Download citation
Download citation
link to html
The conformations of the two approximately isomorphous structures 4′-{[benzoyl(4-chloro­phenyl­hydrazono)­methyl]­sul­fonyl}acetanilide, C22H18ClN3O4S, and 4′-{[benzoyl(4-meth­oxy­phenyl­hydrazono)­methyl]­sulfonyl}acetanilide, C23H21N3­O5S, are stabilized by resonance-assisted intramolecular hydrogen bonds linking the hydrazone moieties and sulfonyl groups. The stronger bond is observed in the former compound. The difference in electronic properties between the Cl atom and the methoxy group is too small to significantly alter the non-bonding interactions of the sulfonyl and β-­carbonyl groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101010642/jz1471sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101010642/jz1471Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101010642/jz1471IIsup3.hkl
Contains datablock II

CCDC references: 173390; 173391

Comment top

X-ray and ab initio molecular orbital investigations of phenyl benzoyl(phenylhydrazono)methyl sulfones have shown that strongly electron-withdrawing substituents bonded to the phenylhydrazone moiety increase the strength of the intramolecular resonance-assisted N—H···OS hydrogen bonds (Jeffrey, 1997) and prompt simultaneous contraction of the intramolecular contacts between the oppositely charged atoms of the sulfonyl and β-carbonyl groups (Wolf, 2001a, and references therein). The latter effect promotes electron density back-donation towards the S atoms and therefore reduces the strongly electron-withdrawing character of the sulfonyl groups. In this paper, the essentially isomorphous crystal structures of 4'-{[benzoyl(4-chlorophenylhydrazono)methyl]sulfonyl}acetanilide, (I), and 4'-{[benzoyl(4-methoxyphenylhydrazono)methyl]sulfonyl}acetanilide, (II), are reported. Their terminal substituents attached to the α-phenylhydrazone group have opposite electronic properties. The para-Cl atom in (I) shows electron-withdrawing ability, whereas the p-methoxy group in (II) has electron-donating character. The Hammett σp constants are 0.23 and -0.27, respectively (Hansch et al., 1995). An interesting feature of (I) and (II) is their antimycotic activity, which increases after exposing fungi colonies with added fungicide to radiation characteristic of daylight (Wolf, 1999; 2000; Zakrzewski & Kacała, 1998; Zakrzewski, 1999). \sch

The molecular structures of (I) and (II) are shown in Figs. 1 and 2. The superposition of both structures (Fig. 3) clearly shows the similarity of their conformations. The root mean square deviation calculated from the least-squares fit of all relevant non-H atoms is 0.87 Å.

In (I) and (II), the SO2 sulfonyl double bonds, carbonyl groups and phenylhydrazone moieties are approximately coplanar. Their configuration can be defined as EZE. This three-letter symbol was initially used to describe the conformation of 2,2-diacylethenamines (Gómez-Sánchez et al., 1987) and applied further to β-diketoarylhydrazones (Bertolasi, Gilli et al., 1994; Bertolasi, Nanni et al., 1994). In the compounds investigated, the above three letters indicate, relative to the C1N1 bond, the positions of the carbonyl C2O3, the sulfonyl SO2 and the N2—C17 bond bearing the phenyl ring.

The central fragments of both molecules are constrained by strong intramolecular hydrogen bonds assisted by resonance (resonance-assisted hydrogen bonds, RAHB). These bonds connect the hydrazone and sulfonyl groups. The six-membered RAHB rings in (I) and (II) are practically planar (r.m.s. deviations from the O2/S/C1/N1/N2/H2 planes are 0.03 and 0.07 Å, respectively). The N2···O2 distance in (I) [2.647 (4) Å] is shorter than that in (II) [2.663 (3) Å]. On the other hand, the SO2 bond in (I) is longer [1.451 (3) Å] than that in (II) [1.438 (2) Å]. This characteristic variation of bond lengths and D···A distances indicates that a stronger RAHB exists in (I) (Gilli et al., 1994).

Atomic charges derived from electrostatic potentials were calculated using GAUSSIAN98 (Frisch et al., 1998), at the RHF/6–311+G(d,p) level for the X-ray determined coordinates. Grid points were selected according to the Merz-Singh-Kollman procedure (Bessler et al., 1990; Singh & Kollman, 1984). Large positive atomic charges are located on atoms S and C2 [1.25 and 0.52, and 1.26 and 0.47 e for (I) and (II), respectively]. All O atoms are negatively charged. Atomic charges on O1, O2 and O3 are within the range -0.52 to -0.68 e. Electrostatic attraction of the oppositely charged atoms generates intramolecular contacts between the atom pairs S···O3 and O1···C2; details are summarized in Tables 2 and 5.

A similar situation was observed in all three α-hydrazono-β-ketosulfones reported in the Cambridge Structural Database (Allen & Kennard, 1993), 4'-{[benzoyl(4-tolylhydrazono)methyl]sulfonyl}acetanilide, (III) (Wolf, 1999), phenyl benzoyl(phenylhydrazono)methyl sulfone, (IV), and phenyl benzoyl(4-nitrophenylhydrazono)methyl sulfone, (V) (Wolf, 2001a). In (V), the strongly electron-withdrawing p-nitro group attached to the phenylhydrazone moiety hinders electron density redistribution from the hydrazone fragment towards the electron-deficient S and β-carbonyl C, and thus helps to conserve large positive charges on those atoms. This effect strengthens intramolecular hydrogen bonding and, in addition, favours electrostatic attraction of the oppositely charged atoms of the sulfonyl and carbonyl dipoles. Finally, it results in a significant shortening of the intramolecular S···O3 contact in (V) [(2.818 (3) Å] when compared with (IV) [(2.976 (1) Å]. In the title compounds, (I) and (II), the S···O3 distances are significantly contracted below the van der Waals limit (3.32 Å; Bondi, 1964). Nevertheless, both contacts are practically equal [2.954 (3) and 2.952 (2) Å]. This observation indicates that the divergence of the electronic properties of the Cl atom and methoxy group was too small to alter the non-bonding interactions of the sulfonyl and β-carbonyl group significantly.

Bond lengths in (I) and (II) are close to those observed in related compounds (Wolf, 1999, 2001a). In particular, the S—C1 bonds are longer [1.792 (3) and 1.787 (2) Å, respectively] than the conventional S-Csp3 single bond (1.779 Å; Allen et al., 1992). Similar bond elongation in (III), (IV) and (V) [1.795 (3), 1.798 (2) and 1.784 (1) Å, respectively] was attributed to hyperconjugative (Juaristi & Cuevas, 1995; Graczyk & Mikołajczyk, 1994; Cramer, 1996) interactions involving σ(S—C1) - π*(CO3) bonding and non-bonding atomic orbitals. The resulting transfer of electron density from S towards O3 increases charge separation between the sulfonyl and carbonyl groups and, finally, intensifies the electrostatic attraction of the oppositely charged atoms S and O3. A similar pattern of intramolecular interactions was observed in α-unsubstituted β-ketosulfones and β-ketosulfoxides (Distefano et al., 1991, 1996; Dal Colle et al., 1995; Olivato et al., 1998, 2000; Wolf, 2001b).

In the crystal lattice, molecules of (I) and (II) form centrosymmetric dimers, which are connected by intermolecular hydrogen bonds involving the β-carbonyl O3 atoms and the N3—H2 bonds of the terminal acetamide moieties. According to Etter's graph-set terminology (Etter, 1990; Bernstein et al., 1995), these bond systems can be described as R22(20). Additionally, the O4 atoms of the acetamide groups are involved in three close contacts with the surrounding H atoms of the phenyl rings. According to the liberal definition of Desiraju & Steiner (1999), these contacts could be classified as C—H···O hydrogen bonds. Details are summarized in Tables 3 and 6.

Experimental top

Compounds (I) and (II) were synthesized by the reaction of p-acetanilide benzoylmethyl sulfone with p-chlorophenyldiazonium chloride and p-methoxyphenyldiazonium chloride, respectively. The reactions were carried out in alkaline ethyl alcohol solutions (Zakrzewski, 1996). The crystals used for data collection were obtained by vapour diffusion: samples were dissolved in a 2:1 mixture of chloroform and isopropyl alcohol, and equilibrated at room temperature against pure isopropyl alcohol for 6 and 14 d, respectively.

Refinement top

All H atoms were located in a difference Fourier map calculated after three cycles of anisotropic refinement. Positional and isotropic displacement parameters of H2 and H3 in (I) and (II) were allowed to refine freely. Positional parameters of all remaining H atoms were constrained using AFIX 44 and AFIX 134 in SHELXL97 (Sheldrick, 1997) for the phenyl and methyl groups, respectively. Common displacement parameters were applied to H atoms of the individual phenyl and methyl groups [C—H = 0.83 (4)–1.04 and 0.86 (3)–0.99 Å for (I) and (II), respectively].

Computing details top

Data collection: KM-4 Software (Kuma Diffraction, 1991) for (I); P3 (Siemens, 1989) for (II). Cell refinement: KM-4 Software for (I); P3 for (II). Data reduction: DATAPROC (Gałdecki et al., 1995) for (I); XDISK (Siemens, 1991) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: InsightII (Molecular Simulations, 1997) and XP (Siemens, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and the intramolecular hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. The molecular structure of (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and the intramolecular hydrogen bond is indicated by a dashed line.
[Figure 3] Fig. 3. The superposition of (I) and (II); (II) is plotted with the dashed line. The least-squares fit was based on all common non-H atoms, i.e. the terminal Cl and methoxy substituents were not considered. The r.m.s. deviation was 0.87 Å.
(I) 4'-{[benzoyl(4-chlorophenylhydrazono)methyl]sulfonyl}acetanilide top
Crystal data top
C22H18ClN3O4SF(000) = 944
Mr = 455.90Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.603 (4) ÅCell parameters from 60 reflections
b = 7.596 (1) Åθ = 5–15°
c = 24.110 (4) ŵ = 0.32 mm1
β = 96.44 (2)°T = 293 K
V = 2111.6 (9) Å3Prism, yellow
Z = 40.50 × 0.45 × 0.30 mm
Data collection top
Kuma KM-4
diffractometer
Rint = 0.036
Radiation source: fine-focus sealed tubeθmax = 25°, θmin = 1.7°
Graphite monochromatorh = 1313
ω/2θ scansk = 19
4434 measured reflectionsl = 028
3719 independent reflections3 standard reflections every 100 reflections
2531 reflections with I > 2σ(I) intensity decay: 10%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0292P)2 + 3.1336P]
where P = (Fo2 + 2Fc2)/3
3719 reflections(Δ/σ)max = 0.002
306 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C22H18ClN3O4SV = 2111.6 (9) Å3
Mr = 455.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.603 (4) ŵ = 0.32 mm1
b = 7.596 (1) ÅT = 293 K
c = 24.110 (4) Å0.50 × 0.45 × 0.30 mm
β = 96.44 (2)°
Data collection top
Kuma KM-4
diffractometer
Rint = 0.036
4434 measured reflections3 standard reflections every 100 reflections
3719 independent reflections intensity decay: 10%
2531 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.22 e Å3
3719 reflectionsΔρmin = 0.30 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.61868 (9)0.60363 (15)0.18650 (4)0.0585 (3)
Cl0.47058 (12)0.2171 (2)0.52316 (4)0.0921 (4)
O10.6105 (3)0.7858 (4)0.17140 (11)0.0743 (9)
O20.7079 (2)0.5511 (5)0.23044 (10)0.0755 (9)
O30.3862 (2)0.5934 (4)0.12263 (10)0.0666 (8)
O40.6324 (3)0.0928 (4)0.00754 (13)0.0799 (9)
N10.4748 (2)0.4714 (4)0.26002 (11)0.0463 (7)
N20.5589 (3)0.4417 (5)0.29851 (12)0.0518 (8)
H20.628 (4)0.459 (6)0.2941 (18)0.088 (16)*
N30.6403 (3)0.1915 (5)0.01967 (14)0.0569 (9)
H30.633 (4)0.256 (6)0.0490 (17)0.074 (14)*
C10.4851 (3)0.5346 (5)0.21046 (14)0.0484 (9)
C20.3792 (3)0.5511 (5)0.17141 (13)0.0479 (9)
C30.2618 (3)0.5137 (5)0.18941 (13)0.0454 (8)
C40.2289 (3)0.5739 (5)0.23997 (14)0.0515 (9)
H40.283 (2)0.635 (3)0.2659 (11)0.072 (6)*
C50.1172 (3)0.5443 (6)0.25196 (16)0.0611 (11)
H50.0922 (10)0.5897 (18)0.2893 (14)0.072 (6)*
C60.0395 (4)0.4571 (6)0.21595 (17)0.0690 (13)
H60.033 (3)0.4396 (10)0.2246 (4)0.072 (6)*
C70.0708 (4)0.3951 (6)0.16619 (17)0.0689 (12)
H70.020 (2)0.335 (3)0.1427 (11)0.072 (6)*
C80.1817 (3)0.4263 (5)0.15270 (15)0.0560 (10)
H80.2039 (9)0.3855 (17)0.1164 (14)0.072 (6)*
C90.6342 (3)0.4788 (5)0.12698 (14)0.0497 (9)
C100.6524 (4)0.2996 (6)0.13097 (17)0.0669 (12)
H100.6628 (6)0.244 (2)0.1664 (14)0.059 (6)*
C110.6554 (4)0.2008 (6)0.08308 (16)0.0698 (13)
H110.6641 (6)0.094 (5)0.08530 (19)0.059 (6)*
C120.6436 (3)0.2822 (5)0.03106 (14)0.0496 (9)
C130.6327 (3)0.4635 (5)0.02829 (15)0.0484 (9)
H130.6302 (3)0.521 (2)0.0066 (14)0.059 (6)*
C140.6256 (3)0.5606 (5)0.07553 (14)0.0496 (9)
H140.6156 (5)0.676 (5)0.07315 (17)0.059 (6)*
C150.6326 (3)0.0163 (6)0.02914 (18)0.0608 (11)
C160.6238 (4)0.0357 (6)0.08984 (19)0.0840 (16)
H1610.5635 (18)0.0218 (18)0.1090 (6)0.138 (13)*
H1620.6122 (6)0.154 (4)0.0930 (2)0.138 (13)*
H1630.691 (2)0.0068 (11)0.1040 (5)0.138 (13)*
C170.5355 (3)0.3827 (5)0.35146 (13)0.0443 (8)
C180.4232 (3)0.3653 (6)0.36444 (15)0.0595 (11)
H180.361 (3)0.3889 (11)0.3381 (11)0.067 (6)*
C190.4057 (3)0.3120 (6)0.41750 (15)0.0638 (12)
H190.335 (3)0.3000 (8)0.4263 (4)0.067 (6)*
C200.4973 (3)0.2780 (5)0.45611 (14)0.0539 (10)
C210.6070 (4)0.2875 (6)0.44284 (16)0.0685 (12)
H210.672 (3)0.2565 (14)0.4703 (11)0.067 (6)*
C220.6264 (3)0.3413 (6)0.39015 (15)0.0623 (11)
H220.701 (3)0.3494 (7)0.3810 (4)0.067 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0580 (6)0.0750 (7)0.0460 (5)0.0130 (5)0.0214 (4)0.0020 (5)
Cl0.1214 (10)0.1121 (11)0.0470 (6)0.0171 (9)0.0280 (6)0.0208 (6)
O10.099 (2)0.0637 (19)0.0662 (18)0.0203 (17)0.0381 (16)0.0003 (15)
O20.0473 (15)0.130 (3)0.0505 (16)0.0166 (17)0.0100 (12)0.0048 (17)
O30.0652 (17)0.095 (2)0.0413 (14)0.0081 (16)0.0158 (12)0.0225 (14)
O40.094 (2)0.0602 (19)0.088 (2)0.0048 (17)0.0228 (18)0.0212 (17)
N10.0482 (16)0.0527 (18)0.0394 (16)0.0006 (15)0.0108 (13)0.0030 (14)
N20.0422 (17)0.072 (2)0.0424 (17)0.0043 (17)0.0110 (14)0.0050 (15)
N30.069 (2)0.057 (2)0.0483 (19)0.0063 (17)0.0254 (16)0.0091 (17)
C10.052 (2)0.054 (2)0.0415 (19)0.0046 (18)0.0157 (16)0.0024 (17)
C20.056 (2)0.052 (2)0.0373 (19)0.0049 (18)0.0141 (15)0.0048 (16)
C30.050 (2)0.051 (2)0.0359 (17)0.0050 (17)0.0076 (15)0.0090 (16)
C40.058 (2)0.059 (2)0.039 (2)0.0051 (19)0.0111 (16)0.0004 (17)
C50.061 (2)0.079 (3)0.046 (2)0.011 (2)0.0208 (19)0.009 (2)
C60.050 (2)0.094 (3)0.065 (3)0.000 (2)0.014 (2)0.020 (3)
C70.064 (3)0.085 (3)0.056 (2)0.018 (2)0.002 (2)0.006 (2)
C80.064 (2)0.066 (3)0.0388 (19)0.002 (2)0.0080 (17)0.0020 (18)
C90.047 (2)0.061 (3)0.0436 (19)0.0008 (19)0.0175 (15)0.0081 (18)
C100.085 (3)0.072 (3)0.046 (2)0.016 (2)0.022 (2)0.022 (2)
C110.102 (3)0.054 (3)0.059 (3)0.024 (2)0.031 (2)0.021 (2)
C120.049 (2)0.056 (2)0.048 (2)0.0067 (18)0.0206 (16)0.0066 (18)
C130.049 (2)0.057 (2)0.0420 (19)0.0015 (18)0.0175 (15)0.0138 (18)
C140.053 (2)0.052 (2)0.046 (2)0.0017 (18)0.0161 (16)0.0061 (17)
C150.061 (2)0.054 (3)0.071 (3)0.005 (2)0.026 (2)0.006 (2)
C160.104 (4)0.074 (3)0.079 (3)0.012 (3)0.032 (3)0.016 (3)
C170.0429 (18)0.054 (2)0.0370 (17)0.0006 (17)0.0091 (14)0.0028 (16)
C180.0435 (19)0.090 (3)0.046 (2)0.001 (2)0.0071 (16)0.018 (2)
C190.051 (2)0.088 (3)0.056 (2)0.001 (2)0.0212 (19)0.014 (2)
C200.067 (2)0.055 (2)0.042 (2)0.007 (2)0.0146 (18)0.0033 (17)
C210.058 (2)0.097 (3)0.049 (2)0.011 (2)0.0004 (19)0.015 (2)
C220.043 (2)0.092 (3)0.053 (2)0.003 (2)0.0094 (17)0.007 (2)
Geometric parameters (Å, º) top
S—O11.431 (3)C20—C211.349 (5)
S—O21.451 (3)C21—C221.377 (5)
S—C11.792 (3)N3—C121.400 (5)
S—C91.746 (4)N3—C151.352 (5)
O3—C21.231 (4)O4—C151.212 (5)
N1—N21.289 (4)C15—C161.508 (6)
N1—C11.306 (4)Cl—C201.742 (3)
N2—C171.408 (4)N2—H20.83 (4)
C1—C21.467 (5)N3—H30.86 (4)
C2—C31.502 (5)C4—H40.95
C3—C81.380 (5)C5—H51.04
C3—C41.395 (5)C6—H60.90
C4—C51.378 (5)C7—H70.90
C5—C61.352 (6)C8—H80.99
C6—C71.375 (6)C10—H100.95
C7—C81.383 (5)C11—H110.82
C9—C101.379 (6)C13—H130.94
C9—C141.381 (5)C14—H140.88
C10—C111.381 (6)C16—H1610.91
C11—C121.391 (5)C16—H1620.91
C12—C131.384 (5)C16—H1630.91
C13—C141.367 (5)C18—H180.92
C17—C221.364 (5)C19—H190.87
C17—C181.380 (5)C21—H210.98
C18—C191.379 (5)C22—H220.92
C19—C201.357 (5)
S···O32.954 (3)O1···N24.122 (4)
S···N23.115 (3)O2···N22.647 (4)
O1···C23.222 (5)N2···C23.605 (5)
O2···C23.918 (5)
O1—S—O2118.2 (2)C21—C20—C19121.0 (3)
O1—S—C1109.28 (18)C21—C20—Cl120.3 (3)
O1—S—C9109.02 (17)C19—C20—Cl118.7 (3)
O2—S—C1104.82 (16)C20—C21—C22119.4 (4)
O2—S—C9108.63 (18)C17—C22—C21120.4 (4)
C1—S—C9106.19 (17)N1—N2—H2123 (3)
N2—N1—C1125.7 (3)C17—N2—H2117 (3)
N1—N2—C17120.1 (3)C15—N3—H3115 (3)
N1—C1—C2117.6 (3)C12—N3—H3115 (3)
S—C1—N1125.0 (3)C5—C4—H4120.5
S—C1—C2117.4 (2)C3—C4—H4120.5
O3—C2—C1119.7 (3)C6—C5—H5119.3
O3—C2—C3119.0 (3)C4—C5—H5119.3
C1—C2—C3121.3 (3)C5—C6—H6119.8
C15—N3—C12128.8 (3)C7—C6—H6119.8
C8—C3—C4119.2 (3)C6—C7—H7120.3
C8—C3—C2118.2 (3)C8—C7—H7120.3
C4—C3—C2122.4 (3)C3—C8—H8119.7
C5—C4—C3119.1 (4)C7—C8—H8119.7
C6—C5—C4121.3 (4)C9—C10—H10120.1
C5—C6—C7120.4 (4)C11—C10—H10120.1
C6—C7—C8119.4 (4)C10—C11—H11119.9
C3—C8—C7120.6 (4)C12—C11—H11119.9
C10—C9—C14120.1 (4)C14—C13—H13119.6
C10—C9—S120.5 (3)C12—C13—H13119.6
C14—C9—S119.3 (3)C13—C14—H14120.0
C9—C10—C11119.7 (4)C9—C14—H14120.0
C10—C11—C12120.2 (4)C15—C16—H161109.5
C13—C12—C11119.0 (4)C15—C16—H162109.5
C13—C12—N3117.0 (3)H161—C16—H162109.5
C11—C12—N3124.0 (4)C15—C16—H163109.5
C14—C13—C12120.7 (3)H161—C16—H163109.5
C13—C14—C9120.0 (4)H162—C16—H163109.5
O4—C15—N3123.7 (4)C19—C18—H18120.6
O4—C15—C16121.6 (4)C17—C18—H18120.6
N3—C15—C16114.7 (4)C20—C19—H19119.8
C22—C17—C18120.0 (3)C18—C19—H19119.8
C22—C17—N2118.7 (3)C20—C21—H21120.3
C18—C17—N2121.3 (3)C22—C21—H21120.3
C19—C18—C17118.7 (3)C17—C22—H22119.8
C20—C19—C18120.4 (4)C21—C22—H22119.8
S—C1—C2—O37.4 (5)N1—C1—C2—C35.9 (5)
S—C1—N1—N23.1 (6)N2—N1—C1—C2177.1 (3)
O1—S—C1—C259.5 (3)C1—N1—N2—C17176.3 (4)
O1—S—C1—N1120.2 (3)C9—S—C1—N1122.4 (3)
O2—S—C1—C2172.8 (3)C9—S—C1—C257.9 (3)
O2—S—C1—N17.5 (4)C12—N3—C15—O43.4 (7)
S—C1—C2—C3173.9 (3)C12—N3—C15—C16176.5 (4)
N1—C1—C2—O3172.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.83 (4)2.01 (4)2.647 (4)132 (3)
N3—H3···O3i0.86 (4)2.10 (4)2.959 (4)178 (4)
C11—H11···O40.822.352.873 (6)123
C21—H21···O4ii0.982.543.254 (5)130
C14—H14···O4iii0.882.393.107 (5)139
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z.
(II) 4'-{[benzoyl(4-methoxyphenylhydrazono)methyl]sulfonyl}acetanilide top
Crystal data top
C23H21N3O5SF(000) = 944
Mr = 451.49Dx = 1.380 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.4897 (12) ÅCell parameters from 48 reflections
b = 7.4158 (9) Åθ = 4.5–10.2°
c = 25.507 (3) ŵ = 0.19 mm1
β = 91.53 (3)°T = 293 K
V = 2172.5 (4) Å3Plate, yellow
Z = 40.55 × 0.35 × 0.15 mm
Data collection top
Siemens P3
diffractometer
Rint = 0.052
Radiation source: fine-focus sealed tubeθmax = 25°, θmin = 1.9°
Graphite monochromatorh = 113
ω/2θ scansk = 18
5473 measured reflectionsl = 3030
3823 independent reflections3 standard reflections every 97 reflections
2647 reflections with I > 2σ(I) intensity decay: 18%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2858P]
where P = (Fo2 + 2Fc2)/3
3823 reflections(Δ/σ)max = 0.002
317 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C23H21N3O5SV = 2172.5 (4) Å3
Mr = 451.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.4897 (12) ŵ = 0.19 mm1
b = 7.4158 (9) ÅT = 293 K
c = 25.507 (3) Å0.55 × 0.35 × 0.15 mm
β = 91.53 (3)°
Data collection top
Siemens P3
diffractometer
Rint = 0.052
5473 measured reflections3 standard reflections every 97 reflections
3823 independent reflections intensity decay: 18%
2647 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
3823 reflectionsΔρmin = 0.34 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.61621 (5)0.59505 (10)0.17476 (2)0.0521 (2)
O10.60399 (17)0.7844 (3)0.16310 (7)0.0666 (6)
O20.70669 (15)0.5408 (3)0.21149 (7)0.0706 (6)
O30.38431 (15)0.5667 (3)0.12279 (6)0.0559 (5)
O40.6503 (2)0.0913 (3)0.00458 (8)0.0757 (6)
O50.46487 (18)0.2345 (3)0.48744 (7)0.0756 (6)
N10.47501 (15)0.4549 (3)0.25010 (7)0.0398 (5)
N20.55876 (17)0.4410 (3)0.28465 (7)0.0453 (5)
H20.630 (3)0.465 (4)0.2764 (11)0.070 (9)*
N30.63852 (18)0.2040 (3)0.02660 (8)0.0483 (5)
H30.628 (2)0.276 (4)0.0542 (11)0.053 (7)*
C10.48435 (19)0.5148 (3)0.20211 (9)0.0429 (6)
C20.37866 (19)0.5247 (3)0.16923 (8)0.0411 (5)
C30.26206 (19)0.4801 (3)0.19102 (8)0.0392 (5)
C40.2266 (2)0.5384 (3)0.23990 (9)0.0440 (6)
H40.2798 (15)0.5993 (18)0.2628 (7)0.057 (3)*
C50.1139 (2)0.5073 (4)0.25510 (10)0.0524 (7)
H50.0898 (7)0.5480 (13)0.2885 (10)0.057 (3)*
C60.0364 (2)0.4183 (4)0.22238 (11)0.0578 (7)
H60.040 (2)0.3982 (7)0.2329 (3)0.057 (3)*
C70.0705 (2)0.3588 (4)0.17432 (11)0.0555 (7)
H70.0185 (15)0.2965 (19)0.1526 (6)0.057 (3)*
C80.1824 (2)0.3916 (3)0.15829 (9)0.0473 (6)
H80.2044 (7)0.3543 (12)0.1255 (10)0.057 (3)*
C90.6335 (2)0.4780 (4)0.11585 (9)0.0472 (6)
C100.6465 (2)0.2921 (4)0.11625 (11)0.0591 (7)
H100.6528 (3)0.229 (2)0.1488 (10)0.063 (4)*
C110.6503 (2)0.1982 (4)0.06995 (10)0.0584 (7)
H110.6575 (3)0.079 (4)0.07039 (10)0.063 (4)*
C120.64300 (19)0.2895 (3)0.02237 (9)0.0441 (6)
C130.6359 (2)0.4766 (3)0.02270 (10)0.0468 (6)
H130.6355 (2)0.538 (2)0.0084 (10)0.063 (4)*
C140.6293 (2)0.5702 (4)0.06881 (10)0.0493 (6)
H140.6218 (3)0.698 (4)0.06842 (10)0.063 (4)*
C150.6394 (2)0.0249 (4)0.03769 (11)0.0525 (6)
C160.6277 (3)0.0188 (4)0.09492 (11)0.0659 (8)
H1610.5726 (11)0.0659 (16)0.1120 (4)0.119 (8)*
H1620.5986 (6)0.143 (2)0.09927 (15)0.119 (8)*
H1630.7044 (15)0.0080 (5)0.1111 (3)0.119 (8)*
C170.53525 (18)0.3858 (3)0.33639 (8)0.0391 (5)
C180.4251 (2)0.3332 (3)0.35020 (9)0.0458 (6)
H180.3646 (17)0.3325 (4)0.3256 (7)0.057 (4)*
C190.4068 (2)0.2820 (4)0.40092 (9)0.0487 (6)
H190.334 (2)0.2445 (11)0.4101 (3)0.057 (4)*
C200.4951 (2)0.2857 (4)0.43840 (9)0.0499 (6)
C210.6048 (2)0.3385 (4)0.42436 (10)0.0608 (7)
H210.6663 (17)0.3415 (4)0.4496 (7)0.057 (4)*
C220.6241 (2)0.3872 (4)0.37291 (10)0.0545 (7)
H220.697 (2)0.4206 (11)0.3634 (3)0.057 (4)*
C230.5531 (3)0.2246 (6)0.52671 (12)0.0906 (12)
H2310.6058 (12)0.126 (2)0.5189 (2)0.118 (8)*
H2320.5183 (7)0.2033 (7)0.5605 (7)0.118 (8)*
H2330.5962 (10)0.337 (2)0.52788 (12)0.118 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0471 (3)0.0709 (5)0.0389 (3)0.0078 (3)0.0141 (2)0.0010 (3)
O10.0778 (13)0.0587 (12)0.0647 (13)0.0157 (10)0.0300 (10)0.0059 (10)
O20.0440 (9)0.1245 (18)0.0437 (10)0.0098 (11)0.0093 (8)0.0027 (11)
O30.0560 (10)0.0772 (13)0.0349 (9)0.0039 (9)0.0088 (7)0.0157 (9)
O40.1111 (17)0.0494 (12)0.0662 (14)0.0074 (11)0.0021 (12)0.0135 (10)
O50.0836 (13)0.1034 (17)0.0399 (11)0.0027 (12)0.0059 (9)0.0156 (11)
N10.0426 (10)0.0446 (11)0.0324 (10)0.0025 (9)0.0058 (8)0.0005 (8)
N20.0359 (10)0.0646 (14)0.0356 (11)0.0010 (10)0.0056 (8)0.0014 (10)
N30.0604 (13)0.0472 (13)0.0380 (12)0.0092 (10)0.0134 (9)0.0086 (10)
C10.0424 (12)0.0493 (14)0.0377 (13)0.0014 (11)0.0098 (9)0.0022 (11)
C20.0468 (13)0.0447 (13)0.0322 (13)0.0059 (11)0.0091 (9)0.0035 (10)
C30.0431 (12)0.0424 (13)0.0324 (11)0.0041 (10)0.0035 (9)0.0067 (10)
C40.0477 (13)0.0496 (14)0.0349 (13)0.0037 (11)0.0052 (10)0.0010 (11)
C50.0552 (15)0.0646 (17)0.0380 (13)0.0071 (13)0.0139 (11)0.0041 (12)
C60.0460 (13)0.0717 (19)0.0562 (16)0.0042 (13)0.0101 (12)0.0156 (14)
C70.0536 (14)0.0634 (18)0.0494 (15)0.0138 (13)0.0032 (12)0.0047 (13)
C80.0545 (14)0.0529 (15)0.0345 (12)0.0012 (12)0.0009 (10)0.0016 (11)
C90.0439 (13)0.0628 (17)0.0353 (13)0.0029 (12)0.0112 (10)0.0051 (12)
C100.0743 (18)0.0642 (19)0.0392 (15)0.0167 (15)0.0115 (12)0.0152 (13)
C110.0817 (19)0.0529 (16)0.0414 (15)0.0229 (14)0.0138 (12)0.0103 (12)
C120.0414 (12)0.0525 (15)0.0390 (13)0.0089 (11)0.0125 (9)0.0086 (11)
C130.0532 (14)0.0519 (15)0.0358 (13)0.0028 (12)0.0136 (10)0.0132 (11)
C140.0542 (14)0.0511 (15)0.0433 (14)0.0021 (12)0.0140 (11)0.0082 (12)
C150.0511 (14)0.0547 (17)0.0521 (16)0.0044 (12)0.0092 (11)0.0066 (13)
C160.0777 (19)0.0611 (18)0.0594 (18)0.0011 (15)0.0101 (14)0.0057 (14)
C170.0394 (11)0.0439 (13)0.0342 (11)0.0024 (10)0.0032 (9)0.0018 (10)
C180.0420 (12)0.0596 (16)0.0357 (12)0.0046 (11)0.0005 (10)0.0009 (11)
C190.0449 (13)0.0588 (16)0.0429 (14)0.0067 (12)0.0079 (10)0.0019 (12)
C200.0592 (14)0.0567 (16)0.0340 (12)0.0042 (13)0.0038 (10)0.0049 (12)
C210.0508 (14)0.087 (2)0.0437 (15)0.0048 (14)0.0103 (11)0.0039 (15)
C220.0357 (12)0.082 (2)0.0463 (14)0.0014 (13)0.0021 (10)0.0043 (14)
C230.114 (3)0.116 (3)0.0415 (16)0.003 (2)0.0097 (17)0.0160 (18)
Geometric parameters (Å, º) top
S—O11.441 (2)N3—C121.401 (3)
S—O21.438 (2)N3—C151.358 (3)
S—C11.787 (2)O4—C151.211 (3)
S—C91.751 (3)C15—C161.498 (4)
O3—C21.228 (3)O5—C201.361 (3)
N1—N21.291 (3)O5—C231.408 (4)
N1—C11.309 (3)N2—H20.86 (3)
N2—C171.415 (3)N3—H30.89 (3)
C1—C21.459 (3)C4—H40.95
C2—C31.501 (3)C5—H50.95
C3—C81.387 (3)C6—H60.94
C3—C41.391 (3)C7—H70.93
C4—C51.381 (3)C8—H80.92
C5—C61.373 (4)C10—H100.95
C6—C71.370 (4)C11—H110.89
C7—C81.382 (4)C13—H130.92
C9—C101.386 (4)C14—H140.95
C9—C141.381 (3)C16—H1610.99
C10—C111.373 (4)C16—H1620.99
C11—C121.390 (3)C16—H1630.99
C12—C131.390 (3)C18—H180.92
C13—C141.370 (3)C19—H190.92
C17—C221.363 (3)C21—H210.94
C17—C181.378 (3)C22—H220.91
C18—C191.370 (3)C23—H2310.97
C19—C201.376 (3)C23—H2320.97
C20—C211.376 (4)C23—H2330.97
C21—C221.385 (4)
S···O32.952 (2)O1···N24.056 (3)
S···N23.114 (2)O2···N22.663 (3)
O1···C23.234 (3)N2···C23.607 (3)
O2···C23.894 (3)
O1—S—O2118.15 (13)C20—C21—C22119.5 (2)
O1—S—C1109.04 (11)C17—C22—C21120.7 (2)
O1—S—C9108.56 (12)N1—N2—H2120.4 (19)
O2—S—C1104.97 (11)C17—N2—H2119.5 (19)
O2—S—C9108.87 (12)C15—N3—H3115.3 (17)
C1—S—C9106.67 (12)C12—N3—H3115.6 (17)
N2—N1—C1125.93 (19)C5—C4—H4120.0
N1—N2—C17120.15 (18)C3—C4—H4120.0
N1—C1—C2117.82 (19)C6—C5—H5119.8
S—C1—N1124.71 (17)C4—C5—H5119.8
S—C1—C2117.40 (16)C7—C6—H6119.9
O3—C2—C1120.2 (2)C5—C6—H6119.9
O3—C2—C3118.9 (2)C6—C7—H7120.0
C1—C2—C3120.89 (19)C8—C7—H7120.0
C15—N3—C12128.9 (2)C7—C8—H8119.7
C20—O5—C23118.1 (2)C3—C8—H8119.7
C8—C3—C4118.9 (2)C11—C10—H10119.9
C8—C3—C2117.5 (2)C9—C10—H10119.9
C4—C3—C2123.3 (2)C10—C11—H11120.0
C5—C4—C3119.9 (2)C12—C11—H11120.0
C6—C5—C4120.5 (2)C14—C13—H13119.5
C7—C6—C5120.2 (2)C12—C13—H13119.5
C7—C8—C3120.6 (2)C13—C14—H14120.2
C6—C7—C8119.9 (3)C9—C14—H14120.2
C14—C9—C10120.0 (3)C15—C16—H161109.5
C14—C9—S119.9 (2)C15—C16—H162109.5
C10—C9—S120.1 (2)H161—C16—H162109.5
C11—C10—C9120.3 (3)C15—C16—H163109.5
C10—C11—C12120.1 (3)H161—C16—H163109.5
C13—C12—C11118.9 (2)H162—C16—H163109.5
C13—C12—N3117.2 (2)C19—C18—H18120.5
C11—C12—N3123.9 (2)C17—C18—H18120.5
C14—C13—C12121.1 (2)C18—C19—H19119.3
C13—C14—C9119.6 (2)C20—C19—H19119.3
O4—C15—N3123.5 (3)C20—C21—H21120.3
O4—C15—C16122.0 (3)C22—C21—H21120.3
N3—C15—C16114.5 (2)C17—C22—H22119.7
C22—C17—C18120.2 (2)C21—C22—H22119.7
C22—C17—N2118.5 (2)O5—C23—H231109.5
C18—C17—N2121.3 (2)O5—C23—H232109.5
C19—C18—C17119.0 (2)H231—C23—H232109.5
C18—C19—C20121.4 (2)O5—C23—H233109.5
O5—C20—C19115.5 (2)H231—C23—H233109.5
O5—C20—C21125.2 (2)H232—C23—H233109.5
C19—C20—C21119.2 (2)
S—C1—C2—O38.4 (3)N2—N1—C1—C2178.4 (2)
S—C1—N1—N21.4 (4)C1—N1—N2—C17175.6 (2)
O1—S—C1—C262.1 (2)C9—S—C1—N1128.0 (2)
O1—S—C1—N1114.9 (2)C9—S—C1—C255.0 (2)
O2—S—C1—C2170.4 (2)C12—N3—C15—O43.9 (4)
O2—S—C1—N112.6 (3)C12—N3—C15—C16177.2 (2)
S—C1—C2—C3173.0 (2)C23—O5—C20—C213.7 (4)
N1—C1—C2—O3174.4 (2)C23—O5—C20—C19176.1 (3)
N1—C1—C2—C34.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.86 (3)1.98 (3)2.663 (3)135 (2)
N3—H3···O3i0.89 (3)2.10 (3)2.991 (3)174 (2)
C11—H11···O40.892.292.867 (4)122
C21—H21···O4ii0.942.553.474 (4)167
C14—H14···O4iii0.952.463.144 (3)129
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H18ClN3O4SC23H21N3O5S
Mr455.90451.49
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)11.603 (4), 7.596 (1), 24.110 (4)11.4897 (12), 7.4158 (9), 25.507 (3)
β (°) 96.44 (2) 91.53 (3)
V3)2111.6 (9)2172.5 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.320.19
Crystal size (mm)0.50 × 0.45 × 0.300.55 × 0.35 × 0.15
Data collection
DiffractometerKuma KM-4
diffractometer
Siemens P3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4434, 3719, 2531 5473, 3823, 2647
Rint0.0360.052
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.06 0.042, 0.127, 1.03
No. of reflections37193823
No. of parameters306317
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.300.22, 0.34

Computer programs: KM-4 Software (Kuma Diffraction, 1991), P3 (Siemens, 1989), KM-4 Software, P3, DATAPROC (Gałdecki et al., 1995), XDISK (Siemens, 1991), SHELXS97 (Sheldrick, 1997), SHELXL97, InsightII (Molecular Simulations, 1997) and XP (Siemens, 1990).

Selected geometric parameters (Å, º) for (I) top
S—O11.431 (3)N2—C171.408 (4)
S—O21.451 (3)C1—C21.467 (5)
S—C11.792 (3)C2—C31.502 (5)
S—C91.746 (4)N3—C121.400 (5)
O3—C21.231 (4)N3—C151.352 (5)
N1—N21.289 (4)O4—C151.212 (5)
N1—C11.306 (4)Cl—C201.742 (3)
S···O32.954 (3)O1···C23.222 (5)
S···N23.115 (3)O2···C23.918 (5)
O1—S—O2118.2 (2)N1—C1—C2117.6 (3)
O1—S—C1109.28 (18)S—C1—N1125.0 (3)
O1—S—C9109.02 (17)S—C1—C2117.4 (2)
O2—S—C1104.82 (16)O3—C2—C1119.7 (3)
O2—S—C9108.63 (18)O3—C2—C3119.0 (3)
C1—S—C9106.19 (17)C1—C2—C3121.3 (3)
N2—N1—C1125.7 (3)C15—N3—C12128.8 (3)
N1—N2—C17120.1 (3)
S—C1—C2—O37.4 (5)O1—S—C1—N1120.2 (3)
S—C1—N1—N23.1 (6)O2—S—C1—C2172.8 (3)
O1—S—C1—C259.5 (3)O2—S—C1—N17.5 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.83 (4)2.01 (4)2.647 (4)132 (3)
N3—H3···O3i0.86 (4)2.10 (4)2.959 (4)178 (4)
C11—H11···O40.822.352.873 (6)123
C21—H21···O4ii0.982.543.254 (5)130
C14—H14···O4iii0.882.393.107 (5)139
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z.
Selected geometric parameters (Å, º) for (II) top
S—O11.441 (2)C1—C21.459 (3)
S—O21.438 (2)C2—C31.501 (3)
S—C11.787 (2)N3—C121.401 (3)
S—C91.751 (3)N3—C151.358 (3)
O3—C21.228 (3)O4—C151.211 (3)
N1—N21.291 (3)O5—C201.361 (3)
N1—C11.309 (3)O5—C231.408 (4)
N2—C171.415 (3)
S···O32.952 (2)O1···C23.234 (3)
S···N23.114 (2)O2···C23.894 (3)
O1—S—O2118.15 (13)N1—C1—C2117.82 (19)
O1—S—C1109.04 (11)S—C1—N1124.71 (17)
O1—S—C9108.56 (12)S—C1—C2117.40 (16)
O2—S—C1104.97 (11)O3—C2—C1120.2 (2)
O2—S—C9108.87 (12)O3—C2—C3118.9 (2)
C1—S—C9106.67 (12)C1—C2—C3120.89 (19)
N2—N1—C1125.93 (19)C15—N3—C12128.9 (2)
N1—N2—C17120.15 (18)C20—O5—C23118.1 (2)
S—C1—C2—O38.4 (3)O1—S—C1—N1114.9 (2)
S—C1—N1—N21.4 (4)O2—S—C1—C2170.4 (2)
O1—S—C1—C262.1 (2)O2—S—C1—N112.6 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.86 (3)1.98 (3)2.663 (3)135 (2)
N3—H3···O3i0.89 (3)2.10 (3)2.991 (3)174 (2)
C11—H11···O40.892.292.867 (4)122
C21—H21···O4ii0.942.553.474 (4)167
C14—H14···O4iii0.952.463.144 (3)129
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds