Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Mn2(C11H13NO3)2(C7H5O2)2], is a centrosymmetric dinuclear manganese(III) complex in which the two Mn atoms are bridged by two alkoxo groups and supported by two carboxyl­ate groups, with an Mn...Mn distance of 2.8720 (15) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101005790/jz1457sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101005790/jz1457Isup2.hkl
Contains datablock I

CCDC reference: 166978

Comment top

Dinuclear manganese(III) complexes are of current interest because they can mimic the active sites of manganese-containing enzymes (Limburg et al., 1999). Recently, it has been postulated that photosystem-II has two oxo-bridged dimanganese dimers that are connected by two carboxylate groups (Tommos & Babcock, 1998; Hoganson & Babcock, 1997). In manganese catalase (Halm & Bender, 1988) and manganese peroxidase (Wariishi et al., 1988), the dimanganese sites are also found to be bridged by oxo groups. Because of the lack of suitable crystals, the detailed structural information of some enzymes is still limited. Therefore it is important to synthesize di- or polymeric manganese complexes. In this paper, we report a dimanganese(III) complex with an Mn···Mn distance of 2.8720 (15) Å. \sch

The title complex, (I), is a discrete dinuclear manganese compound (Fig. 1). The two Mn atoms are related by a crystallographic inversion center. The coordination geometry around each Mn atom is an elongated octahedron. The imino N, phenolic O and the two bridging alkoxo O atoms form the equatorial plane around the Mn atom. The in-plane distances for Mn—N1 [2.000 (3) Å], Mn—O3 [1.896 (2) Å], Mn—O4 [1.859 (2) Å] and Mn—O3i [1.939 (2) Å] are comparable to those in other MnIII complexes, e.g., [Mn(salpn)(EtOH)2] [H2salpn = N,N'-bis(salicylidene)-1,3-diaminopropane] [Mn—N 2.017 (2) Å and 2.028 (2) Å, Mn—O 1.874 (2) Å and 1.891 (2) Å] (Gohdes & Armstrong, 1992) and [Mn(salpa)(MeOH)Cl]2 (H2salpa = 3-salicylidene-amino-1-propanol) [Mn—N 1.995 (4) Å, Mn—O 1.853 (3) Å and Mn—O 1.926 (3) Å] (Larson et al., 1992). Two carboxylato O atoms coordinate to the Mn atom via the elongated axial direction with Mn—O1 and Mn—O2 bond distances of 2.262 (3) and 2.216 (3) Å. These bonds are considerably longer than those found in the equatorial plane, which could be due in part both to the Jahn-Teller distortion and to the different type of ligands and their mode of coordination. The Mn2O2 core is exactly planar by symmetry. The Mn···Mn distance of 2.8720 (15) Å is similar to those found in [Mn(salpa)(acetato)]2 (2.869 (1) Å) (Mikuriya et al., 1981) and [Mn(salpa)(benzoato)]2 (2.855 (2) Å) (Zhang, Zhou et al., 1999a), but somewhat shorter than those found in [Mn(salpa)(MeOH)Cl]2 [3.011 (1) Å] (Larson et al., 1992) and [Mn(salpa)(H2O)Cl]2 [3.001 (1) Å] (Zhang, Sun et al., 1999). This indicates that the effect of two bridging carboxylato groups instead of four individual axial monodentate ligands, such as chloride, water or methanol, on the Mn2O2 core is to lead to a marked decrease in the manganese-manganese separation. Consequently, the angle O3—Mn—O3i is expanded to 83.1 (1)°. This angle is similar to that found in [Mn(salpa)(acetato)]2 [83.66 (7)°] but larger than that in [Mn(salpa)(MeOH)Cl]2 [78.2 (1)°]. Concerning the intermolecular packing between the dimers there are no π-stacking interactions as might have been expected (Janiak, 2000). Some tilted C—H···π interactions exist between the benzoate ring and the aromatic moiety of the salicylidene ligand (Janiak et al., 2000). The shortest intermolecular ring-centroid···ring-centroid (Cg) contacts (with interplanar angle) are Cg1···Cg2ii 4.71 Å (54.7°) and Cg2···Cg1iii 4.59 Å (54.7°). Cg1 is the phenyl ring from C2 to C7, Cg2 is the salicyl ring from C12 to C17 [symmetry codes (ii) 1/2 - x, -1/2 + y, 1/2 - z; (iii) -1/2 + x, 1/2 - y, 1/2 + z). The shortest intermolecular aromatic C—H···ring-centroid contacts are C6—H6a···Cg2iv 2.90 Å and C16—H16A···Cg1v 3.27 Å [symmetry codes (iv) 1/2 + x, 1/2 - y, 1/2 + z; (v) 1/2 - x, 1/2 + y, 1/2 - z) [calculated with the program PLATON (Spek, 1998)].

Related literature top

For related literature, see: Gohdes & Armstrong (1992); Halm & Bender (1988); Hoganson & Babcock (1997); Janiak (2000); Janiak, Temizdemir, Dechert, Deck, Girgsdies, Heinze, Kolm, Scharmann & Zipffel (2000); Larson et al. (1992); Limburg et al. (1999); Mikuriya et al. (1981); Spek (1998); Tommos & Babcock (1998); Wariishi et al. (1988); Zhang, Sun, Kong & Zhao (1999); Zhang, Zhou, Meng, Xu & Xu (1999).

Experimental top

Compound (I) was synthesized by the reaction of the ligand H2vanpa with manganese benzoate in the molar ratio of 1:1 in ethanol. To an ethanolic solution (20 ml) of 3-methoxysalicylaldehyde (1.52 g, 10 mmol) was added 3-amino-1-propanol (0.75 g, 10 mmol) with stirring for 30 min at 323 K. The solution turned yellow. To this solution was added manganese benzoate dihydrate (3.0 g, 10 mmol). The colour turned green quickly. The resulting solution was then put aside for several days. Crystals were obtained by slow evaporation of the solvent at room temperature (yield: 3.1 g. 82%). Crystal analysis, IR (KBr pellet): 3050 (w), 3000 (w), 2900 (m), 2850 (w), 1615 (s), 1588 (s), 1545 (s), 1460 (s), 1440 (s), 1375 (s), 1375 (s), 1315 (s), 1250 (s), 1220 (s), 1165 (w), 1080 (s), 1060 (s), 950 (m), 870 (m), 735 (s), 670 (m), 630 (s), 610 (s), 485 (w).

Refinement top

H atoms were treated using appropriate riding models (AFIX = m3) (C—H 0.93 and 0.97 Å). U(H) = 1.2 U(C), except for the hydrogen atoms of the methyl group (C18) for which U(H) = 1.5 U(C).

Computing details top

Data collection: SMART (Bruker 1997); cell refinement: SMART; data reduction: SAINT (Bruker 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of compound (I) showing the labelling of the non-hydrogen atoms [symmetry code (i) 1 - x, -y, 1 - z]. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
bis(µ-benzoato-O:O')-bis(2-(6-methoxy)salicylideneamino -3-propanolato-N,O'',O''':O''')-dimanganese(III) top
Crystal data top
[Mn2(C11H13NO3)2(C7H5O2)2]Refining the unit cell using all collected reflections, the theta_max and theta_min must be the same as reflns_theta_min and reflns_theta_max.
Mr = 766.55Dx = 1.505 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.009 (3) ÅCell parameters from 2959 reflections
b = 9.333 (5) Åθ = 1.8–25.0°
c = 15.162 (5) ŵ = 0.81 mm1
β = 113.24 (2)°T = 293 K
V = 1691.5 (11) Å3Plate, brown
Z = 20.50 × 0.20 × 0.18 mm
F(000) = 792
Data collection top
Siemens smart CCD
diffractometer
2959 independent reflections
Radiation source: fine-focus sealed tube2088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Blessing, 1995)
h = 915
Tmin = 0.737, Tmax = 1.000k = 116
6242 measured reflectionsl = 1814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.980P]
where P = (Fo2 + 2Fc2)/3
2954 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Mn2(C11H13NO3)2(C7H5O2)2]V = 1691.5 (11) Å3
Mr = 766.55Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.009 (3) ŵ = 0.81 mm1
b = 9.333 (5) ÅT = 293 K
c = 15.162 (5) Å0.50 × 0.20 × 0.18 mm
β = 113.24 (2)°
Data collection top
Siemens smart CCD
diffractometer
2959 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Blessing, 1995)
2088 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 1.000Rint = 0.039
6242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
2954 reflectionsΔρmin = 0.34 e Å3
226 parameters
Special details top

Experimental. An empirical absorption correction on the basis of symmetry-equivalent reflections has been performed with the program SADABS.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.44908 (4)0.12977 (6)0.51402 (4)0.0360 (2)
O10.4827 (2)0.1992 (3)0.3849 (2)0.0482 (7)
O20.5678 (2)0.0046 (3)0.3682 (2)0.0477 (7)
O30.5945 (2)0.0496 (3)0.5553 (2)0.0398 (6)
O40.3024 (2)0.1960 (3)0.4637 (2)0.0445 (6)
O50.0855 (2)0.2270 (3)0.3731 (2)0.0491 (7)
N10.5061 (2)0.3110 (3)0.5875 (2)0.0391 (7)
C10.5352 (3)0.1240 (4)0.3475 (3)0.0422 (9)
C20.5630 (3)0.1921 (4)0.2696 (2)0.0418 (9)
C30.4988 (3)0.3066 (4)0.2173 (3)0.0513 (10)
H3A0.4399 (3)0.3408 (4)0.2314 (3)0.062*
C40.5217 (4)0.3694 (5)0.1449 (3)0.0644 (12)
H4A0.4770 (4)0.4438 (5)0.1091 (3)0.077*
C50.6108 (5)0.3218 (5)0.1259 (3)0.0708 (14)
H5A0.6278 (5)0.3658 (5)0.0783 (3)0.085*
C60.6749 (4)0.2092 (5)0.1770 (3)0.0644 (13)
H6A0.7349 (4)0.1774 (5)0.1637 (3)0.077*
C70.6505 (3)0.1428 (4)0.2484 (3)0.0497 (10)
H7A0.6931 (3)0.0653 (4)0.2818 (3)0.060*
C80.6949 (3)0.0808 (5)0.6332 (3)0.0667 (13)
H8A0.7494 (3)0.1149 (5)0.6091 (3)0.080*
H8B0.7240 (3)0.0062 (5)0.6693 (3)0.080*
C90.6800 (4)0.1910 (5)0.6982 (3)0.0617 (12)
H9A0.6343 (4)0.1506 (5)0.7294 (3)0.074*
H9B0.7526 (4)0.2132 (5)0.7478 (3)0.074*
C100.6273 (3)0.3264 (5)0.6495 (3)0.0596 (12)
H10A0.6663 (3)0.3595 (5)0.6104 (3)0.072*
H10B0.6361 (3)0.3989 (5)0.6978 (3)0.072*
C110.4435 (3)0.4191 (4)0.5822 (3)0.0445 (10)
H11A0.4795 (3)0.4996 (4)0.6168 (3)0.053*
C120.3251 (3)0.4322 (4)0.5301 (3)0.0404 (9)
C130.2602 (3)0.3199 (4)0.4736 (2)0.0374 (9)
C140.1435 (3)0.3414 (4)0.4256 (3)0.0405 (9)
C150.0955 (3)0.4683 (4)0.4344 (3)0.0519 (11)
H15A0.0187 (3)0.4812 (4)0.4025 (3)0.062*
C160.1609 (4)0.5775 (5)0.4908 (3)0.0622 (12)
H16A0.1275 (4)0.6632 (5)0.4965 (3)0.075*
C170.2731 (4)0.5607 (4)0.5377 (3)0.0562 (11)
H17A0.3159 (4)0.6349 (4)0.5754 (3)0.067*
C180.0315 (3)0.2451 (5)0.3192 (3)0.0608 (12)
H18A0.0625 (3)0.1578 (5)0.2857 (3)0.091*
H18B0.0434 (3)0.3212 (5)0.2736 (3)0.091*
H18C0.0674 (3)0.2684 (5)0.3618 (3)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0289 (3)0.0351 (3)0.0373 (3)0.0020 (3)0.0058 (2)0.0051 (3)
O10.057 (2)0.046 (2)0.047 (2)0.0071 (14)0.0257 (14)0.0003 (13)
O20.054 (2)0.043 (2)0.049 (2)0.0039 (13)0.0237 (13)0.0005 (13)
O30.0275 (14)0.0418 (15)0.0383 (14)0.0016 (11)0.0003 (11)0.0082 (12)
O40.0317 (14)0.0375 (15)0.054 (2)0.0067 (12)0.0054 (12)0.0080 (13)
O50.0316 (14)0.051 (2)0.053 (2)0.0071 (13)0.0046 (12)0.0007 (14)
N10.038 (2)0.038 (2)0.037 (2)0.0010 (15)0.0107 (14)0.0047 (14)
C10.042 (2)0.043 (2)0.037 (2)0.001 (2)0.011 (2)0.003 (2)
C20.041 (2)0.047 (2)0.033 (2)0.010 (2)0.009 (2)0.011 (2)
C30.053 (3)0.048 (3)0.047 (2)0.002 (2)0.014 (2)0.005 (2)
C40.086 (4)0.048 (3)0.053 (3)0.010 (3)0.021 (3)0.001 (2)
C50.094 (4)0.070 (3)0.050 (3)0.025 (3)0.029 (3)0.001 (3)
C60.057 (3)0.084 (4)0.058 (3)0.019 (3)0.028 (2)0.018 (3)
C70.046 (2)0.056 (3)0.047 (2)0.004 (2)0.017 (2)0.006 (2)
C80.040 (2)0.067 (3)0.065 (3)0.004 (2)0.009 (2)0.028 (2)
C90.047 (3)0.067 (3)0.050 (3)0.004 (2)0.003 (2)0.017 (2)
C100.041 (2)0.053 (3)0.069 (3)0.010 (2)0.006 (2)0.019 (2)
C110.055 (3)0.034 (2)0.042 (2)0.005 (2)0.015 (2)0.008 (2)
C120.044 (2)0.036 (2)0.037 (2)0.004 (2)0.011 (2)0.002 (2)
C130.040 (2)0.039 (2)0.035 (2)0.009 (2)0.017 (2)0.006 (2)
C140.038 (2)0.043 (2)0.039 (2)0.006 (2)0.014 (2)0.004 (2)
C150.043 (2)0.055 (3)0.050 (3)0.016 (2)0.010 (2)0.005 (2)
C160.067 (3)0.046 (3)0.066 (3)0.029 (2)0.018 (3)0.002 (2)
C170.063 (3)0.038 (2)0.058 (3)0.010 (2)0.014 (2)0.006 (2)
C180.034 (2)0.075 (3)0.061 (3)0.002 (2)0.006 (2)0.001 (2)
Geometric parameters (Å, º) top
Mn—O41.859 (2)C1—C21.506 (5)
Mn—O31.896 (2)C2—C71.379 (5)
Mn—O3i1.939 (2)C2—C31.395 (5)
Mn—N12.000 (3)C3—C41.376 (5)
Mn—O2i2.216 (3)C4—C51.375 (6)
Mn—O12.262 (3)C5—C61.375 (6)
O1—C11.260 (4)C6—C71.388 (5)
O2—C11.270 (4)C8—C91.489 (5)
O2—Mni2.216 (3)C9—C101.488 (6)
O3—C81.403 (4)C11—C121.432 (5)
O3—Mni1.939 (2)C12—C171.404 (5)
O4—C131.314 (4)C12—C131.405 (5)
O5—C141.367 (4)C13—C141.416 (5)
O5—C181.425 (4)C14—C151.370 (5)
N1—C111.279 (4)C15—C161.385 (6)
N1—C101.490 (5)C16—C171.357 (6)
O4—Mn—O3174.46 (10)C11—N1—Mn123.0 (3)
O4—Mn—O3i91.80 (10)C10—N1—Mn120.0 (2)
O3—Mn—O3i83.00 (10)O1—C1—O2127.0 (3)
O4—Mn—N192.44 (11)O1—C1—C2117.3 (3)
O3—Mn—N192.72 (11)O2—C1—C2115.7 (3)
O3i—Mn—N1175.63 (11)C7—C2—C3119.2 (4)
O4—Mn—O2i95.42 (11)C7—C2—C1121.2 (4)
O3—Mn—O2i85.91 (10)C3—C2—C1119.6 (3)
O3i—Mn—O2i83.16 (10)C4—C3—C2120.7 (4)
N1—Mn—O2i97.47 (11)C3—C4—C5119.7 (4)
O4—Mn—O193.84 (11)C6—C5—C4120.2 (4)
O3—Mn—O183.72 (10)C5—C6—C7120.5 (4)
O3i—Mn—O183.85 (10)C2—C7—C6119.7 (4)
N1—Mn—O194.83 (11)O3—C8—C9112.3 (3)
O2i—Mn—O1164.26 (9)C10—C9—C8114.4 (4)
O4—Mn—Mni132.70 (8)C9—C10—N1113.4 (3)
O3—Mn—Mni42.07 (7)N1—C11—C12128.4 (3)
O3i—Mn—Mni40.93 (7)C17—C12—C13119.6 (4)
N1—Mn—Mni134.79 (9)C17—C12—C11118.4 (4)
O2i—Mn—Mni82.68 (7)C13—C12—C11122.0 (3)
O1—Mn—Mni81.68 (7)O4—C13—C12123.3 (3)
C1—O1—Mn123.7 (2)O4—C13—C14118.5 (3)
C1—O2—Mni124.6 (2)C12—C13—C14118.2 (3)
C8—O3—Mn132.3 (2)O5—C14—C15124.4 (4)
C8—O3—Mni127.7 (2)O5—C14—C13115.0 (3)
Mn—O3—Mni96.99 (10)C15—C14—C13120.6 (4)
C13—O4—Mn130.8 (2)C14—C15—C16120.3 (4)
C14—O5—C18117.4 (3)C17—C16—C15120.7 (4)
C11—N1—C10116.9 (3)C16—C17—C12120.6 (4)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C11H13NO3)2(C7H5O2)2]
Mr766.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.009 (3), 9.333 (5), 15.162 (5)
β (°) 113.24 (2)
V3)1691.5 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.50 × 0.20 × 0.18
Data collection
DiffractometerSiemens smart CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Blessing, 1995)
Tmin, Tmax0.737, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6242, 2959, 2088
Rint0.039
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.116, 1.06
No. of reflections2954
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: SMART (Bruker 1997), SMART, SAINT (Bruker 1997), SHELXTL (Sheldrick, 1998), SHELXTL, ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Mn—O41.859 (2)Mn—N12.000 (3)
Mn—O31.896 (2)Mn—O2i2.216 (3)
Mn—O3i1.939 (2)Mn—O12.262 (3)
O4—Mn—O3174.46 (10)O3—Mn—O183.72 (10)
O4—Mn—O3i91.80 (10)O3i—Mn—O183.85 (10)
O3—Mn—O3i83.00 (10)N1—Mn—O194.83 (11)
O4—Mn—N192.44 (11)O2i—Mn—O1164.26 (9)
O3—Mn—N192.72 (11)C1—O1—Mn123.7 (2)
O3i—Mn—N1175.63 (11)C1—O2—Mni124.6 (2)
O4—Mn—O2i95.42 (11)C8—O3—Mn132.3 (2)
O3—Mn—O2i85.91 (10)C8—O3—Mni127.7 (2)
O3i—Mn—O2i83.16 (10)C13—O4—Mn130.8 (2)
N1—Mn—O2i97.47 (11)C11—N1—Mn123.0 (3)
O4—Mn—O193.84 (11)C10—N1—Mn120.0 (2)
Symmetry code: (i) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds