Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound consists of [Re(C12H10PS2)(CO)4] mol­ecules in which the Re atom is octahedrally coordinated by four carbonyl groups and two di­thio­phosphinate S atoms. The main coordination distortion is imposed by the ligand bite angle of 78.29 (4)°. The bidentate coordination of the di­thio­phosphinate ligand involves almost equal Re-S [2.5366 (15) and 2.5535 (14) Å] and P-S distances [2.0100 (19) and 2.0212 (19) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101002190/jz1448sup1.cif
Contains datablocks I, EL2620

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002190/jz1448Isup2.hkl
Contains datablock I

CCDC reference: 164629

Comment top

The dithiophosphinato ligand is a very versatile chelating ligand in transition metal coordination chemistry. Consequently, a great number of metal and organometallic complexes are known (Haiduc et al., 1995). However, the corresponding derivatives of carbonyl complexes of group 7 are rather scarce. This is surprising because they have been used as suitable precursors in the synthesis of dinuclear (Thiele et al., 1974a, and references therein) or cis-disubstituted complexes (Lidner & Berke, 1972). Additionally, structural knowledge of the carbonyl complexes of group 7 can be applied in comparative studies of other dithioligand complexes with interesting properties such as luminiscence; see Leirer et al., 1998. As a part of the study of the coordinative behaviour of the [Re(CO)3]+ and [Re(CO)4]+ moieties we have synthesized [Re(S2PPh2)(CO)4] by a similar method to that of Lindner & Matejcek (1970).

The structure consists of isolated [Re(S2PPh2)(CO)4] molecules with no unusually short contacts. The dithiophosphinate ligand links to rhenium in an almost symmetrical bidentate mode. The Re—S distances are close to those found in the dimeric [Re2(µ-S2PEt2)2(CO)6] [2.535 (8)–2.570 (11) Å; Thiele et al., 1974a] but slightly longer than in dithiocarbamate analogues [Re{S2CN(H)Ph}(CO)3(PPh3)2] [2.512 (5) and 2.525 Å; Rossi et al., 1987], [Re{S2CN(H)Tiaz}(CO)2(PPh3)] (Tiaz = thiazol-2-yl; Rossi et al., 1988) and the dithiocarboxylate [Re(S2CPh)(CO)4] (2.49 Å; Thiele & Liehr, 1971) or the trithiocarbonate [Re4(CS3)2(CO)16] (2.487–2.514 Å, Thiele et al., 1974b). The Re—C distances corresponding to carbonyl groups trans to the sulfur atoms are systematically shorter. In agreement with the latter, the corresponding C—O distances are slightly increased. Similar effects have been observed in [Mn(S2PEt2)(CO)4] (Almond et al., 1995) and suggest some π-donor character of the dithiophosphinato ligand.

The P atom lies 0.532 (2) Å out of the plane defined by the rhenium and sulfur atoms and the two carbonyl groups trans to the dithiophosphinato ligand (Re/C3/O3/C4/O4/S1/S2, r.m.s. deviation = 0.017 Å). The chelation mode arranges a phenyl group almost parallel to the vector Re—C1—O1 (Fig. 1), whereby the shortest distances C1···C16 and C1···C11 [3.417 (10) and 3.497 (9) Å, respectively] are slightly longer than the double van der Waals radius (1.70 Å) of carbon (Spek, 2000). The resulting four-membered ring, ReS2P, is not planar; the angles are S1—Re—S2 78.29 (4), P—S1—Re 85.52 (6), P—S2—Re 84.85 (6) and S1—P—S2 105.71 (8)°, and the fold angle about the S1···S2 vector is 26.47 (6)°.

The coordination polyhedron around the rhenium atom can be described as a slightly distorted octahedron, the main distortion being imposed by the ligand bite [S1—Re—S2 78.29 (4)°]. The P—S distances are practically identical and consistent with the bidentate character of the ligand. They are also close to those found in [Mn(S2PEt2)(CO)4] [2.004 (4) and 2.008 (4) Å; Almod et al., 1995].

Related literature top

For related literature, see: Almond et al. (1995); Haiduc et al. (1995); Leirer et al. (1998); Lidner & Berke (1972); Rossi et al. (1987, 1988); Spek (2000); Thiele & Liehr (1971); Thiele et al. (1974a, 1974b).

Experimental top

The title compound was obtained by a similar method to that reported by Lindner & Matejcek (1970) using [ReBr(CO)5] and HS2PPh2 in toluene. Single crystals of the compound were obtained by storing the mother liquor at 269 K for some days. Analysis found: C 33.1, H 1.9, S 10.4%. C16H10O4PS2Re requires, C 33.2, H 1.7, S 11.0%. Mass spectrum (FAB-NBA; m/z, %): |M|+ 453 (31), |M—CO|+ 424 (100), |M-2CO|+ 396 (19), |M-3CO|+ 368 (17), |M-4CO|+ 340 (11). IR(Raman) spectrum (KBr, cm-1): 1925 s(1927 s), 1983m(1976 s), 2004m (1991m), 2102 s(2100 s) ν(CO); 571 s(-) νasym(PS2); 493 s(495 s) νsym(PS2). 13C NMR spectrum (CDCl3, p.p.m.): 184.4, 184.2 δ(CO). δ(31P) = 124.3 p.p.m..

Refinement top

H atoms were geometrically calculated and refined using a riding model. The largest difference peak (1.36 e Å3) lies 0.94 Å from the Re atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SHELXTL (Sheldrick, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. [Re(S2PPh2)(CO)4] as drawn by ZORTEP (Zsolnai & Huttner, 1994). Atoms represented as displacement ellipsoids are drawn at the 30% probability level.
Diphenyldithiophosphinato-tetracarbonylrhenium(I) top
Crystal data top
[Re(C12H10PS2)(CO)4]F(000) = 2080
Mr = 547.53Dx = 2.000 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 16.1160 (1) ŵ = 7.02 mm1
b = 12.8286 (2) ÅT = 293 K
c = 17.5930 (3) ÅPrism, light brown
V = 3637.28 (9) Å30.20 × 0.15 × 0.10 mm
Z = 8
Data collection top
CCD area detector
diffractometer
4518 independent reflections
Radiation source: fine-focus sealed tube3181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.271, Tmax = 0.551k = 1317
23344 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0438P)2]
where P = (Fo2 + 2Fc2)/3
4518 reflections(Δ/σ)max = 0.002
217 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 3.52 e Å3
Crystal data top
[Re(C12H10PS2)(CO)4]V = 3637.28 (9) Å3
Mr = 547.53Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.1160 (1) ŵ = 7.02 mm1
b = 12.8286 (2) ÅT = 293 K
c = 17.5930 (3) Å0.20 × 0.15 × 0.10 mm
Data collection top
CCD area detector
diffractometer
4518 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3181 reflections with I > 2σ(I)
Tmin = 0.271, Tmax = 0.551Rint = 0.085
23344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.98Δρmax = 1.36 e Å3
4518 reflectionsΔρmin = 3.52 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re0.311151 (13)0.025387 (16)0.661550 (12)0.03976 (9)
S10.34950 (10)0.03238 (10)0.52821 (9)0.0493 (3)
S20.32155 (9)0.19964 (10)0.59206 (8)0.0502 (3)
P0.31646 (8)0.11232 (10)0.49654 (7)0.0382 (3)
O10.1201 (3)0.0140 (5)0.6340 (4)0.0928 (17)
O20.5010 (3)0.0495 (4)0.6936 (4)0.0903 (16)
O30.3092 (2)0.1966 (3)0.7265 (3)0.0617 (12)
O40.2643 (4)0.1141 (4)0.8171 (3)0.0886 (17)
C10.1895 (4)0.0176 (5)0.6418 (5)0.0591 (17)
C20.4330 (5)0.0391 (4)0.6818 (4)0.0553 (15)
C30.3103 (3)0.1135 (5)0.7022 (3)0.0474 (13)
C40.2826 (4)0.0827 (5)0.7595 (4)0.0581 (15)
C110.2133 (3)0.1158 (4)0.4577 (3)0.0403 (11)
C120.1807 (3)0.2120 (5)0.4361 (4)0.0525 (14)
H120.21190.27240.44190.063*
C130.1022 (4)0.2166 (6)0.4063 (4)0.0648 (17)
H130.08050.28070.39180.078*
C140.0557 (4)0.1301 (7)0.3976 (4)0.075 (2)
H140.00270.13510.37720.090*
C150.0868 (4)0.0344 (6)0.4189 (5)0.080 (2)
H150.05450.02510.41300.097*
C160.1651 (4)0.0266 (5)0.4489 (4)0.0567 (15)
H160.18590.03810.46340.068*
C210.3829 (3)0.1644 (4)0.4238 (3)0.0398 (11)
C220.3623 (4)0.1583 (6)0.3487 (3)0.0602 (17)
H220.31220.12830.33410.072*
C230.4165 (4)0.1970 (6)0.2942 (4)0.080 (2)
H230.40160.19540.24310.096*
C240.4909 (5)0.2370 (6)0.3149 (4)0.075 (2)
H240.52700.26230.27800.090*
C250.5127 (4)0.2402 (5)0.3878 (5)0.077 (2)
H250.56420.26710.40130.092*
C260.4597 (4)0.2041 (5)0.4436 (4)0.0656 (17)
H260.47570.20640.49440.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re0.05144 (14)0.04501 (14)0.02284 (14)0.00279 (9)0.00006 (8)0.00227 (8)
S10.0744 (10)0.0412 (7)0.0324 (8)0.0110 (6)0.0022 (7)0.0023 (6)
S20.0835 (10)0.0417 (7)0.0254 (8)0.0021 (7)0.0016 (7)0.0042 (5)
P0.0522 (7)0.0410 (6)0.0215 (7)0.0024 (5)0.0011 (5)0.0019 (5)
O10.047 (3)0.139 (5)0.092 (4)0.001 (3)0.001 (3)0.021 (3)
O20.067 (3)0.090 (4)0.115 (5)0.004 (3)0.017 (3)0.004 (3)
O30.076 (3)0.056 (2)0.054 (3)0.006 (2)0.004 (2)0.016 (2)
O40.153 (5)0.084 (3)0.029 (3)0.023 (3)0.023 (3)0.003 (2)
C10.061 (4)0.066 (4)0.050 (4)0.008 (3)0.001 (3)0.007 (3)
C20.067 (4)0.052 (3)0.047 (4)0.004 (3)0.009 (3)0.003 (3)
C30.052 (3)0.062 (3)0.028 (3)0.001 (3)0.004 (2)0.001 (3)
C40.085 (4)0.053 (4)0.037 (4)0.005 (3)0.003 (3)0.010 (3)
C110.050 (3)0.048 (3)0.023 (3)0.002 (2)0.005 (2)0.002 (2)
C120.052 (3)0.059 (3)0.046 (4)0.006 (3)0.008 (3)0.004 (3)
C130.055 (4)0.080 (4)0.059 (5)0.016 (3)0.005 (3)0.009 (3)
C140.050 (4)0.111 (6)0.064 (5)0.005 (4)0.006 (3)0.004 (4)
C150.068 (5)0.090 (5)0.084 (6)0.021 (4)0.013 (4)0.015 (4)
C160.060 (3)0.059 (4)0.051 (4)0.002 (3)0.006 (3)0.006 (3)
C210.046 (3)0.044 (3)0.029 (3)0.006 (2)0.000 (2)0.005 (2)
C220.047 (3)0.103 (5)0.030 (3)0.008 (3)0.003 (2)0.007 (3)
C230.075 (5)0.130 (6)0.036 (4)0.030 (4)0.011 (3)0.024 (4)
C240.071 (4)0.087 (5)0.068 (5)0.018 (4)0.026 (4)0.038 (4)
C250.062 (4)0.088 (5)0.080 (6)0.018 (3)0.005 (4)0.016 (4)
C260.064 (4)0.089 (5)0.044 (4)0.016 (3)0.000 (3)0.006 (3)
Geometric parameters (Å, º) top
Re—C31.920 (6)O4—C41.130 (7)
Re—C41.929 (7)C1—C163.417 (10)
Re—C11.993 (7)C1—C113.497 (9)
Re—C22.004 (7)C1—C154.261 (12)
Re—S12.5366 (15)C1—C124.396 (10)
Re—S22.5535 (14)C1—C145.018 (10)
S1—P2.0100 (19)C1—C135.065 (10)
S2—P2.0212 (19)C11—C161.392 (7)
P—C211.798 (5)C11—C121.393 (8)
P—C111.799 (5)C12—C131.371 (8)
O1—C11.128 (7)C13—C141.346 (9)
O1—C163.340 (10)C14—C151.378 (10)
O1—C113.686 (8)C15—C161.372 (9)
O1—C153.831 (11)C21—C221.365 (7)
O1—C124.419 (9)C21—C261.383 (7)
O1—C144.538 (10)C22—C231.389 (9)
O1—C134.784 (9)C23—C241.354 (10)
O2—C21.123 (8)C24—C251.330 (10)
O3—C31.148 (7)C25—C261.382 (9)
C3—Re—C491.1 (2)C11—C1—C1431.83 (13)
C3—Re—C190.7 (2)C15—C1—C1414.30 (13)
C4—Re—C186.6 (3)C12—C1—C1428.17 (12)
C3—Re—C291.3 (2)O1—C1—C1369.3 (5)
C4—Re—C292.4 (3)Re—C1—C13113.0 (3)
C1—Re—C2177.8 (3)C16—C1—C1330.58 (14)
C3—Re—S194.30 (17)C11—C1—C1324.66 (12)
C4—Re—S1174.57 (18)C15—C1—C1327.63 (13)
C1—Re—S193.6 (2)C12—C1—C1314.57 (10)
C2—Re—S187.2 (2)C14—C1—C1315.33 (11)
C3—Re—S2172.41 (17)O2—C2—Re178.1 (6)
C4—Re—S296.28 (18)O3—C3—Re179.5 (5)
C1—Re—S291.43 (19)O4—C4—Re178.0 (6)
C2—Re—S286.80 (17)C16—C11—C12119.2 (5)
S1—Re—S278.29 (4)C16—C11—P122.5 (4)
P—S1—Re85.52 (6)C12—C11—P118.3 (4)
P—S2—Re84.85 (6)C16—C11—C175.2 (4)
C21—P—C11105.7 (2)C12—C11—C1122.0 (4)
C21—P—S1112.49 (17)P—C11—C174.9 (2)
C11—P—S1111.92 (18)C16—C11—O164.8 (4)
C21—P—S2111.22 (18)C12—C11—O1112.9 (4)
C11—P—S2109.86 (18)P—C11—O192.7 (2)
S1—P—S2105.71 (8)C1—C11—O117.82 (13)
C1—O1—C1684.3 (5)C13—C12—C11119.3 (6)
C1—O1—C1171.5 (5)C13—C12—C1111.7 (4)
C16—O1—C1122.15 (13)C11—C12—C142.4 (3)
C1—O1—C15104.8 (6)C13—C12—O197.0 (4)
C16—O1—C1520.62 (15)C11—C12—O150.2 (3)
C11—O1—C1537.00 (14)C1—C12—O114.71 (10)
C1—O1—C1281.5 (5)C14—C13—C12121.4 (6)
C16—O1—C1232.45 (14)C14—C13—O171.4 (4)
C11—O1—C1216.88 (11)C12—C13—O166.5 (4)
C15—O1—C1238.13 (15)C14—C13—C180.4 (4)
C1—O1—C14108.9 (5)C12—C13—C153.8 (4)
C16—O1—C1430.71 (15)O1—C13—C112.75 (9)
C11—O1—C1437.37 (13)C13—C14—C15120.1 (6)
C15—O1—C1416.31 (14)C13—C14—O192.2 (4)
C12—O1—C1430.64 (12)C15—C14—O151.3 (4)
C1—O1—C1398.0 (5)C13—C14—C184.3 (4)
C16—O1—C1333.95 (14)C15—C14—C149.8 (4)
C11—O1—C1329.22 (11)O1—C14—C112.28 (9)
C15—O1—C1329.21 (14)C16—C15—C14120.3 (6)
C12—O1—C1316.53 (10)C16—C15—O159.1 (4)
C14—O1—C1316.33 (11)C14—C15—O1112.4 (5)
O1—C1—Re176.8 (7)C16—C15—C144.3 (4)
O1—C1—C1676.5 (5)C14—C15—C1115.9 (5)
Re—C1—C16106.6 (3)O1—C15—C114.83 (11)
O1—C1—C1190.7 (5)C15—C16—C11119.7 (6)
Re—C1—C1192.1 (3)C15—C16—O1100.3 (5)
C16—C1—C1123.19 (13)C11—C16—O193.1 (4)
O1—C1—C1560.4 (5)C15—C16—C1119.4 (5)
Re—C1—C15122.7 (3)C11—C16—C181.6 (4)
C16—C1—C1516.29 (15)O1—C16—C119.18 (13)
C11—C1—C1534.10 (15)C22—C21—C26118.9 (5)
O1—C1—C1283.8 (5)C22—C21—P121.5 (4)
Re—C1—C1298.5 (2)C26—C21—P119.4 (4)
C16—C1—C1232.88 (14)C21—C22—C23119.7 (6)
C11—C1—C1215.59 (11)C24—C23—C22120.4 (7)
C15—C1—C1237.02 (14)C25—C24—C23120.3 (6)
O1—C1—C1458.8 (5)C24—C25—C26120.8 (7)
Re—C1—C14123.9 (3)C25—C26—C21119.8 (6)
C16—C1—C1424.64 (14)

Experimental details

Crystal data
Chemical formula[Re(C12H10PS2)(CO)4]
Mr547.53
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)16.1160 (1), 12.8286 (2), 17.5930 (3)
V3)3637.28 (9)
Z8
Radiation typeMo Kα
µ (mm1)7.02
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.271, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
23344, 4518, 3181
Rint0.085
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.098, 0.98
No. of reflections4518
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 3.52

Computer programs: SMART (Bruker, 1997), SMART, SHELXTL (Sheldrick, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Re—C31.920 (6)S1—P2.0100 (19)
Re—C41.929 (7)S2—P2.0212 (19)
Re—C11.993 (7)O1—C11.128 (7)
Re—C22.004 (7)O2—C21.123 (8)
Re—S12.5366 (15)O3—C31.148 (7)
Re—S22.5535 (14)O4—C41.130 (7)
C3—Re—C491.1 (2)C1—Re—S193.6 (2)
C3—Re—C190.7 (2)C2—Re—S187.2 (2)
C4—Re—C186.6 (3)C3—Re—S2172.41 (17)
C3—Re—C291.3 (2)C4—Re—S296.28 (18)
C4—Re—C292.4 (3)C1—Re—S291.43 (19)
C1—Re—C2177.8 (3)C2—Re—S286.80 (17)
C3—Re—S194.30 (17)S1—Re—S278.29 (4)
C4—Re—S1174.57 (18)S1—P—S2105.71 (8)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds