (10)
H121.00450.54540.65150.066*
C130.9736 (8)0.3667 (5)0.6071 (3)0.0698 (14)
H131.10420.32180.60460.084*
C140.8424 (9)0.2990 (5)0.5827 (3)0.0677 (14)
C150.6507 (8)0.3672 (5)0.5867 (3)0.0702 (13)
H150.56120.32320.56960.084*
C160.5878 (7)0.4992 (4)0.6155 (3)0.0566 (11)
H160.45660.54330.61900.068*
C170.9096 (11)0.1523 (5)0.5542 (4)0.102 (2)
H17A0.82520.13410.51460.153*
H17B0.90420.09010.60990.153*
H17C1.04220.13930.51980.153*
N210.2159 (4)0.9688 (3)0.86886 (19)0.0310 (6)
N220.2595 (4)0.7371 (3)0.97547 (19)0.0310 (6)
C210.1970 (5)1.0840 (3)0.8123 (3)0.0403 (8)
H210.18361.07910.74990.048*
C220.1964 (5)1.2117 (3)0.8433 (3)0.0447 (9)
H220.18401.29000.80180.054*
C230.2143 (5)1.2217 (3)0.9352 (3)0.0445 (9)
H230.20971.30720.95670.053*
C240.2393 (5)1.1029 (3)0.9965 (3)0.0373 (8)
C250.2396 (5)0.9785 (3)0.9583 (2)0.0308 (7)
C260.2646 (4)0.8516 (3)1.0169 (2)0.0309 (7)
C270.2920 (5)0.8527 (4)1.1103 (2)0.0378 (8)
C280.3201 (5)0.7218 (4)1.1615 (2)0.0491 (10)
H280.34070.71491.22370.059*
C290.3169 (6)0.6069 (4)1.1197 (3)0.0496 (9)
H290.33730.52111.15290.060*
C2100.2833 (5)0.6179 (4)1.0276 (3)0.0407 (8)
H2100.27690.53861.00090.049*
C2110.2912 (5)0.9792 (4)1.1465 (3)0.0453 (9)
H2110.30760.98001.20880.054*
C2120.2672 (5)1.0995 (4)1.0921 (3)0.0465 (9)
H2120.26891.18091.11750.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0400 (3)0.0215 (2)0.0344 (3)0.00610 (17)0.00978 (18)0.00269 (16)
Cl0.0880 (8)0.0293 (5)0.0664 (7)0.0232 (5)0.0324 (6)0.0002 (4)
O1W0.0387 (15)0.0390 (14)0.0415 (14)0.0102 (12)0.0122 (12)0.0012 (11)
O20.0453 (15)0.0458 (15)0.0419 (14)0.0059 (11)0.0149 (11)0.0067 (11)
O30.0424 (14)0.0379 (13)0.0341 (12)0.0002 (10)0.0092 (10)0.0031 (10)
O10.0428 (15)0.0539 (17)0.0638 (17)0.0178 (13)0.0141 (13)0.0036 (13)
S10.0343 (5)0.0346 (5)0.0348 (5)0.0058 (3)0.0096 (3)0.0019 (3)
C110.050 (2)0.0381 (19)0.0295 (17)0.0002 (16)0.0082 (15)0.0051 (14)
C120.056 (2)0.055 (2)0.049 (2)0.0030 (19)0.0069 (19)0.0103 (19)
C130.076 (3)0.062 (3)0.052 (3)0.019 (2)0.001 (2)0.009 (2)
C140.112 (4)0.047 (2)0.034 (2)0.000 (3)0.005 (2)0.0076 (18)
C150.103 (4)0.054 (3)0.061 (3)0.016 (3)0.026 (3)0.013 (2)
C160.071 (3)0.045 (2)0.061 (3)0.009 (2)0.029 (2)0.0078 (19)
C170.181 (7)0.050 (3)0.056 (3)0.005 (3)0.000 (4)0.013 (2)
N210.0337 (14)0.0222 (13)0.0364 (15)0.0041 (11)0.0064 (11)0.0021 (11)
N220.0316 (14)0.0244 (13)0.0349 (14)0.0039 (11)0.0035 (11)0.0017 (11)
C210.042 (2)0.0310 (18)0.048 (2)0.0090 (15)0.0082 (16)0.0021 (15)
C220.046 (2)0.0242 (17)0.062 (2)0.0061 (15)0.0098 (18)0.0035 (15)
C230.0340 (19)0.0253 (17)0.075 (3)0.0082 (14)0.0054 (17)0.0127 (17)
C240.0267 (17)0.0345 (18)0.052 (2)0.0091 (14)0.0011 (15)0.0144 (15)
C250.0288 (17)0.0231 (15)0.0398 (18)0.0045 (12)0.0021 (13)0.0074 (13)
C260.0258 (16)0.0320 (16)0.0327 (17)0.0030 (13)0.0034 (13)0.0025 (13)
C270.0282 (17)0.047 (2)0.0374 (18)0.0059 (14)0.0041 (14)0.0083 (15)
C280.047 (2)0.067 (3)0.0316 (19)0.0100 (19)0.0084 (16)0.0049 (18)
C290.054 (2)0.045 (2)0.043 (2)0.0037 (18)0.0094 (17)0.0127 (17)
C2100.045 (2)0.0305 (17)0.043 (2)0.0060 (15)0.0051 (16)0.0024 (14)
C2110.040 (2)0.066 (3)0.0343 (18)0.0146 (18)0.0050 (15)0.0169 (17)
C2120.037 (2)0.052 (2)0.055 (2)0.0136 (17)0.0003 (17)0.0282 (19)
Geometric parameters (Å, º) top
Cu—O1W1.984 (3)N21—C211.332 (4)
Cu—N222.006 (3)N21—C251.349 (4)
Cu—N212.028 (3)N22—C2101.331 (4)
Cu—Cl2.2282 (9)N22—C261.355 (4)
Cu—O32.281 (2)C21—C221.393 (5)
O1W—H10.80 (2)C21—H210.9300
O1W—H20.792 (19)C22—C231.371 (5)
O2—S11.461 (3)C22—H220.9300
O3—S11.467 (2)C23—C241.399 (5)
O1—S11.453 (3)C23—H230.9300
S1—C111.767 (4)C24—C251.410 (4)
C11—C121.365 (5)C24—C2121.426 (5)
C11—C161.396 (5)C25—C261.440 (4)
C12—C131.391 (6)C26—C271.399 (5)
C12—H120.9300C27—C2111.415 (5)
C13—C141.381 (8)C27—C281.421 (5)
C13—H130.9300C28—C291.358 (5)
C14—C151.371 (7)C28—H280.9300
C14—C171.510 (6)C29—C2101.384 (5)
C15—C161.374 (6)C29—H290.9300
C15—H150.9300C210—H2100.9300
C16—H160.9300C211—C2121.356 (6)
C17—H17A0.9600C211—H2110.9300
C17—H17B0.9600C212—H2120.9300
C17—H17C0.9600
O1W—Cu—N22169.20 (11)H17B—C17—H17C109.5
O1W—Cu—N2189.30 (11)C21—N21—C25117.5 (3)
N22—Cu—N2181.22 (10)C21—N21—Cu129.5 (2)
O1W—Cu—Cl93.22 (8)C25—N21—Cu113.0 (2)
N22—Cu—Cl94.22 (8)C210—N22—C26117.3 (3)
N21—Cu—Cl161.91 (8)C210—N22—Cu129.0 (2)
O1W—Cu—O391.81 (10)C26—N22—Cu113.7 (2)
N22—Cu—O394.03 (9)N21—C21—C22122.3 (3)
N21—Cu—O394.19 (10)N21—C21—H21118.9
Cl—Cu—O3103.62 (7)C22—C21—H21118.9
Cu—O1W—H1102 (4)C23—C22—C21119.9 (3)
Cu—O1W—H2111 (4)C23—C22—H22120.0
H1—O1W—H2120 (5)C21—C22—H22120.0
S1—O3—Cu131.59 (14)C22—C23—C24119.8 (3)
O1—S1—O2112.62 (15)C22—C23—H23120.1
O1—S1—O3112.78 (16)C24—C23—H23120.1
O2—S1—O3111.06 (15)C23—C24—C25116.1 (3)
O1—S1—C11107.22 (17)C23—C24—C212124.9 (3)
O2—S1—C11106.01 (16)C25—C24—C212119.0 (3)
O3—S1—C11106.66 (15)N21—C25—C24124.4 (3)
C12—C11—C16120.0 (4)N21—C25—C26116.2 (3)
C12—C11—S1121.5 (3)C24—C25—C26119.5 (3)
C16—C11—S1118.5 (3)N22—C26—C27124.5 (3)
C11—C12—C13119.3 (4)N22—C26—C25115.8 (3)
C11—C12—H12120.3C27—C26—C25119.7 (3)
C13—C12—H12120.3C26—C27—C211119.4 (3)
C14—C13—C12121.3 (5)C26—C27—C28115.4 (3)
C14—C13—H13119.4C211—C27—C28125.2 (3)
C12—C13—H13119.4C29—C28—C27120.1 (3)
C15—C14—C13118.4 (4)C29—C28—H28119.9
C15—C14—C17121.3 (5)C27—C28—H28119.9
C13—C14—C17120.2 (5)C28—C29—C210119.8 (3)
C14—C15—C16121.4 (5)C28—C29—H29120.1
C14—C15—H15119.3C210—C29—H29120.1
C16—C15—H15119.3N22—C210—C29122.9 (3)
C15—C16—C11119.5 (4)N22—C210—H210118.6
C15—C16—H16120.3C29—C210—H210118.6
C11—C16—H16120.3C212—C211—C27121.4 (3)
C14—C17—H17A109.5C212—C211—H211119.3
C14—C17—H17B109.5C27—C211—H211119.3
H17A—C17—H17B109.5C211—C212—C24121.0 (3)
C14—C17—H17C109.5C211—C212—H212119.5
H17A—C17—H17C109.5C24—C212—H212119.5
O1W—Cu—O3—S12.1 (2)O3—Cu—N22—C2696.0 (2)
N22—Cu—O3—S1173.00 (19)C25—N21—C21—C221.5 (5)
N21—Cu—O3—S191.5 (2)Cu—N21—C21—C22177.2 (2)
Cl—Cu—O3—S191.66 (18)N21—C21—C22—C230.5 (5)
Cu—O3—S1—O1133.74 (19)C21—C22—C23—C242.1 (5)
Cu—O3—S1—O26.2 (2)C22—C23—C24—C251.5 (5)
Cu—O3—S1—C11108.8 (2)C22—C23—C24—C212177.4 (3)
O1—S1—C11—C1219.6 (4)C21—N21—C25—C242.1 (5)
O2—S1—C11—C12140.1 (3)Cu—N21—C25—C24176.8 (2)
O3—S1—C11—C12101.5 (3)C21—N21—C25—C26178.5 (3)
O1—S1—C11—C16161.9 (3)Cu—N21—C25—C262.6 (4)
O2—S1—C11—C1641.4 (3)C23—C24—C25—N210.6 (5)
O3—S1—C11—C1677.0 (3)C212—C24—C25—N21179.6 (3)
C16—C11—C12—C130.2 (6)C23—C24—C25—C26180.0 (3)
S1—C11—C12—C13178.6 (3)C212—C24—C25—C261.0 (5)
C11—C12—C13—C140.2 (7)C210—N22—C26—C270.3 (5)
C12—C13—C14—C150.1 (7)Cu—N22—C26—C27178.3 (2)
C12—C13—C14—C17178.7 (4)C210—N22—C26—C25179.7 (3)
C13—C14—C15—C160.9 (7)Cu—N22—C26—C251.7 (3)
C17—C14—C15—C16177.9 (4)N21—C25—C26—N220.6 (4)
C14—C15—C16—C111.3 (7)C24—C25—C26—N22178.8 (3)
C12—C11—C16—C150.9 (6)N21—C25—C26—C27179.4 (3)
S1—C11—C16—C15179.4 (3)C24—C25—C26—C271.2 (5)
O1W—Cu—N21—C216.7 (3)N22—C26—C27—C211178.9 (3)
N22—Cu—N21—C21178.5 (3)C25—C26—C27—C2111.1 (5)
Cl—Cu—N21—C21104.9 (3)N22—C26—C27—C281.5 (5)
O3—Cu—N21—C2185.1 (3)C25—C26—C27—C28178.5 (3)
O1W—Cu—N21—C25172.1 (2)C26—C27—C28—C290.8 (5)
N22—Cu—N21—C252.7 (2)C211—C27—C28—C29179.6 (3)
Cl—Cu—N21—C2573.8 (4)C27—C28—C29—C2101.0 (6)
O3—Cu—N21—C2596.1 (2)C26—N22—C210—C291.6 (5)
O1W—Cu—N22—C210151.9 (5)Cu—N22—C210—C29180.0 (3)
N21—Cu—N22—C210179.2 (3)C28—C29—C210—N222.3 (6)
Cl—Cu—N22—C21018.5 (3)C26—C27—C211—C2120.9 (5)
O3—Cu—N22—C21085.5 (3)C28—C27—C211—C212178.7 (3)
O1W—Cu—N22—C2626.6 (7)C27—C211—C212—C240.8 (5)
N21—Cu—N22—C262.4 (2)C23—C24—C212—C211179.7 (3)
Cl—Cu—N22—C26160.0 (2)C25—C24—C212—C2110.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O20.80 (2)1.90 (2)2.684 (4)168 (5)
O1W—H2···O1i0.79 (2)1.94 (2)2.714 (4)164 (5)
C21—H21···O1W0.932.523.011 (4)113
C210—H210···Cl0.932.753.269 (4)116
C29—H29···O3ii0.932.583.491 (4)168
C28—H28···Cg1ii0.932.763.481 (4)136
C29—H29···Cg1ii0.933.403.798 (4)109
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[CuCl(C7H7O3S)(C12H8N2)(H2O)]
Mr468.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0887 (7), 9.9723 (9), 14.4170 (13)
α, β, γ (°)83.773 (2), 78.629 (2), 77.153 (2)
V3)971.90 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.55 × 0.36 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.506, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
5013, 3249, 2858
Rint0.036
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.03
No. of reflections3249
No. of parameters262
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.09, 0.80

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
Cu—O1W1.984 (3)Cu—O32.281 (2)
Cu—N222.006 (3)O2—S11.461 (3)
Cu—N212.028 (3)O3—S11.467 (2)
Cu—Cl2.2282 (9)O1—S11.453 (3)
O1W—Cu—N22169.20 (11)N21—Cu—O394.19 (10)
O1W—Cu—N2189.30 (11)Cl—Cu—O3103.62 (7)
N22—Cu—N2181.22 (10)O1—S1—O2112.62 (15)
O1W—Cu—Cl93.22 (8)O1—S1—O3112.78 (16)
N22—Cu—Cl94.22 (8)O2—S1—O3111.06 (15)
N21—Cu—Cl161.91 (8)O1—S1—C11107.22 (17)
O1W—Cu—O391.81 (10)O2—S1—C11106.01 (16)
N22—Cu—O394.03 (9)O3—S1—C11106.66 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O20.80 (2)1.90 (2)2.684 (4)168 (5)
O1W—H2···O1i0.79 (2)1.94 (2)2.714 (4)164 (5)
C21—H21···O1W0.932.523.011 (4)113.0
C210—H210···Cl0.932.753.269 (4)116.1
C29—H29···O3ii0.932.583.491 (4)168.2
C28—H28···Cg1ii0.932.763.481 (4)135.5
C29—H29···Cg1ii0.933.403.798 (4)108.7
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds