Download citation
Download citation
link to html
The title compounds, N-[5-(4-chloro­phenyl)­furan-2-yl­methyl]-4-methyl-N-(prop-2-ynyl)­benzene­sulfon­amide, (Ia), and N-[5-(2-chloro­phenyl)­furan-2-yl­methyl]-4-methyl-N-(prop-2-ynyl)­benzene­sulfon­amide, (Ib), both C21H18ClNO3S, have isomorphous crystal structures. The crystal packing is mainly determined by intermolecular C—H...O and C—H...π interactions. These interactions are very similar in (Ia) and (Ib). Additional intermolecular C—H...Cl interactions appear less important and are different in (Ia) and (Ib). The different positions of the Cl atoms result in small variations of the crystal packing of the two compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101009465/jz1466sup1.cif
Contains datablocks default1, (Ia), (Ib)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009465/jz1466Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009465/jz1466Ibsup3.hkl
Contains datablock Ib

CCDC references: 173374; 173375

Comment top

The title compounds, (Ia) and (Ib), respectively, were prepared as test substrates for the gold-catalysed conversion of furans bearing terminal alkyne groups to highly substituted biaryl compounds (for background material see Hashmi et al., 2000). \sch

Compounds (Ia) and (Ib) have isomorphous crystal structures despite the different positions of the Cl substituents. The conformations of molecules (Ia) and (Ib) are very similar, differences of about 2° are found for the torsion angles about the N—C11 and C6—C7 bonds, while a difference of about 5° is found for the torsion angle about the C10—C11 bond. There is a short intramolecular contact distance of 2.65 Å between Cl and H8 in (Ib). This distance is considerably shorter than the H···Cl distances of about 2.85 to 3.15 Å generally observed for intermolecular C—H···Cl contacts. The widening of the C5—C6—C7 and C6—C7—C8 angles in (Ib) by amounts of 5 and 3°, respectively, compared to (Ia) shows the H8···Cl contact to be probably repulsive. This repulsion is balanced by resonance between the π systems of the furan ring and the adjacent phenyl ring. Atom C6 deviates 0.047 (3) Å from the furan plane in (Ib) and only 0.015 (3) Å in (Ia). Nevertheless the angle between the plane of the furan ring and the plane of the phenyl group attached to C7 is very similar in both compounds: 13.51 (7)° in (Ia) and 13.91 (7)° in (Ib).

The N atom is considerably non-planar: the sum of the three valence angles about N is 347.4 (1)° in (Ia) and 347.7 (1)° in (Ib). The S atom shows a significant displacement from the plane of the phenyl ring to which it is attached: 0.134 (5) Å in (Ia) and 0.110 (4) Å in (Ib). This out-of-plane deformation may result from intermolecular interactions.

The crystal packing of both compounds shows two distinct features, which are represented in Figs. 2 and 3, respectively. The ethynyl group is involved in a short C—H···O interaction with an H14···O2 distance of 2.41 Å in (Ia) and 2.38 Å in (Ib) (Tables 1 and 2), resulting in hydrogen-bonded chains of molecules parallel to the x axis (Fig. 2). The ethynyl group also acts as an acceptor of a weak C—H···π contact. The C1—H1···πethynyl contact points more closely to the terminal atom C14 than to the center of the ethynyl group. Similar π interactions involving ethynyl groups have been summarized by Desiraju & Steiner (1999). The molecules are connected parallel to the y axis by various intermolecular interactions (Fig. 3): two Cphenyl—H···πphenyl interactions: C16—H16···Cg2iii and C20—H20···C5v (Cg2 represents the centroid of the phenyl ring C1–C6), a weak C—H···O interaction: C12—H12B···O1iii and C—H···Cl interactions. The latter are different in (Ia) and (Ib); a C17—H17···Cliii and a C19—H19···Clv interaction is observed in (Ia) whereas a C20—H20···Clv interaction is observed in (Ib).

Both compounds show a number of additional intermolecular C—H···Cl interactions. A C4—H4···Clii interaction is found in both compounds. Due to the different positions of the Cl atoms, however, the intermolecular C4···Clii vectors differ considerably in (Ia) and (Ib). Two further C—H···Cl interactions occur in (Ib): C19—H19···Clvi and C21—H21B···Clvi. Corresponding interactions are missing in (Ia). The isomorphism of (Ia) and (Ib) suggests that the crystal packing of (Ia) and (Ib) is determined by the intermolecular C—H···O and C—H···π interactions, rather than by the intermolecular C—H···Cl interactions. The minor importance of the latter interactions is in agreement with the observation by Aullón et al. (1998) that the Cl—C group is a very poor hydrogen-bond acceptor. The C—H···Cl contacts observed in (Ia) and (Ib) are rather long, with H···Cl distances between 2.97 and 3.13 Å. An inspection of 329 randomly selected chlorophenyl-containing structures from the CSD shows that the majority of intermolecular C—H···Cl contacts have H···Cl distances around 3.0 Å. With a few exceptions there are no intermolecular C—H···Cl contacts with H···Cl distances shorter than 2.8 Å. These contacts may be characterized as weak, electrostatic interactions rather than weak hydrogen bonds. The different positions of the Cl atoms in (Ia) and (Ib) result in small variations of the crystal packing, leading to significant differences in the lattice constants of (Ia) and (Ib). The largest difference is observed for the β values.

Experimental top

Synthesis of (Ia): 5-(4-chlorophenyl)furan-2-carbaldehyde (705 mg, 3.41 mmol), prop-2-ynylamine (188 mg, 3.41 mmol) and MgSO4 (800 mg, 6.56 mmol), were stirred in dichloromethane. After 24 h the solvent was removed in vacuo, the residue taken up in methanol and NaBH4 (70.3 mg, 1.86 mmol) added. After 16 h an aqueous workup and column chromatography on silica gel (hexane/ethyl acetate, 3:1) provided 351 mg (42%) of [5-(4-chlorophenyl)furan-2-ylmethyl]prop-2-ynylamine. The latter amine (300 mg, 1.22 mmol), p-toluenesulfonyl chloride (233 mg, 1.22 mmol), triethylamine (234 mg, 1.22 mmol) and 4-N,N-dimethylaminopyridine (7.5 mg, 61.4 µmol) in dichloromethane were stirred for 16 h. After aqueous workup and column chromatography on silica gel (hexane/ethyl acetate/dichloromethane, 20:1:1) 176 mg (36%) (Ia) were obtained as colourless crystals with a melting point of 415–417 K. Single crystals were obtained from a hexane/dichloromethane mixture at 277 K. Synthesis of (Ib): 5-(2-chlorophenyl)furan-2-carbaldehyde (1.00 g, 4.84 mmol), prop-2-ynylamine (265 mg, 4.84 mmol), MgSO4 (1.00 g, 83.1 mmol) and NaBH4 (91.6 mg, 2.42 mmol) were treated as described above for (Ia). Column chromatography on silica gel (hexane/ethyl acetate/dichloromethane, 5:1:1) provided [5-(2-chlorophenyl)furan-2-ylmethyl]prop-2-ynylamine (572 mg, 48%). From the latter amine (572 mg, 2.33 mmol), p-toluenesulfonyl chloride (533 mg, 2.80 mmol), triethylamine (290 mg, 2.87 mmol) and 4-N,N-dimethylaminopyridine (14.2 mg, 283 mmol) by the method described for (Ia) after column chromatography (hexane/ethyl acetate/dichloromethane, 20:1:1) 531 mg (57%) of (Ib) were obtained as colourless crystals with a melting point of 404–405 K. Single crystals were obtained from a hexane/dichloromethane mixture at 277 K.

Refinement top

The H atoms were taken from a difference Fourier synthesis. They were refined with fixed individual displacement parameters [U(H) = 1.2Ueq(C) and U(H) = 1.5Ueq(Cmethyl)] using a riding model with fixed distances: HC(methyl) = 0.98 Å, H—C(secondary) = 0.99 Å, HC(phenyl) = 0.95 Å and H—C(alkyne) = 0.95 Å. Torsion angles about the C—C bond of the methyl groups were refined.

Computing details top

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1996); software used to prepare material for publication: CIF in SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of (a) (Ia) and (b) (Ib). The displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small circles of arbitrary radii.
[Figure 2] Fig. 2. Molecules of (Ia) connected in the a direction to chains by C—H···O and C—H···π interactions. Similar chains occur in (Ib).
[Figure 3] Fig. 3. Molecules of (Ia) connected in the b direction by C—H···π, C—H···O and C—H···Cl interactions. Similar chains, but with different C—H···Cl interactions occur in (Ib).
(Ia) N-[5-(4-Chlorophenyl)furan-2-ylmethyl]-4-methyl-N-prop-2- ynylbenzenesulfonamide top
Crystal data top
C21H18ClNO3SZ = 2
Mr = 399.87F(000) = 416
Triclinic, P1Dx = 1.405 Mg m3
a = 7.5309 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5789 (14) ÅCell parameters from 139 reflections
c = 13.893 (2) Åθ = 3–23°
α = 80.234 (9)°µ = 0.33 mm1
β = 82.252 (14)°T = 140 K
γ = 73.959 (10)°Plate, colorless
V = 945.1 (3) Å30.50 × 0.24 × 0.08 mm
Data collection top
SIEMENS SMART CCD
diffractometer
5805 independent reflections
Radiation source: normal-focus sealed tube4256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 30.9°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1010
Tmin = 0.923, Tmax = 0.974k = 1313
19065 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047H atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.04P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5805 reflectionsΔρmax = 0.51 e Å3
246 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (13)
Crystal data top
C21H18ClNO3Sγ = 73.959 (10)°
Mr = 399.87V = 945.1 (3) Å3
Triclinic, P1Z = 2
a = 7.5309 (16) ÅMo Kα radiation
b = 9.5789 (14) ŵ = 0.33 mm1
c = 13.893 (2) ÅT = 140 K
α = 80.234 (9)°0.50 × 0.24 × 0.08 mm
β = 82.252 (14)°
Data collection top
SIEMENS SMART CCD
diffractometer
5805 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4256 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.974Rint = 0.037
19065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.107H atom parameters constrained
S = 1.03Δρmax = 0.51 e Å3
5805 reflectionsΔρmin = 0.40 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1.26308 (6)0.81634 (5)0.09648 (3)0.03122 (12)
S0.41927 (5)0.56063 (5)0.71345 (3)0.02126 (11)
O10.53892 (15)0.82692 (12)0.44086 (8)0.0195 (2)
O20.53879 (17)0.63523 (15)0.74386 (9)0.0314 (3)
O30.48167 (17)0.40663 (14)0.70762 (9)0.0293 (3)
N0.37457 (18)0.64124 (15)0.60098 (9)0.0186 (3)
C10.8842 (2)0.80993 (19)0.32764 (12)0.0236 (3)
H10.88320.77810.39630.028*
C21.0529 (2)0.78976 (19)0.26962 (12)0.0247 (4)
H21.16620.74360.29800.030*
C31.0526 (2)0.83802 (18)0.16996 (12)0.0216 (3)
C40.8884 (2)0.90250 (19)0.12682 (12)0.0240 (3)
H40.89050.93380.05810.029*
C50.7212 (2)0.92085 (18)0.18510 (12)0.0222 (3)
H50.60820.96430.15580.027*
C60.7168 (2)0.87615 (17)0.28648 (11)0.0186 (3)
C70.5393 (2)0.89978 (17)0.34629 (11)0.0190 (3)
C80.3657 (2)0.98183 (19)0.32933 (13)0.0259 (4)
H80.32871.04340.27040.031*
C90.2493 (2)0.95794 (19)0.41718 (13)0.0271 (4)
H90.11951.00000.42780.032*
C100.3591 (2)0.86414 (18)0.48223 (12)0.0205 (3)
C110.3233 (2)0.80345 (18)0.58662 (12)0.0213 (3)
H11A0.39560.83800.62770.026*
H11B0.19000.84010.60820.026*
C120.2690 (2)0.57503 (18)0.54707 (12)0.0208 (3)
H12A0.29400.60460.47580.025*
H12B0.31400.46690.56040.025*
C130.0666 (2)0.61795 (18)0.57363 (12)0.0224 (3)
C140.0937 (3)0.6524 (2)0.59811 (14)0.0309 (4)
H140.22290.68010.61780.037*
C150.2091 (2)0.59566 (18)0.78959 (11)0.0196 (3)
C160.1103 (2)0.49034 (19)0.81408 (13)0.0251 (4)
H160.15900.39610.79390.030*
C170.0608 (3)0.5242 (2)0.86845 (13)0.0290 (4)
H170.12780.45150.88610.035*
C180.1363 (2)0.6615 (2)0.89759 (12)0.0250 (4)
C190.0337 (3)0.7649 (2)0.87259 (13)0.0284 (4)
H190.08280.85930.89240.034*
C200.1387 (3)0.7334 (2)0.81937 (13)0.0274 (4)
H200.20770.80490.80350.033*
C210.3248 (3)0.6975 (2)0.95450 (14)0.0357 (5)
H21A0.42120.70980.91060.054*
H21B0.34290.78870.98200.054*
H21C0.33270.61751.00780.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0225 (2)0.0338 (2)0.0322 (2)0.00639 (18)0.00871 (17)0.00078 (18)
S0.01355 (19)0.0270 (2)0.02171 (19)0.00347 (15)0.00091 (14)0.00279 (15)
O10.0150 (5)0.0210 (6)0.0209 (5)0.0040 (4)0.0013 (4)0.0020 (4)
O20.0199 (6)0.0484 (8)0.0302 (7)0.0145 (6)0.0036 (5)0.0072 (6)
O30.0222 (6)0.0263 (7)0.0319 (7)0.0032 (5)0.0012 (5)0.0003 (5)
N0.0151 (6)0.0209 (7)0.0201 (6)0.0053 (5)0.0012 (5)0.0046 (5)
C10.0197 (8)0.0291 (9)0.0203 (7)0.0052 (7)0.0008 (6)0.0020 (6)
C20.0176 (8)0.0275 (9)0.0268 (8)0.0037 (7)0.0012 (7)0.0016 (7)
C30.0188 (8)0.0208 (8)0.0245 (8)0.0069 (6)0.0047 (6)0.0037 (6)
C40.0264 (9)0.0249 (9)0.0201 (8)0.0087 (7)0.0003 (7)0.0002 (6)
C50.0194 (8)0.0217 (8)0.0245 (8)0.0053 (6)0.0024 (6)0.0007 (6)
C60.0180 (8)0.0160 (7)0.0222 (7)0.0062 (6)0.0008 (6)0.0031 (6)
C70.0188 (8)0.0184 (8)0.0208 (7)0.0070 (6)0.0000 (6)0.0030 (6)
C80.0199 (8)0.0249 (9)0.0285 (9)0.0024 (7)0.0013 (7)0.0021 (7)
C90.0165 (8)0.0261 (9)0.0335 (9)0.0017 (7)0.0016 (7)0.0000 (7)
C100.0149 (7)0.0188 (8)0.0272 (8)0.0044 (6)0.0030 (6)0.0052 (6)
C110.0178 (8)0.0206 (8)0.0250 (8)0.0048 (6)0.0046 (6)0.0073 (6)
C120.0194 (8)0.0214 (8)0.0225 (8)0.0056 (6)0.0002 (6)0.0064 (6)
C130.0223 (8)0.0231 (8)0.0232 (8)0.0073 (7)0.0042 (6)0.0030 (6)
C140.0202 (9)0.0390 (11)0.0348 (10)0.0095 (8)0.0017 (7)0.0064 (8)
C150.0160 (8)0.0242 (8)0.0181 (7)0.0045 (6)0.0012 (6)0.0031 (6)
C160.0259 (9)0.0197 (8)0.0283 (8)0.0062 (7)0.0041 (7)0.0042 (6)
C170.0286 (9)0.0290 (10)0.0316 (9)0.0146 (8)0.0067 (7)0.0057 (7)
C180.0217 (8)0.0339 (10)0.0186 (7)0.0061 (7)0.0007 (6)0.0054 (7)
C190.0308 (10)0.0261 (9)0.0282 (9)0.0069 (7)0.0059 (7)0.0108 (7)
C200.0310 (10)0.0278 (9)0.0275 (8)0.0145 (8)0.0054 (7)0.0099 (7)
C210.0247 (10)0.0516 (13)0.0308 (10)0.0102 (9)0.0073 (8)0.0132 (9)
Geometric parameters (Å, º) top
Cl—C31.7466 (17)C9—H90.9500
S—O31.4321 (13)C10—C111.486 (2)
S—O21.4352 (13)C11—H11A0.9900
S—N1.6553 (14)C11—H11B0.9900
S—C151.7640 (16)C12—C131.477 (2)
O1—C101.3726 (19)C12—H12A0.9900
O1—C71.3792 (18)C12—H12B0.9900
N—C111.479 (2)C13—C141.179 (2)
N—C121.482 (2)C14—H140.9500
C1—C21.393 (2)C15—C161.385 (2)
C1—C61.396 (2)C15—C201.390 (2)
C1—H10.9500C16—C171.388 (2)
C2—C31.383 (2)C16—H160.9500
C2—H20.9500C17—C181.386 (3)
C3—C41.386 (2)C17—H170.9500
C4—C51.387 (2)C18—C191.390 (3)
C4—H40.9500C18—C211.510 (2)
C5—C61.400 (2)C19—C201.387 (2)
C5—H50.9500C19—H190.9500
C6—C71.458 (2)C20—H200.9500
C7—C81.354 (2)C21—H21A0.9800
C8—C91.428 (2)C21—H21B0.9800
C8—H80.9500C21—H21C0.9800
C9—C101.350 (2)
O3—S—O2120.34 (8)O1—C10—C11117.06 (14)
O3—S—N105.87 (7)N—C11—C10111.58 (13)
O2—S—N105.35 (7)N—C11—H11A109.3
O3—S—C15108.96 (8)C10—C11—H11A109.3
O2—S—C15107.86 (8)N—C11—H11B109.3
N—S—C15107.85 (7)C10—C11—H11B109.3
C10—O1—C7106.64 (12)H11A—C11—H11B108.0
C11—N—C12114.77 (13)C13—C12—N113.53 (13)
C11—N—S115.84 (10)C13—C12—H12A108.9
C12—N—S116.88 (11)N—C12—H12A108.9
C2—C1—C6121.01 (15)C13—C12—H12B108.9
C2—C1—H1119.5N—C12—H12B108.9
C6—C1—H1119.5H12A—C12—H12B107.7
C3—C2—C1118.93 (16)C14—C13—C12177.67 (18)
C3—C2—H2120.5C13—C14—H14180.0
C1—C2—H2120.5C16—C15—C20120.58 (15)
C2—C3—C4121.36 (15)C16—C15—S120.26 (13)
C2—C3—Cl119.52 (13)C20—C15—S119.04 (13)
C4—C3—Cl119.12 (13)C15—C16—C17119.14 (16)
C3—C4—C5119.24 (15)C15—C16—H16120.4
C3—C4—H4120.4C17—C16—H16120.4
C5—C4—H4120.4C18—C17—C16121.60 (16)
C4—C5—C6120.83 (15)C18—C17—H17119.2
C4—C5—H5119.6C16—C17—H17119.2
C6—C5—H5119.6C17—C18—C19118.10 (16)
C1—C6—C5118.60 (15)C17—C18—C21120.82 (17)
C1—C6—C7121.73 (14)C19—C18—C21121.08 (17)
C5—C6—C7119.67 (15)C20—C19—C18121.48 (16)
C8—C7—O1109.76 (14)C20—C19—H19119.3
C8—C7—C6133.33 (15)C18—C19—H19119.3
O1—C7—C6116.91 (14)C19—C20—C15119.08 (16)
C7—C8—C9106.70 (15)C19—C20—H20120.5
C7—C8—H8126.6C15—C20—H20120.5
C9—C8—H8126.6C18—C21—H21A109.5
C10—C9—C8106.78 (15)C18—C21—H21B109.5
C10—C9—H9126.6H21A—C21—H21B109.5
C8—C9—H9126.6C18—C21—H21C109.5
C9—C10—O1110.11 (14)H21A—C21—H21C109.5
C9—C10—C11132.76 (15)H21B—C21—H21C109.5
O3—S—N—C11174.73 (11)C8—C9—C10—C11176.52 (17)
O2—S—N—C1146.23 (13)C7—O1—C10—C90.54 (18)
C15—S—N—C1168.75 (13)C7—O1—C10—C11177.66 (13)
O3—S—N—C1245.15 (13)C12—N—C11—C1061.85 (17)
O2—S—N—C12173.65 (11)S—N—C11—C10157.20 (11)
C15—S—N—C1271.36 (13)C9—C10—C11—N123.2 (2)
C6—C1—C2—C30.7 (3)O1—C10—C11—N60.47 (18)
C1—C2—C3—C41.5 (3)C11—N—C12—C1359.37 (18)
C1—C2—C3—Cl178.95 (13)S—N—C12—C1381.16 (16)
C2—C3—C4—C50.9 (3)O3—S—C15—C1614.78 (16)
Cl—C3—C4—C5179.53 (13)O2—S—C15—C16146.99 (14)
C3—C4—C5—C60.5 (3)N—S—C15—C1699.69 (15)
C2—C1—C6—C50.6 (2)O3—S—C15—C20169.26 (13)
C2—C1—C6—C7179.22 (15)O2—S—C15—C2037.05 (16)
C4—C5—C6—C11.2 (2)N—S—C15—C2076.27 (15)
C4—C5—C6—C7178.62 (15)C20—C15—C16—C170.3 (3)
C10—O1—C7—C80.89 (18)S—C15—C16—C17175.60 (14)
C10—O1—C7—C6179.41 (13)C15—C16—C17—C181.0 (3)
C1—C6—C7—C8166.11 (19)C16—C17—C18—C191.3 (3)
C5—C6—C7—C813.7 (3)C16—C17—C18—C21178.42 (17)
C1—C6—C7—O113.5 (2)C17—C18—C19—C200.5 (3)
C5—C6—C7—O1166.63 (14)C21—C18—C19—C20179.26 (17)
O1—C7—C8—C90.87 (19)C18—C19—C20—C150.7 (3)
C6—C7—C8—C9179.49 (17)C16—C15—C20—C191.1 (3)
C7—C8—C9—C100.5 (2)S—C15—C20—C19174.83 (14)
C8—C9—C10—O10.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.643.519 (2)153
C4—H4···Clii0.953.013.821 (2)144
C12—H12B···O1iii0.992.733.703 (2)169
C14—H14···O2iv0.952.413.227 (3)144
C17—H17···Cliii0.952.973.900 (2)165
C19—H19···Clv0.953.053.977 (2)166
C21—H21A···O2iv0.982.613.423 (2)140
C16—H16···Cg2iii0.952.603.457 (2)150
C20—H20···C5v0.952.863.733 (2)154
C1—H1···C14vi0.952.873.812 (2)174
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y+2, z+1; (vi) x+1, y, z.
(Ib) N-[5-(2-Chlorophenyl)furan-2-ylmethyl]-4-methyl-N-prop-2- ynylbenzenesulfonamide top
Crystal data top
C21H18ClNO3SZ = 2
Mr = 399.87F(000) = 416
Triclinic, P1Dx = 1.422 Mg m3
a = 7.6526 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.679 (2) ÅCell parameters from 160 reflections
c = 13.6308 (19) Åθ = 3–23°
α = 79.910 (13)°µ = 0.34 mm1
β = 75.152 (13)°T = 140 K
γ = 74.435 (12)°Plate, colorless
V = 934.0 (3) Å30.50 × 0.16 × 0.12 mm
Data collection top
SIEMENS SMART CCD
diffractometer
6133 independent reflections
Radiation source: normal-focus sealed tube4738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 31.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1110
Tmin = 0.921, Tmax = 0.960k = 1413
19124 measured reflectionsl = 1820
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041H atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.03P)2 + 0.52P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6133 reflectionsΔρmax = 0.36 e Å3
246 parametersΔρmin = 0.47 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (12)
Crystal data top
C21H18ClNO3Sγ = 74.435 (12)°
Mr = 399.87V = 934.0 (3) Å3
Triclinic, P1Z = 2
a = 7.6526 (13) ÅMo Kα radiation
b = 9.679 (2) ŵ = 0.34 mm1
c = 13.6308 (19) ÅT = 140 K
α = 79.910 (13)°0.50 × 0.16 × 0.12 mm
β = 75.152 (13)°
Data collection top
SIEMENS SMART CCD
diffractometer
6133 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4738 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.960Rint = 0.029
19124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.094H atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
6133 reflectionsΔρmin = 0.47 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.65820 (6)0.99972 (4)0.11706 (3)0.03172 (10)
S0.37642 (4)0.55893 (4)0.72833 (3)0.02020 (9)
O10.54390 (13)0.81985 (10)0.44958 (7)0.0193 (2)
O20.48538 (14)0.63515 (13)0.76035 (8)0.0296 (2)
O30.44409 (14)0.40722 (11)0.71881 (8)0.0275 (2)
N0.35159 (15)0.63846 (12)0.61347 (9)0.0189 (2)
C10.90423 (19)0.79566 (16)0.34722 (11)0.0232 (3)
H10.87160.76450.41810.028*
C21.0903 (2)0.76800 (18)0.29754 (12)0.0285 (3)
H21.18290.71800.33440.034*
C31.1414 (2)0.81313 (17)0.19423 (12)0.0283 (3)
H31.26900.79590.16040.034*
C41.0056 (2)0.88333 (15)0.14089 (11)0.0259 (3)
H41.03960.91310.06980.031*
C50.81893 (19)0.91053 (14)0.19106 (11)0.0205 (3)
C60.76272 (18)0.86853 (14)0.29554 (10)0.0181 (3)
C70.56929 (18)0.89571 (14)0.35321 (10)0.0178 (3)
C80.4037 (2)0.98215 (16)0.33891 (12)0.0256 (3)
H80.38191.04590.27950.031*
C90.2688 (2)0.95870 (17)0.43025 (12)0.0275 (3)
H90.13991.00410.44330.033*
C100.35837 (18)0.86026 (15)0.49440 (11)0.0206 (3)
C110.29922 (19)0.79840 (15)0.60215 (11)0.0218 (3)
H11A0.35800.83400.64640.026*
H11B0.16270.83160.62500.026*
C120.26103 (19)0.57047 (15)0.55732 (11)0.0208 (3)
H12A0.30000.59960.48320.025*
H12B0.30440.46430.56950.025*
C130.0566 (2)0.60995 (16)0.58748 (11)0.0231 (3)
C140.1072 (2)0.64134 (18)0.61597 (13)0.0307 (3)
H140.23860.66650.63880.037*
C150.15477 (18)0.58783 (14)0.81087 (10)0.0181 (3)
C160.05678 (19)0.48039 (15)0.83493 (11)0.0224 (3)
H160.11120.38910.81030.027*
C170.1221 (2)0.50822 (16)0.89562 (11)0.0243 (3)
H170.18870.43430.91320.029*
C180.20563 (19)0.64170 (15)0.93115 (10)0.0209 (3)
C190.1045 (2)0.74817 (16)0.90564 (12)0.0266 (3)
H190.15980.84010.92910.032*
C200.0753 (2)0.72198 (16)0.84652 (11)0.0252 (3)
H200.14360.79480.83050.030*
C210.4010 (2)0.67046 (17)0.99532 (12)0.0284 (3)
H21A0.48960.68680.95140.043*
H21B0.42400.75621.03010.043*
H21C0.41640.58711.04630.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0343 (2)0.0335 (2)0.01961 (17)0.00061 (15)0.00544 (14)0.00306 (14)
S0.01403 (15)0.02546 (17)0.01882 (16)0.00380 (12)0.00073 (12)0.00216 (12)
O10.0169 (4)0.0206 (5)0.0171 (4)0.0041 (3)0.0008 (3)0.0003 (4)
O20.0189 (5)0.0470 (7)0.0268 (6)0.0134 (5)0.0040 (4)0.0067 (5)
O30.0220 (5)0.0246 (5)0.0281 (6)0.0024 (4)0.0017 (4)0.0008 (4)
N0.0173 (5)0.0203 (5)0.0176 (5)0.0057 (4)0.0006 (4)0.0027 (4)
C10.0197 (6)0.0288 (7)0.0194 (6)0.0052 (5)0.0020 (5)0.0023 (5)
C20.0192 (7)0.0353 (8)0.0301 (8)0.0040 (6)0.0051 (6)0.0052 (6)
C30.0199 (7)0.0298 (8)0.0319 (8)0.0083 (6)0.0056 (6)0.0078 (6)
C40.0296 (7)0.0219 (7)0.0214 (7)0.0090 (6)0.0056 (6)0.0013 (5)
C50.0238 (6)0.0164 (6)0.0192 (6)0.0045 (5)0.0020 (5)0.0011 (5)
C60.0190 (6)0.0162 (6)0.0181 (6)0.0055 (5)0.0004 (5)0.0030 (5)
C70.0199 (6)0.0167 (6)0.0159 (6)0.0061 (5)0.0014 (5)0.0009 (5)
C80.0208 (7)0.0263 (7)0.0251 (7)0.0036 (5)0.0030 (5)0.0034 (6)
C90.0164 (6)0.0300 (7)0.0303 (8)0.0028 (5)0.0002 (6)0.0002 (6)
C100.0172 (6)0.0194 (6)0.0229 (7)0.0064 (5)0.0027 (5)0.0039 (5)
C110.0208 (6)0.0193 (6)0.0219 (7)0.0062 (5)0.0042 (5)0.0046 (5)
C120.0201 (6)0.0222 (6)0.0195 (6)0.0051 (5)0.0017 (5)0.0048 (5)
C130.0240 (7)0.0243 (7)0.0216 (7)0.0084 (5)0.0053 (5)0.0002 (5)
C140.0225 (7)0.0381 (9)0.0314 (8)0.0086 (6)0.0063 (6)0.0012 (7)
C150.0156 (6)0.0220 (6)0.0153 (6)0.0046 (5)0.0007 (5)0.0018 (5)
C160.0230 (7)0.0189 (6)0.0227 (7)0.0058 (5)0.0007 (5)0.0025 (5)
C170.0225 (7)0.0243 (7)0.0256 (7)0.0111 (5)0.0013 (5)0.0030 (5)
C180.0184 (6)0.0257 (7)0.0165 (6)0.0054 (5)0.0005 (5)0.0012 (5)
C190.0283 (7)0.0223 (7)0.0261 (7)0.0075 (6)0.0051 (6)0.0082 (6)
C200.0268 (7)0.0245 (7)0.0245 (7)0.0126 (6)0.0042 (6)0.0074 (6)
C210.0203 (7)0.0331 (8)0.0272 (8)0.0058 (6)0.0032 (6)0.0047 (6)
Geometric parameters (Å, º) top
Cl—C51.7425 (15)C9—H90.9500
S—O21.4351 (11)C10—C111.4890 (19)
S—O31.4372 (11)C11—H11A0.9900
S—N1.6528 (12)C11—H11B0.9900
S—C151.7603 (13)C12—C131.472 (2)
O1—C101.3723 (16)C12—H12A0.9900
O1—C71.3821 (16)C12—H12B0.9900
N—C121.4807 (18)C13—C141.184 (2)
N—C111.4819 (18)C14—H140.9500
C1—C21.386 (2)C15—C161.3871 (19)
C1—C61.405 (2)C15—C201.3921 (19)
C1—H10.9500C16—C171.3893 (19)
C2—C31.386 (2)C16—H160.9500
C2—H20.9500C17—C181.389 (2)
C3—C41.381 (2)C17—H170.9500
C3—H30.9500C18—C191.395 (2)
C4—C51.392 (2)C18—C211.5064 (19)
C4—H40.9500C19—C201.387 (2)
C5—C61.3984 (19)C19—H190.9500
C6—C71.4647 (18)C20—H200.9500
C7—C81.3581 (19)C21—H21A0.9800
C8—C91.427 (2)C21—H21B0.9800
C8—H80.9500C21—H21C0.9800
C9—C101.344 (2)
O2—S—O3120.06 (7)O1—C10—C11116.69 (12)
O2—S—N105.61 (7)N—C11—C10111.65 (11)
O3—S—N106.13 (6)N—C11—H11A109.3
O2—S—C15107.81 (7)C10—C11—H11A109.3
O3—S—C15108.87 (7)N—C11—H11B109.3
N—S—C15107.76 (6)C10—C11—H11B109.3
C10—O1—C7106.97 (10)H11A—C11—H11B108.0
C12—N—C11114.90 (11)C13—C12—N113.20 (11)
C12—N—S116.88 (9)C13—C12—H12A108.9
C11—N—S115.92 (9)N—C12—H12A108.9
C2—C1—C6121.79 (14)C13—C12—H12B108.9
C2—C1—H1119.1N—C12—H12B108.9
C6—C1—H1119.1H12A—C12—H12B107.8
C3—C2—C1120.15 (14)C14—C13—C12177.16 (16)
C3—C2—H2119.9C13—C14—H14180.0
C1—C2—H2119.9C16—C15—C20120.68 (12)
C4—C3—C2119.51 (13)C16—C15—S119.96 (10)
C4—C3—H3120.2C20—C15—S119.26 (10)
C2—C3—H3120.2C15—C16—C17119.06 (13)
C3—C4—C5120.11 (14)C15—C16—H16120.5
C3—C4—H4119.9C17—C16—H16120.5
C5—C4—H4119.9C18—C17—C16121.48 (13)
C4—C5—C6121.84 (13)C18—C17—H17119.3
C4—C5—Cl116.63 (11)C16—C17—H17119.3
C6—C5—Cl121.53 (11)C17—C18—C19118.39 (13)
C5—C6—C1116.57 (12)C17—C18—C21120.62 (13)
C5—C6—C7124.60 (12)C19—C18—C21120.99 (13)
C1—C6—C7118.82 (12)C20—C19—C18121.10 (13)
C8—C7—O1109.21 (11)C20—C19—H19119.5
C8—C7—C6136.62 (13)C18—C19—H19119.5
O1—C7—C6114.11 (11)C19—C20—C15119.28 (13)
C7—C8—C9106.76 (13)C19—C20—H20120.4
C7—C8—H8126.6C15—C20—H20120.4
C9—C8—H8126.6C18—C21—H21A109.5
C10—C9—C8107.10 (13)C18—C21—H21B109.5
C10—C9—H9126.4H21A—C21—H21B109.5
C8—C9—H9126.4C18—C21—H21C109.5
C9—C10—O1109.96 (12)H21A—C21—H21C109.5
C9—C10—C11133.18 (13)H21B—C21—H21C109.5
O2—S—N—C12173.49 (9)C8—C9—C10—O10.43 (18)
O3—S—N—C1245.01 (11)C8—C9—C10—C11175.35 (15)
C15—S—N—C1271.48 (11)C7—O1—C10—C90.60 (16)
O2—S—N—C1146.05 (11)C7—O1—C10—C11176.45 (12)
O3—S—N—C11174.53 (9)C12—N—C11—C1063.52 (15)
C15—S—N—C1168.98 (11)S—N—C11—C10155.24 (10)
C6—C1—C2—C30.4 (2)C9—C10—C11—N128.92 (18)
C1—C2—C3—C41.2 (2)O1—C10—C11—N56.42 (16)
C2—C3—C4—C51.0 (2)C11—N—C12—C1358.63 (15)
C3—C4—C5—C60.0 (2)S—N—C12—C1382.22 (13)
C3—C4—C5—Cl180.00 (12)O2—S—C15—C16147.00 (12)
C4—C5—C6—C10.8 (2)O3—S—C15—C1615.27 (14)
Cl—C5—C6—C1179.18 (11)N—S—C15—C1699.43 (12)
C4—C5—C6—C7179.02 (13)O2—S—C15—C2036.72 (14)
Cl—C5—C6—C70.99 (19)O3—S—C15—C20168.46 (12)
C2—C1—C6—C50.6 (2)N—S—C15—C2076.85 (13)
C2—C1—C6—C7179.20 (14)C20—C15—C16—C170.2 (2)
C10—O1—C7—C80.53 (15)S—C15—C16—C17176.46 (11)
C10—O1—C7—C6178.12 (11)C15—C16—C17—C181.1 (2)
C5—C6—C7—C815.8 (3)C16—C17—C18—C190.9 (2)
C1—C6—C7—C8164.06 (17)C16—C17—C18—C21178.91 (14)
C5—C6—C7—O1167.56 (12)C17—C18—C19—C200.2 (2)
C1—C6—C7—O112.62 (18)C21—C18—C19—C20179.97 (15)
O1—C7—C8—C90.28 (17)C18—C19—C20—C151.0 (2)
C6—C7—C8—C9177.07 (16)C16—C15—C20—C190.8 (2)
C7—C8—C9—C100.09 (18)S—C15—C20—C19175.46 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.743.479 (2)135
C4—H4···Clii0.953.133.974 (2)148
C12—H12B···O1iii0.992.713.679 (2)165
C14—H14···O2iv0.952.383.242 (2)150
C20—H20···Clv0.953.073.949 (2)154
C19—H19···Clvi0.953.053.865 (2)145
C21—H21A···O2iv0.982.803.620 (2)142
C21—H21B···Clvi0.983.084.016 (2)159
C16—H16···Cg2iii0.952.663.484 (2)145
C20—H20···C5v0.952.903.777 (2)154
C1—H1···C14vii0.952.783.694 (2)162
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y+2, z+1; (vi) x1, y, z+1; (vii) x+1, y, z.

Experimental details

(Ia)(Ib)
Crystal data
Chemical formulaC21H18ClNO3SC21H18ClNO3S
Mr399.87399.87
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)140140
a, b, c (Å)7.5309 (16), 9.5789 (14), 13.893 (2)7.6526 (13), 9.679 (2), 13.6308 (19)
α, β, γ (°)80.234 (9), 82.252 (14), 73.959 (10)79.910 (13), 75.152 (13), 74.435 (12)
V3)945.1 (3)934.0 (3)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.330.34
Crystal size (mm)0.50 × 0.24 × 0.080.50 × 0.16 × 0.12
Data collection
DiffractometerSIEMENS SMART CCD
diffractometer
SIEMENS SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Multi-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.923, 0.9740.921, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
19065, 5805, 4256 19124, 6133, 4738
Rint0.0370.029
(sin θ/λ)max1)0.7230.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.107, 1.03 0.041, 0.094, 1.04
No. of reflections58056133
No. of parameters246246
H-atom treatmentH atom parameters constrainedH atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.400.36, 0.47

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Sheldrick, 1996), CIF in SHELXL97.

Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.643.519 (2)153
C4—H4···Clii0.953.013.821 (2)144
C12—H12B···O1iii0.992.733.703 (2)169
C14—H14···O2iv0.952.413.227 (3)144
C17—H17···Cliii0.952.973.900 (2)165
C19—H19···Clv0.953.053.977 (2)166
C21—H21A···O2iv0.982.613.423 (2)140
C16—H16···Cg2iii0.952.603.457 (2)150
C20—H20···C5v0.952.863.733 (2)154
C1—H1···C14vi0.952.873.812 (2)174
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y+2, z+1; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.743.479 (2)135
C4—H4···Clii0.953.133.974 (2)148
C12—H12B···O1iii0.992.713.679 (2)165
C14—H14···O2iv0.952.383.242 (2)150
C20—H20···Clv0.953.073.949 (2)154
C19—H19···Clvi0.953.053.865 (2)145
C21—H21A···O2iv0.982.803.620 (2)142
C21—H21B···Clvi0.983.084.016 (2)159
C16—H16···Cg2iii0.952.663.484 (2)145
C20—H20···C5v0.952.903.777 (2)154
C1—H1···C14vii0.952.783.694 (2)162
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y+2, z+1; (vi) x1, y, z+1; (vii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds