Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The isotypic compounds tris(1,2-ethanedi­amine-N,N')­zinc(II) triiodide iodide, [Zn(C2H8N2)3](I3)I, and tris(1,2-ethanedi­amine-N,N')­nickel(II) triiodide iodide, [Ni(C2H8N2)3](I3)I, contain the octahedral [M(en)3]2+ cation, with M = Zn and Ni, in both enantiomeric forms, an essentially linear triiodide anion and an iodide anion. The geometries of the complex ions are as expected, e.g. d(Ni-N) = 2.123 (5), 2.127 (6) and 2.134 (5) Å, and d(Zn-N) = 2.176 (4), 2.193 (4) and 2.210 (4) Å. The shortest contact between the triiodide and iodide ions is 3.979 (1) Å for the nickel compound and 4.013 (1) Å for the zinc compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100008829/jz1409sup1.cif
Contains datablocks global_[X(en)]3I4, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100008829/jz1409Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100008829/jz1409IIsup3.hkl
Contains datablock II

CCDC references: 150762; 150763

Computing details top

For both compounds, data collection: IPDS-Programmsystem (Stoe & Cie, 1996/97); cell refinement: IPDS-Programmsystem; data reduction: IPDS-Programmsystem; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1998), PARST95 (Nardelli, 1995), PLATON96 (Spek, 1996), CIFEDIT (Wieczorrek, 1999).

(I) Tris(1,2-ethandiamin)zinktriiodid-iodid top
Crystal data top
[Zn(C2H8N2)3][I3]IDx = 2.588 Mg m3
Mr = 753.28Melting point: 457 K
Tetragonal, I42dMo Kα radiation, λ = 0.71073 Å
Hall symbol: I -4 2bwCell parameters from 5000 reflections
a = 14.742 (1) Åθ = 2.8–25.2°
c = 17.791 (1) ŵ = 7.65 mm1
V = 3866.5 (3) Å3T = 293 K
Z = 8Tetragonale Bipyramide nach <101>, clear dark red
F(000) = 27520.40 × 0.36 × 0.36 mm
Data collection top
Stoe & Cie. IPDS
diffractometer
1730 independent reflections
Radiation source: fine-focus sealed tube1631 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 44.4 pixels mm-1θmax = 25.2°, θmin = 2.8°
oszillation scansh = 1717
Absorption correction: numerical
Die Absorptionskorrektur wurde unter WINGX V1.61 nach den Pyramidenflächen <101> durchgeführt (Alcock 1970).
k = 1717
Tmin = 0.174, Tmax = 0.232l = 2121
16727 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + 7.2246P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.47 e Å3
1730 reflectionsΔρmin = 0.48 e Å3
82 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00167 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.50000.50000.37741 (3)0.05352 (15)
I20.60152 (2)0.67050 (2)0.37813 (2)0.05671 (12)
I30.60136 (3)1.25000.12500.05170 (14)
Zn0.75001.22777 (4)0.37500.03157 (15)
N10.6774 (3)1.1293 (2)0.3066 (2)0.0374 (9)
H1A0.67891.14620.25800.070 (8)*
H1B0.70391.07450.31070.070 (8)*
C20.5827 (3)1.1242 (4)0.3326 (3)0.0511 (15)
H2A0.55581.06740.31620.055 (7)*
H2B0.54791.17350.31090.055 (7)*
C30.5793 (4)1.1301 (4)0.4172 (3)0.0538 (15)
H3A0.51671.13020.43400.055 (7)*
H3B0.60951.07790.43900.055 (7)*
N40.6244 (3)1.2135 (3)0.4418 (2)0.0429 (10)
H4A0.63771.21020.49110.070 (8)*
H4B0.58791.26160.43420.070 (8)*
N50.8016 (3)1.3420 (3)0.4414 (2)0.0391 (9)
H5A0.79121.33220.49060.070 (8)*
H5B0.86181.34790.43450.070 (8)*
C60.7546 (5)1.4251 (3)0.4168 (2)0.0401 (10)
H6A0.78871.47800.43270.055 (7)*
H6B0.69501.42800.43970.055 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0391 (2)0.0808 (3)0.0407 (2)0.0155 (2)0.0000.000
I20.0615 (2)0.0646 (2)0.04400 (19)0.00266 (16)0.0059 (2)0.01274
I30.0348 (2)0.0841 (3)0.0363 (2)0.0000.0000.0055 (3)
Zn0.0348 (3)0.0317 (3)0.0282 (3)0.0000.0011 (3)0.000
N10.042 (2)0.035 (2)0.035 (2)0.0011 (18)0.0024 (17)0.0025 (15)
C20.045 (3)0.050 (3)0.059 (4)0.014 (3)0.010 (2)0.001 (3)
C30.051 (4)0.063 (4)0.048 (3)0.005 (3)0.010 (2)0.010 (3)
N40.040 (2)0.053 (2)0.036 (2)0.0023 (17)0.0024 (17)0.0016 (17)
N50.044 (2)0.043 (2)0.031 (2)0.0016 (18)0.0027 (16)0.0017 (17)
C60.051 (3)0.033 (2)0.037 (2)0.001 (3)0.005 (2)0.0050 (17)
Geometric parameters (Å, º) top
I1—I22.9254 (3)Zn—N42.210 (4)
I1—I2i2.9254 (3)N1—C21.472 (6)
Zn—N12.176 (4)C2—C31.509 (7)
Zn—N1ii2.176 (4)C3—N41.464 (7)
Zn—N52.193 (4)N5—C61.474 (6)
Zn—N5ii2.193 (4)C6—C6ii1.492 (8)
Zn—N4ii2.210 (4)
I2—I1—I2i179.50 (3)N1—Zn—N479.89 (15)
N1—Zn—N1ii96.3 (2)N1ii—Zn—N492.76 (16)
N1—Zn—N5169.78 (17)N5—Zn—N494.26 (15)
N1ii—Zn—N592.31 (13)N5ii—Zn—N494.14 (15)
N1—Zn—N5ii92.31 (13)N4ii—Zn—N4169.1 (2)
N1ii—Zn—N5ii169.78 (17)C2—N1—Zn109.0 (3)
N5—Zn—N5ii79.7 (2)N1—C2—C3109.9 (4)
N1—Zn—N4ii92.76 (16)N4—C3—C2109.4 (5)
N1ii—Zn—N4ii79.89 (15)C3—N4—Zn107.4 (3)
N5—Zn—N4ii94.14 (15)C6—N5—Zn108.4 (3)
N5ii—Zn—N4ii94.26 (15)N5—C6—C6ii109.8 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y, z+3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I30.903.043.855 (4)151
N1—H1B···I3iii0.902.923.767 (4)159
N4—H4A···I2iv0.902.963.765 (4)150
Symmetry codes: (iii) y1/2, x+3/2, z+1/2; (iv) y, x+1/2, z+1/4.
(II) Tris(1,2-diaminoethan)nickeltriiodid-iodid top
Crystal data top
[Ni(C2H8N)3][I3]IDx = 2.596 Mg m3
Mr = 746.62Melting point: 547 K
Tetragonal, I42dMo Kα radiation, λ = 0.71073 Å
Hall symbol: I -4 2bwCell parameters from 5000 reflections
a = 14.670 (1) Åθ = 2.8–26.1°
c = 17.754 (2) ŵ = 7.47 mm1
V = 3820.8 (6) Å3T = 293 K
Z = 8Tetragonale Bipyramide nach <101>, clear dark red
F(000) = 27360.35 × 0.28 × 0.28 mm
Data collection top
IPDS (Stoe & Cie)
diffractometer
1886 independent reflections
Radiation source: fine-focus sealed tube1477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 44.4 pixels mm-1θmax = 26.1°, θmin = 2.8°
oscillation scansh = 1818
Absorption correction: numerical
Die Absorptionskorrektur wurde unter WINGX V1.61 nach den Pyramidenflächen [101] durchgeführt (Alcock 1970).
k = 1717
Tmin = 0.241, Tmax = 0.350l = 2121
10875 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0191P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max < 0.001
S = 0.91Δρmax = 0.74 e Å3
1886 reflectionsΔρmin = 0.64 e Å3
82 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00019 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.50000.50000.37720 (5)0.04811 (19)
I20.32889 (3)0.39777 (3)0.37798 (4)0.05060 (15)
I30.25000.60145 (4)0.12500.04860 (18)
Ni0.22909 (6)0.75000.37500.0260 (2)
N10.1311 (4)0.6813 (4)0.3077 (3)0.0337 (14)
H1A0.14740.68410.25890.052 (9)*
H1B0.07630.70820.31280.052 (9)*
C20.1257 (5)0.5856 (5)0.3321 (5)0.044 (2)
H2C0.06810.55940.31630.043 (9)*
H2D0.17450.55070.30910.043 (9)*
C30.1339 (6)0.5815 (5)0.4177 (5)0.043 (2)
H3C0.13570.51850.43420.043 (9)*
H3D0.08150.61070.44070.043 (9)*
N40.2178 (4)0.6284 (4)0.4403 (3)0.0388 (15)
H4A0.21560.64220.48970.052 (9)*
H4B0.26630.59220.43220.052 (9)*
N50.3389 (4)0.8025 (4)0.4401 (3)0.0363 (14)
H5A0.32860.79270.48940.052 (9)*
H5B0.34440.86290.43260.052 (9)*
C60.4233 (4)0.7550 (6)0.4161 (3)0.0360 (15)
H6C0.42630.69540.43960.043 (9)*
H6D0.47620.78970.43180.043 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0749 (5)0.0355 (3)0.0340 (3)0.0133 (3)0.0000.000
I20.0600 (3)0.0567 (3)0.0351 (2)0.0006 (2)0.0110 (3)0.0047 (3)
I30.0844 (5)0.0323 (3)0.0291 (3)0.0000.0046 (5)0.000
Ni0.0290 (6)0.0303 (5)0.0186 (5)0.0000.0000.0018 (5)
N10.038 (3)0.035 (3)0.028 (3)0.001 (3)0.004 (2)0.000 (3)
C20.046 (5)0.045 (5)0.040 (5)0.020 (4)0.001 (4)0.009 (4)
C30.057 (5)0.039 (5)0.032 (5)0.007 (4)0.006 (4)0.007 (3)
N40.052 (4)0.039 (3)0.025 (3)0.004 (2)0.003 (2)0.001 (3)
N50.042 (3)0.042 (3)0.025 (3)0.003 (3)0.001 (3)0.009 (3)
C60.035 (3)0.041 (4)0.032 (4)0.002 (4)0.004 (3)0.007 (4)
Geometric parameters (Å, º) top
I3—I2i3.9793 (7)Ni—N52.127 (6)
I3—I2ii3.9793 (7)Ni—N4v2.134 (5)
I1—I2iii2.9241 (5)Ni—N42.134 (5)
I1—I22.9241 (5)N1—C21.472 (9)
I2—I3iv3.9793 (7)C2—C31.526 (9)
Ni—N1v2.123 (5)C3—N41.466 (9)
Ni—N12.123 (5)N5—C61.483 (8)
Ni—N5v2.127 (6)C6—C6v1.467 (12)
I2i—I3—I2ii66.042 (16)N5—Ni—N4v93.0 (2)
I2iii—I1—I2179.45 (4)N1v—Ni—N492.2 (2)
I1—I2—I3iv177.606 (19)N1—Ni—N481.7 (2)
N1v—Ni—N194.8 (3)N5v—Ni—N493.0 (2)
N1v—Ni—N5v172.0 (2)N5—Ni—N493.8 (2)
N1—Ni—N5v92.02 (19)N4v—Ni—N4171.1 (3)
N1v—Ni—N592.02 (19)C2—N1—Ni108.9 (4)
N1—Ni—N5172.0 (2)N1—C2—C3109.0 (6)
N5v—Ni—N581.6 (3)N4—C3—C2108.7 (7)
N1v—Ni—N4v81.7 (2)C3—N4—Ni108.0 (4)
N1—Ni—N4v92.2 (2)C6—N5—Ni107.8 (4)
N5v—Ni—N4v93.8 (2)C6v—C6—N5109.4 (5)
I2iii—I1—I2—I3iv115.6 (7)N1—Ni—N4—C316.8 (4)
N1v—Ni—N1—C2103.8 (5)N5v—Ni—N4—C3108.4 (4)
N5v—Ni—N1—C280.5 (4)N5—Ni—N4—C3169.8 (4)
N5—Ni—N1—C244.2 (19)N4v—Ni—N4—C330.7 (4)
N4v—Ni—N1—C2174.3 (4)N1v—Ni—N5—C6170.7 (5)
N4—Ni—N1—C212.2 (4)N1—Ni—N5—C623 (2)
Ni—N1—C2—C338.5 (8)N5v—Ni—N5—C614.1 (3)
N1—C2—C3—N454.7 (9)N4v—Ni—N5—C6107.5 (5)
C2—C3—N4—Ni42.2 (7)N4—Ni—N5—C678.4 (5)
N1v—Ni—N4—C377.7 (5)Ni—N5—C6—C6v40.9 (9)
Symmetry codes: (i) y, x+1/2, z+1/4; (ii) y+1/2, x+1/2, z1/2; (iii) x+1, y+1, z; (iv) y1/2, x, z1/4; (v) x, y+3/2, z3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···I3vi0.902.903.753 (6)159
N4—H4A···I2vi0.903.003.791 (5)148
Symmetry code: (vi) y+1/2, x+1, z1/4.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds