Download citation
Download citation
link to html
The product of the addition reaction of 1,1,1,4,4,4-hexa­chloro-1,4-disila­butane with N-methyl­imidazole is μ-ethyl­ene-C1:C2-bis­[di­chloro­tris(1-methyl­imidazole-N3)­silicon(IV)] dichloride, C26H40Cl4N12Si22+·2Cl. Two of the six Cl atoms are replaced by aromatic nitro­gen bases and the coordination sphere of silicon is extended from four to six. The mol­ecule is located on a crystallographic centre of inversion. The environment around the Si atom can be described as a slightly distorted octahedron with the Cl atoms occupying axial positions and the three N-methyl­imidazole ligands and the ethyl­ene bridge in the equatorial plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100009471/jz1418sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100009471/jz1418Isup2.hkl
Contains datablock I

CCDC reference: 152618

Comment top

In recent years the extension of the coordination sphere of silicon in complexes with organic nitrogen bases has been the subject of numerous studies (Bechstein et al., 1990; Chuit et al., 1993; Kane et al., 1998; Hensen, Kettner et al., 1998; Hensen, Mayr-Stein, Stumpf et al., 2000). Several complexes of silicon halides are already known, but little is known about adducts of compounds containing more than one silicon centre. We present in this work the product of the addition reaction of 1,1,1,4,4,4-hexachloro-1,4-disilabutane with N-methylimidazole: µ-ethylene-C1:C2-bis[dichlorotris(1-methylimidazole-N3)silicon(IV)] dichloride, (I). \sch

Only two of the six chlorine atoms are replaced by aromatic nitrogen bases, but the coordination sphere of silicon is extended from four to six. The reaction product is a dication (located on a crystallographic centre of inversion) crystallizing with two chloride ions. Compared with other hexacoordinated complexes of halogen silanes with tertiary nitrogen bases, the current product shows a remarkable new feature: it bears two silicon centres that both carry a formal charge of +1. In contrast, until now only neutral addition complexes, e.g. dichlorosilanebispyridine (Hensen, Stumpf et al., 1998), tetrachlorobis(4-methylpyridine)silicon (Hensen, Mayr-Stein, Spangenberg & Bolte et al., 2000), tetrachlorobis(3,4-bismethylpyridine)silicon (Hensen, Mayr-Stein, Spangenberg, Bolte & Rühl et al., 2000), or dicationic complexes, e.g. SiHCl(N-methylimidazole)4]2+ (Hensen, Kettner et al. 1998), SiCl2(N-methylimidazole)4]2+ with different counter ions and solvent molecules (Hensen, Stumpf et al., 2000), bis(2,2'-bipyridyl-N,N')dichlorosilicon (Hensen, Mayr-Stein, Rühl & Bolte et al., 2000), were obtained. The current structure is the first example of a hexacoordinated silicon centre where only one halogen atom is removed from the coordination sphere of the starting material, thus the ratio of removed halogen ligands to newly added base ligands of 1:3 is observed for the first time. The silicon centres appear in a nearly ideal octahedral environment, where the two remaining chlorine ligands occupy axial positions. The three N-methylimidazole groups and the ethylene bridge lie in the equatorial plane. There are only minor deviations from perfect octahedral coordination: all bond angles involving C1 are bigger than 90°; whereas the two Si—N bonds trans to each other are of nearly the same length the Si—N bond trans to C1 is slightly shorter than the other two; the two Si—Cl bonds differ by approximately 0.05 Å. Compared with the free Lewis acid 1,1,1,4,4,4-hexachloro-1,4-disilabutane (Mitzel et al., 1997) in which the Si—Cl bond lengths range from 2.0225 (6) to 2.0283 (6) Å, those in the current structure are considerably longer. For comparison, a search of the Cambridge Crystallographic Database (Version 5.19, April 2000; Allen & Kennard, 1983) yielded 39 Si—Cl fragments (hexacoordinated Si, monocoordinated Cl) with a mean Si—Cl bond length of 2.20 (5) Å. Furthermore, it is remarkable that the Si—C—C angle is widened to nearly 120°, a fact that can be attributed to the bulky substituents at the silicon centres. The C—C bond length, on the other hand, shows a normal value. The crystal packing is stabilized by short contacts between the Cl ion and various H atoms (Table 2).

Experimental top

To 1,1,1,4,4,4-hexachloro-1,4-disilabutane (5 ml) in chloroform (25 ml) N-methylimidazole was added and the reaction was monitored by measuring the temperature. After approximately 2 h, the precipitated solid was isolated, washed and dried. Crystals of (I) were obtained by subliming the powder in an evacuated glass ampoule for several days at 315 K.

Refinement top

All H atoms were located by difference Fourier synthesis refined with fixed individual displacement parameters [U(H) = 1.5 Ueq(Cmethyl) or U(H) = 1.2 Ueq(C)] using a riding model with C—H(aromatic) = 0.95, C—H(secondary) = 0.99 or CH(methyl) = 0.98 Å, respectively. The methyl groups were allowed to rotate about their local threefold axis.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. Perspective view of (I) with the atom numbering; displacement ellipsoids are at the 50% probability level.
(I) top
Crystal data top
C26H40Cl4N12Si22+·2ClF(000) = 820
Mr = 789.58Dx = 1.452 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.8976 (1) ÅCell parameters from 5816 reflections
b = 7.5553 (1) Åθ = 1.0–25.0°
c = 17.3704 (2) ŵ = 0.58 mm1
β = 97.947 (1)°T = 133 K
V = 1806.39 (3) Å3Block, colourless
Z = 20.30 × 0.20 × 0.20 mm
Data collection top
Siemens CCD three circle
diffractometer
3679 independent reflections
Radiation source: fine-focus sealed tube2894 reflections with I > 2σ(I)
Highly oriented graphite crystal monochromatorRint = 0.057
ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: empirical
SADABS (Sheldrick,1996)
h = 1717
Tmin = 0.84, Tmax = 0.90k = 99
22213 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.08Calculated w = 1/[σ2(Fo2) + (0.0273P)2 + 1.7731P]
where P = (Fo2 + 2Fc2)/3
3679 reflections(Δ/σ)max = 0.002
211 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C26H40Cl4N12Si22+·2ClV = 1806.39 (3) Å3
Mr = 789.58Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.8976 (1) ŵ = 0.58 mm1
b = 7.5553 (1) ÅT = 133 K
c = 17.3704 (2) Å0.30 × 0.20 × 0.20 mm
β = 97.947 (1)°
Data collection top
Siemens CCD three circle
diffractometer
3679 independent reflections
Absorption correction: empirical
SADABS (Sheldrick,1996)
2894 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.90Rint = 0.057
22213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.08Δρmax = 0.34 e Å3
3679 reflectionsΔρmin = 0.29 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Coverage of the unique set is 100% complete to at least 25.0° in θ. Crystal decay was monitored by repeating the initial frames at the end of data collection and analyzing the duplicate reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.84087 (5)0.38063 (9)0.50006 (4)0.01560 (15)
Cl10.92492 (4)0.14794 (8)0.55269 (3)0.02066 (14)
Cl20.74196 (4)0.60133 (7)0.44516 (3)0.01875 (14)
C10.95282 (16)0.4996 (3)0.47145 (14)0.0201 (5)
H1A0.96740.44610.42230.024*
H1B0.93440.62440.46000.024*
N110.85095 (13)0.5002 (3)0.60054 (11)0.0167 (4)
C120.84753 (18)0.6741 (3)0.61186 (14)0.0206 (5)
H120.83620.75940.57140.025*
N130.86209 (15)0.7128 (3)0.68765 (11)0.0231 (5)
C130.8624 (2)0.8914 (4)0.72107 (16)0.0362 (7)
H13A0.83850.97630.68020.054*
H13B0.92880.92320.74340.054*
H13C0.82020.89390.76180.054*
C140.87626 (19)0.5561 (3)0.72759 (15)0.0264 (6)
H140.88870.54210.78240.032*
C150.86903 (18)0.4257 (3)0.67401 (14)0.0231 (6)
H150.87530.30270.68490.028*
N210.81128 (14)0.2478 (3)0.40312 (11)0.0189 (4)
C220.72472 (18)0.2332 (3)0.36007 (13)0.0198 (5)
H220.66670.28610.37230.024*
N230.73072 (15)0.1339 (3)0.29721 (12)0.0243 (5)
C230.6487 (2)0.0874 (4)0.23813 (15)0.0343 (7)
H23A0.58900.13990.25200.051*
H23B0.64180.04160.23540.051*
H23C0.66060.13290.18750.051*
C240.82645 (19)0.0812 (4)0.29999 (15)0.0282 (6)
H240.85270.00990.26290.034*
C250.87520 (19)0.1506 (3)0.36549 (14)0.0244 (6)
H250.94250.13530.38300.029*
N310.72537 (14)0.2692 (3)0.52886 (11)0.0165 (4)
C320.64996 (16)0.3474 (3)0.55490 (13)0.0182 (5)
H320.64380.47120.56260.022*
N330.58432 (14)0.2262 (3)0.56864 (11)0.0190 (4)
C330.48716 (18)0.2626 (4)0.58895 (16)0.0274 (6)
H33A0.48710.37830.61450.041*
H33B0.46970.17060.62430.041*
H33C0.43970.26320.54160.041*
C340.61760 (18)0.0619 (3)0.54997 (14)0.0209 (5)
H340.58590.04850.55390.025*
C350.70426 (17)0.0893 (3)0.52498 (14)0.0196 (5)
H350.74430.00000.50760.024*
Cl30.47226 (5)0.28993 (8)0.35530 (4)0.02731 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0144 (3)0.0158 (3)0.0166 (3)0.0018 (3)0.0024 (3)0.0015 (3)
Cl10.0185 (3)0.0187 (3)0.0248 (3)0.0045 (2)0.0028 (2)0.0033 (2)
Cl20.0166 (3)0.0179 (3)0.0215 (3)0.0024 (2)0.0017 (2)0.0025 (2)
C10.0170 (12)0.0236 (13)0.0196 (12)0.0011 (10)0.0025 (10)0.0013 (10)
N110.0140 (10)0.0182 (10)0.0181 (10)0.0006 (8)0.0026 (8)0.0015 (8)
C120.0231 (13)0.0194 (13)0.0192 (12)0.0010 (11)0.0031 (10)0.0022 (10)
N130.0290 (12)0.0199 (11)0.0208 (11)0.0007 (9)0.0054 (9)0.0020 (9)
C130.061 (2)0.0209 (14)0.0278 (15)0.0001 (14)0.0107 (14)0.0063 (12)
C140.0357 (16)0.0255 (14)0.0178 (13)0.0011 (12)0.0029 (11)0.0045 (11)
C150.0290 (14)0.0206 (13)0.0196 (12)0.0004 (11)0.0031 (11)0.0022 (10)
N210.0194 (11)0.0171 (10)0.0208 (10)0.0020 (8)0.0050 (9)0.0001 (8)
C220.0192 (13)0.0208 (13)0.0201 (12)0.0021 (10)0.0045 (10)0.0006 (10)
N230.0256 (12)0.0244 (12)0.0232 (11)0.0047 (10)0.0050 (9)0.0049 (9)
C230.0326 (16)0.0430 (18)0.0272 (15)0.0093 (14)0.0046 (12)0.0127 (13)
C240.0297 (15)0.0276 (15)0.0292 (15)0.0036 (12)0.0113 (12)0.0079 (12)
C250.0223 (13)0.0251 (14)0.0269 (14)0.0038 (11)0.0074 (11)0.0006 (11)
N310.0163 (10)0.0156 (10)0.0175 (10)0.0007 (8)0.0026 (8)0.0006 (8)
C320.0175 (12)0.0172 (12)0.0197 (12)0.0012 (10)0.0024 (10)0.0010 (10)
N330.0159 (10)0.0206 (11)0.0202 (10)0.0009 (9)0.0014 (8)0.0014 (9)
C330.0185 (13)0.0275 (15)0.0378 (15)0.0021 (11)0.0097 (12)0.0048 (12)
C340.0232 (13)0.0162 (12)0.0224 (13)0.0009 (10)0.0001 (10)0.0007 (10)
C350.0199 (13)0.0150 (12)0.0236 (13)0.0016 (10)0.0019 (10)0.0002 (10)
Cl30.0312 (4)0.0204 (3)0.0307 (3)0.0022 (3)0.0058 (3)0.0001 (3)
Geometric parameters (Å, º) top
Si1—C11.921 (2)N21—C221.330 (3)
Si1—N311.938 (2)N21—C251.384 (3)
Si1—N111.953 (2)C22—N231.337 (3)
Si1—N211.954 (2)N23—C241.383 (3)
Si1—Cl12.2351 (9)N23—C231.467 (3)
Si1—Cl22.2840 (8)C24—C251.347 (4)
C1—C1i1.531 (5)N31—C321.335 (3)
N11—C121.330 (3)N31—C351.390 (3)
N11—C151.386 (3)C32—N331.337 (3)
C12—N131.336 (3)N33—C341.379 (3)
N13—C141.372 (3)N33—C331.468 (3)
N13—C131.469 (3)C34—C351.351 (3)
C14—C151.349 (4)
C1—Si1—N31177.81 (10)C14—N13—C13126.9 (2)
C1—Si1—N1193.10 (9)C15—C14—N13106.8 (2)
N31—Si1—N1185.97 (8)C14—C15—N11109.0 (2)
C1—Si1—N2195.67 (10)C22—N21—C25106.3 (2)
N31—Si1—N2185.20 (8)C22—N21—Si1126.38 (16)
N11—Si1—N21171.10 (9)C25—N21—Si1127.36 (17)
C1—Si1—Cl194.45 (8)N21—C22—N23110.6 (2)
N31—Si1—Cl187.56 (6)C22—N23—C24107.5 (2)
N11—Si1—Cl191.68 (6)C22—N23—C23125.1 (2)
N21—Si1—Cl189.11 (6)C24—N23—C23127.3 (2)
C1—Si1—Cl290.73 (8)C25—C24—N23106.6 (2)
N31—Si1—Cl287.29 (6)C24—C25—N21108.9 (2)
N11—Si1—Cl290.01 (6)C32—N31—C35106.17 (19)
N21—Si1—Cl288.41 (6)C32—N31—Si1127.75 (16)
Cl1—Si1—Cl2174.46 (4)C35—N31—Si1126.07 (16)
C1i—C1—Si1119.1 (2)N31—C32—N33110.2 (2)
C12—N11—C15105.7 (2)C32—N33—C34108.4 (2)
C12—N11—Si1126.11 (16)C32—N33—C33126.0 (2)
C15—N11—Si1128.08 (16)C34—N33—C33125.1 (2)
N11—C12—N13111.0 (2)C35—C34—N33106.3 (2)
C12—N13—C14107.5 (2)C34—C35—N31109.0 (2)
C12—N13—C13125.6 (2)
N31—Si1—C1—C1i115 (2)N11—Si1—N21—C25141.6 (5)
N11—Si1—C1—C1i50.4 (3)Cl1—Si1—N21—C2546.4 (2)
N21—Si1—C1—C1i131.1 (3)Cl2—Si1—N21—C25138.5 (2)
Cl1—Si1—C1—C1i41.5 (3)C25—N21—C22—N230.6 (3)
Cl2—Si1—C1—C1i140.4 (3)Si1—N21—C22—N23179.44 (16)
C1—Si1—N11—C1259.5 (2)N21—C22—N23—C240.1 (3)
N31—Si1—N11—C12118.5 (2)N21—C22—N23—C23178.6 (2)
N21—Si1—N11—C12110.9 (6)C22—N23—C24—C250.4 (3)
Cl1—Si1—N11—C12154.09 (19)C23—N23—C24—C25178.0 (2)
Cl2—Si1—N11—C1231.2 (2)N23—C24—C25—N210.7 (3)
C1—Si1—N11—C15116.0 (2)C22—N21—C25—C240.8 (3)
N31—Si1—N11—C1566.0 (2)Si1—N21—C25—C24179.20 (18)
N21—Si1—N11—C1573.6 (6)C1—Si1—N31—C3215 (3)
Cl1—Si1—N11—C1521.5 (2)N11—Si1—N31—C3250.5 (2)
Cl2—Si1—N11—C15153.3 (2)N21—Si1—N31—C32128.3 (2)
C15—N11—C12—N130.1 (3)Cl1—Si1—N31—C32142.37 (19)
Si1—N11—C12—N13176.50 (16)Cl2—Si1—N31—C3239.69 (19)
N11—C12—N13—C140.4 (3)C1—Si1—N31—C35164 (2)
N11—C12—N13—C13179.5 (2)N11—Si1—N31—C35130.7 (2)
C12—N13—C14—C150.4 (3)N21—Si1—N31—C3550.51 (19)
C13—N13—C14—C15179.5 (3)Cl1—Si1—N31—C3538.81 (19)
N13—C14—C15—N110.4 (3)Cl2—Si1—N31—C35139.13 (19)
C12—N11—C15—C140.1 (3)C35—N31—C32—N331.1 (3)
Si1—N11—C15—C14176.12 (18)Si1—N31—C32—N33179.90 (15)
C1—Si1—N21—C22132.1 (2)N31—C32—N33—C340.7 (3)
N31—Si1—N21—C2245.9 (2)N31—C32—N33—C33172.4 (2)
N11—Si1—N21—C2238.3 (7)C32—N33—C34—C350.0 (3)
Cl1—Si1—N21—C22133.6 (2)C33—N33—C34—C35171.8 (2)
Cl2—Si1—N21—C2241.5 (2)N33—C34—C35—N310.6 (3)
C1—Si1—N21—C2548.0 (2)C32—N31—C35—C341.1 (3)
N31—Si1—N21—C25134.0 (2)Si1—N31—C35—C34179.89 (16)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C34—H34···Cl3ii0.952.613.450 (3)147
C33—H33A···Cl3iii0.982.613.540 (3)159
C22—H22···Cl30.952.683.524 (3)149
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H40Cl4N12Si22+·2Cl
Mr789.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)133
a, b, c (Å)13.8976 (1), 7.5553 (1), 17.3704 (2)
β (°) 97.947 (1)
V3)1806.39 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerSiemens CCD three circle
diffractometer
Absorption correctionEmpirical
SADABS (Sheldrick,1996)
Tmin, Tmax0.84, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
22213, 3679, 2894
Rint0.057
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.085, 1.08
No. of reflections3679
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.29

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1996).

Selected geometric parameters (Å, º) top
Si1—C11.921 (2)Si1—Cl12.2351 (9)
Si1—N311.938 (2)Si1—Cl22.2840 (8)
Si1—N111.953 (2)C1—C1i1.531 (5)
Si1—N211.954 (2)
C1—Si1—N31177.81 (10)N11—Si1—Cl191.68 (6)
C1—Si1—N1193.10 (9)N21—Si1—Cl189.11 (6)
N31—Si1—N1185.97 (8)C1—Si1—Cl290.73 (8)
C1—Si1—N2195.67 (10)N31—Si1—Cl287.29 (6)
N31—Si1—N2185.20 (8)N11—Si1—Cl290.01 (6)
N11—Si1—N21171.10 (9)N21—Si1—Cl288.41 (6)
C1—Si1—Cl194.45 (8)Cl1—Si1—Cl2174.46 (4)
N31—Si1—Cl187.56 (6)C1i—C1—Si1119.1 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C34—H34···Cl3ii0.952.613.450 (3)147.3
C33—H33A···Cl3iii0.982.613.540 (3)159.3
C22—H22···Cl30.952.683.524 (3)148.8
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds