Download citation
Download citation
link to html
The structures of two conformationally restricted 4,5-di­hydroxy­norvaline analogues with a norbornane skeleton, namely methyl (1S,2S,3R,4R)-2-benz­amido-3-(1,2-di­hydroxy­ethyl)­bi­cyclo[2.2.1]­heptane-2-carboxyl­ate, C18H23NO5, and methyl (1R,2S,3R,4S)-2-benz­amido-3-(1,2-di­hydroxy­ethyl)­bi­cyclo[2.2.1]­heptane-2-carboxyl­ate, C18H23NO5, exhibit a conformation in the helical region of the φ,ψ map but their handedness is opposite. In both cases, the torsion angles (χ1,1) giving the relative orientation of the 1,2-di­hydroxy­ethyl group of the amino acid side chain and the benz­amide group of the peptide chain indicate that these groups adopt a nearly eclipsed conformation. Both compounds show a complex hydrogen-bonding pattern.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001645/jz1375sup1.cif
Contains datablocks global, exoI, endoI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001645/jz1375exoIsup2.hkl
Contains datablock exoI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001645/jz1375endoIsup3.hkl
Contains datablock endoI

CCDC references: 145545; 145546

Comment top

Amino acids containing one or more hydroxy groups form an important class of naturally occurring compounds (Hunt, 1985). Such compounds, whether of natural or synthetic origin, are useful precursors in the synthesis of β-lactams (Miller, 1986). An important example is (2S,4S)-4,5-dihydroxynorvaline (Liao & Zhou, 1998; Girard et al., 1998), which is a key intermediate in the synthesis of antibiotic clavalanine.

For some years, we have been focusing our attention on those amino acids that possess specific conformational and topographical modifications on their side-chain and, in particular, cyclization of the side-chain atoms with the main-chain atoms. This structural modification can result in significant changes in potency, receptor selectivity and biostability when incorporated into bioactive compounds. Recently, we reported our findings on the asymmetric Diels-Alder reaction between (Z)-2-phenyl-4-[(S)-2,2-dimethyl- 1,3-dioxolan-4-ylmethylene]-5-(4H)-oxazolone and cyclopentadiene. The corresponding exo/endo adducts were isolated in enantiomerically pure form and transformed into two new conformationally constrained 4,5-dihydroxynorvaline analogues with a norbornane skeleton (Buñuel et al., 1996a), methyl (1S,2S,3R,4R)-2-benzamido-3-(1,2-dihydroxyethyl)bicyclo [2.2.1]heptane-2-carboxylate, exo-(I), and methyl (1R,2S,3R,4S)-2-benzamido-3-(1,2-dihydroxyethyl)bicyclo[2.2.1]heptane-2- carboxylate, endo-(I). We describe here the crystal and molecular structures of these two new diastereomeric amino acids. \scheme

Compound exo-(I) crystallizes with two molecules (A and B) in the asymmetric unit (Fig. 1). The numbering of the atoms runs from 1 to 18 for the first molecule and from 19 to 36 for the second. These two independent molecules differ slightly in their conformation. The main difference between them is the orientation of the phenyl group, with N1—C10—C11—C12 and O3—C10—C11—C16 torsion angles of 7.7 (5) and 3.6 (5)° for molecule A and N2—C28—C29—C30 and O8—C28—C29—C34 torsion angles of -28.6 (5) and -30.5 (6)° for molecule B. The configuration at the chiral atoms C1, C2, C3, C4 and C17 for the first conformer and at chiral atoms C19, C20, C21, C22 and C35 for the second are S, S, R, R and S, respectively. The bond lengths and angles show small variations from reported values for other norbornane amino acid derivatives (Apgar & Ludwig, 1972; Glass et al., 1990; Buñuel et al., 1996b; Buñuel et al., 1997). The C4—C7—C1 and C19—C25—C22 angles of 94.2 (3) and 93.3 (3)°, respectively, are significantly contracted with respect to the regular tetrahedral value, while the endocyclic angles of the five-membered norbornane rings are in the range 98.7 (4)–105.7 (5)°. The values for the conformationally sensitive N—Cα—C' (τ) bond angles [N1—C2—C8 = 109.5 (3)° and N2—C20—C26 = 108.3 (3)°], which are external to the cyclic system, are very close to the tetrahedral value, as would be expected for the Cα,α-dialkylated glycines that form regular helices (Benedetti et al., 1997).

In the bicyclo[2.2.1]heptane (norbornane) unit of each independent molecule, the two five-membered rings are in envelope conformations, while the six-membered ring adopts an approximate boat conformation. The slightly distorted boat conformation of the norbornane six-membered rings, C1—C6 and C19—C24, is evidenced by the puckering parameters (Cremer & Pople, 1975): q2 = 0.919 (4) Å, q3 = 0.022 (4) Å, ϕ2 = 2.7 (3)°, θ2 = 88,6(2)° and ΘT = 0.919 (4) Å, and q2 = 0.928 (5) Å, q3 = 0.026 (5) Å, ϕ2 = 4.2 (3)°, θ2 = 88.4 (3)° and ΘT = 0.929 (5) Å, respectively. In both independent molecules, the substitution of the norbornane ring produces a twist of type S-(+,+) (Altona & Sundaralingam, 1970) about the C1···C4 or C19···C22 vectors. The twisting can be seen from the C1—C2—C3—C4 and C4—C5—C6—C1 torsion angles of 4.5 (3) and 0.8 (4)°, respectively, for molecule A, and from the C19—C20—C21—C22 and C22—C23—C24—C19 torsion angles of 6.5 (4) and 2.6 (5)°, respectively, for molecule B.

In compound exo-(I), the amino acid residue adopts a folded conformation. The values of the backbone torsion angles ϕ [C10—N1—C2—C8 = -52.3 (5)° for molecule A and C28—N2—C20—C26 = -52.4 (5)° for molecule B] and ψ [N1—C2—C8—O2 = -47.1 (4)° for molecule A and N2—C20—C26—O6 = -42.7 (4)° for molecule B] fall in the A region of the conformational map (Zimmerman et al., 1977). These values differ by less than 20° from those pertaining to the ideal 310-helix (60, 30°) or α-helix (55, 45°). The torsion angles ω [C11—C10—N1—C2 = 177.3 (3)° and C29—C28—N2—C20 = 176.1 (3)°] indicate that the amide linkage adopts the usual trans conformation in both conformers. The spatial arrangement of the 1,2-dihydroxyethyl group of the amino acid side-chain with respect to the peptide chain is defined by the torsion angles χ1,1 [N1—C2—C3—C17 = 15.8 (4)° for molecule A and N2—C20—C21—C35 = 16.9 (5)° for molecule B]. These values indicate that the benzamide and 1,2-dihydroxyethyl groups are in a nearly eclipsed conformation. In addition, both groups are involved in an N—H···O intramolecular hydrogen bond with an N1···O4 distance of 2.712 (4) Å for the first independent molecule and an N2···O9 distance of 2.698 (4) Å for the second. Another short intramolecular contact is observed between the two hydroxy groups [O4···O5 2.857 (4) and O9···O10 2.874 (4) Å].

In the crystals of compound exo-(I), the two independent molecules of the asymmetric unit form dimers in which two hydrogen bonds are observed between the O4—H4O donor of molecule A and the O10 acceptor of molecule B, with a distance of 2.714 (4) Å, and between the O9—H9O donor of molecule B and the O5 acceptor of molecule A, with a distance of 2.783 (4) Å. Moreover, the crystal structure is stabilized by two additional O—H···O intermolecular hydrogen bonds, involving the terminal hydroxy group of each independent molecule and the benzamide group of a symmetry-related molecule of the same type (A or B) [O5···O3 2.739 (4) Å and O10···O8 2.673 (4) Å]. Both hydroxy groups function as hydrogen-bond donors, whereby the molecules are linked into sheets parallel to the z axis (Fig. 2). Some short intra- and intermolecular C—H···O contacts (Table 2) are also found, which can be described as weak hydrogen bonds (Steiner, 1997; Desiraju, 1996).

Diastereoisomer endo-(I) crystallizes with one molecule in the asymmetry unit (Fig. 3). The stereochemistry at the chiral C1, C2, C3, C4 and C17 atoms is R, S, R, S and S, respectively. Comparison of the bond distances and angles in compound endo-(I) with those determined for other norbornane amino acids, and in particular with the compound exo-(I), reveals no strikingly unusual features and these parameters lie within the expected ranges. The C4—C7—C1 angle is 94.5 (2)° and the endocyclic angles of the five-membered norbornane rings vary from 101.2 (2) to 103.2 (2)°, which are all substantially less than the regular tetrahedral value of 109.5°. The critical intra-ring bond angle τ [N—C2—C8 = 109.48 (17)°] is comparable with that in compound exo-(I).

The two five-membered norbornane rings of compound endo-(I) are in envelope conformations, while the six-membered norbornane ring is in an almost perfect boat conformation [puckering parameters are q2 = 0.958 (9) Å, q3 = 0.051 (3) Å, query Chester PLATON gives 0.005 (3) ϕ2 = 179.51 (17)°, θ2 = 89.69 (15)° and ΘT = 0.958 (9) Å]. The norbornane system shows a weak distortion from C2ν symmetry, although it is less important than in exo-(I). The twisting can be seen from the C1—C2—C3—C4 and C4—C5—C6—C1 torsion angles of 1.4 (2) and 0.0 (3)°, respectively.

The amino acid residue in compound endo-(I) exhibits a conformation in the helical region of the ϕ,ψ map, but it has opposite handedness to that shown by compound exo-(I): the values of the backbone torsion angles ϕ [C10—N—C2—C8 = 42.8 (3)°] and ψ [N—C2—C8—O2 = 50.1 (2)°] fall in the A* region of the conformational map (Zimmerman et al., 1977). The torsion angle ω (C11—C10—N—C2) differs by less than 10° from 180°, the ideal value of the trans planar amide unit. In compound endo-(I), the torsion angle χ1,1 [N—C2—C3—C17 = 9.8 (3)°] also shows that the 1,2-dihydroxyethyl and benzamide groups are in a nearly eclipsed conformation. However, in contrast with exo-(I), no intramolecular hydrogen bond is observed between these two groups, whereas the short intramolecular contact involving both hydroxy groups observed in compound exo-(I) is also present in compound endo-(I) [O4···O5 2.787 (3) Å].

Apart from the spatial arrangement of the methyl ester and the benzamido and 1,2-dihydroxyethyl groups relative to the norbornane ring, the main difference between the 4,5-dihydroxynorvaline analogues described here, i.e. endo-(I) and exo-(I), involves the intermolecular hydrogen-bond pattern. In the crystals of endo-(I) three intermolecular hydrogen bonds are seen: one weak O(hydroxy)-H···O/N(amide/methyl ester) three-centre hydrogen bond [O4···N 3.239 (3) Å and O4···O2 3.026 (2) Å], one O(hydroxy)-H···O=C(amide) two-centre hydrogen bond [O5···O3 2.728 (3) Å] and one N(amide)-H···O(hydroxy) two-centre hydrogen bond [N···O5 2.917 (3) Å]. Both OH and NH groups function as hydrogen-bond donors, whereby the molecules are linked into sheets parallel to the z axis (Fig. 4). As in the diastereoisomer exo-(I), some possible borderline cases of C—H···O hydrogen bonds are also present in endo-(I) (Table 4).

Experimental top

Compounds exo-(I) and endo-(I) were prepared according to the procedure previously described by Buñuel et al. (1996a). Crystals were obtained by slow evaporation of a methanol solution.

Refinement top

The absolute configuration of compounds exo-(I) and endo-(I) was deduced from the known stereochemistry of the chiral centre at C17 [for conformer A of exo-(I) and for endo-(I)] or C35 [for conformer B of exo-(I)], which was derived from the (R)—O,O-isopropylideneglyceraldehyde starting material. H atoms bonded to N or O were located from Fourier syntheses and refined freely, methyl group H atoms were refined as rigid groups (initial position from Fourier syntheses, allowed to rotate but not tip) and the remaining H atoms were treated as riding. All H atoms bonded to C were refined with fixed individual displacement parameters [Uiso(H) = 1.5Ueq(Cmethyl) or 1.2Ueq(C)]. Molecular geometry calculations were performed using PARST (Nardelli, 1983).

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1993); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1989); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the two conformers forming the asymmetric unit of exo-(I). Displacement ellipsoids are drawn at the 30% probability level and intramolecular hydrogen bonds are indicated by dashed lines. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram for exo-(I) viewed parallel to the z axis. H atoms not involved in hydrogen bonds have been omitted for clarity. Hydrogen bonds are indicated by dashed bonds.
[Figure 3] Fig. 3. The molecular structure of endo-(I). Displacement ellipsoids are drawn at the 30% probability level and the intramolecular hydrogen bond is indicated by a dashed line. H atoms are shown as spheres of arbitrary radii.
[Figure 4] Fig. 4. Packing diagram for endo-(I) viewed parallel to the z axis. H atoms not involved in hydrogen bonds have been omitted for clarity. Hydrogen bonds are indicated by dashed bonds.
(exoI) methyl (1S,2S,3R,4R)-2-benzamido-3-(1,2-dihydroxyethyl)bicyclo [2.2.1]heptane-2-carboxylate top
Crystal data top
C18H23NO5F(000) = 712
Mr = 333.37Dx = 1.253 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.323 (5) ÅCell parameters from 38 reflections
b = 18.038 (5) Åθ = 7.2–12.5°
c = 10.968 (5) ŵ = 0.09 mm1
β = 106.570 (5)°T = 293 K
V = 1767.9 (13) Å3Prism, colourless
Z = 40.64 × 0.32 × 0.10 mm
Data collection top
Siemens P4
diffractometer
θmax = 25.0°, θmin = 2.2°
ω/2θ scansh = 111
7359 measured reflectionsk = 2121
3213 independent reflectionsl = 1312
2274 reflections with I > 2σ(I)3 standard reflections every 97 reflections
Rint = 0.047 intensity decay: none
Refinement top
Refinement on F2459 parameters
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.0448P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.13 e Å3
3213 reflectionsΔρmin = 0.16 e Å3
Crystal data top
C18H23NO5V = 1767.9 (13) Å3
Mr = 333.37Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.323 (5) ŵ = 0.09 mm1
b = 18.038 (5) ÅT = 293 K
c = 10.968 (5) Å0.64 × 0.32 × 0.10 mm
β = 106.570 (5)°
Data collection top
Siemens P4
diffractometer
Rint = 0.047
7359 measured reflections3 standard reflections every 97 reflections
3213 independent reflections intensity decay: none
2274 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.040459 parameters
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.13 e Å3
3213 reflectionsΔρmin = 0.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7287 (4)0.1145 (3)0.1892 (3)0.1053 (12)
O20.7676 (3)0.05323 (16)0.0069 (3)0.0662 (7)
O30.6899 (3)0.21963 (14)0.0485 (3)0.0632 (7)
O40.3258 (3)0.02027 (15)0.0424 (2)0.0522 (6)
H4O0.317 (4)0.007 (2)0.098 (4)0.058 (13)*
O50.3518 (4)0.13752 (18)0.0391 (3)0.0742 (9)
H5O0.325 (6)0.180 (3)0.022 (5)0.11 (2)*
N10.5299 (4)0.12577 (17)0.0338 (3)0.0488 (8)
H1A0.465 (4)0.104 (2)0.061 (3)0.041 (10)*
C10.4350 (5)0.1557 (3)0.2016 (3)0.0664 (11)
H10.48950.19930.21790.080*
C20.5259 (4)0.1035 (2)0.0953 (3)0.0499 (9)
C30.4405 (4)0.0275 (2)0.1304 (3)0.0491 (8)
H30.50520.00300.16670.059*
C40.3063 (5)0.0484 (3)0.2442 (3)0.0677 (12)
H40.25770.00590.29500.081*
C50.1996 (5)0.0998 (3)0.2059 (4)0.0869 (15)
H5A0.10770.10570.27420.104*
H5B0.17560.08160.13080.104*
C60.2856 (6)0.1720 (3)0.1786 (4)0.0837 (15)
H6B0.29900.18740.09130.100*
H6A0.23320.21090.23500.100*
C70.3821 (5)0.1012 (3)0.3151 (3)0.0745 (13)
H7A0.46460.07840.33870.089*
H7B0.31250.12370.38890.089*
C80.6848 (5)0.0932 (2)0.1033 (4)0.0621 (10)
C90.9158 (5)0.0336 (3)0.0135 (5)0.0899 (15)
H9A0.96560.07720.03120.135*
H9B0.97230.01270.06620.135*
H9C0.90780.00210.08010.135*
C100.6090 (4)0.18197 (19)0.0963 (3)0.0473 (9)
C110.6057 (4)0.19496 (19)0.2299 (3)0.0478 (9)
C120.5133 (5)0.1578 (3)0.2862 (4)0.0718 (12)
H120.44450.12400.23850.086*
C130.5199 (7)0.1692 (3)0.4116 (5)0.0909 (16)
H130.45600.14340.44790.109*
C140.6218 (7)0.2191 (3)0.4832 (4)0.0931 (16)
H140.63010.22530.56910.112*
C150.7093 (6)0.2587 (3)0.4285 (5)0.0900 (15)
H150.77500.29380.47590.108*
C160.7017 (5)0.2474 (3)0.3025 (4)0.0730 (12)
H160.76190.27540.26560.088*
C170.4155 (4)0.01862 (19)0.0218 (3)0.0481 (9)
H170.51340.02740.03950.058*
C180.3478 (5)0.0933 (2)0.0680 (4)0.0618 (10)
H18A0.40420.11700.11920.074*
H18B0.24520.08710.12010.074*
O60.8972 (3)0.03543 (15)0.3137 (2)0.0661 (7)
O71.0372 (4)0.0274 (2)0.5124 (3)0.1154 (14)
O81.0850 (3)0.10855 (18)0.3249 (3)0.0734 (8)
O90.5477 (3)0.13015 (15)0.2834 (2)0.0584 (7)
H9O0.461 (6)0.130 (4)0.218 (5)0.14 (2)*
O100.3020 (3)0.03100 (19)0.2684 (3)0.0665 (8)
H10O0.235 (5)0.063 (2)0.271 (4)0.064 (13)*
N20.8424 (4)0.11040 (19)0.3119 (3)0.0547 (8)
H2A0.760 (4)0.1286 (19)0.281 (3)0.031 (9)*
C190.9400 (5)0.1147 (3)0.5519 (4)0.0766 (13)
H191.04940.11290.57320.092*
C200.8598 (4)0.0702 (2)0.4305 (3)0.0563 (10)
C210.7045 (4)0.0523 (2)0.4536 (3)0.0585 (10)
H210.71090.00020.47970.070*
C220.7109 (5)0.0969 (3)0.5760 (4)0.0847 (15)
H220.63620.08260.61890.102*
C230.7207 (7)0.1790 (4)0.5531 (5)0.106 (2)
H23A0.70540.20720.62360.128*
H23B0.64560.19370.47570.128*
C240.8779 (7)0.1920 (3)0.5408 (5)0.1005 (17)
H24A0.87460.21400.45940.121*
H24B0.93610.22360.60860.121*
C250.8777 (5)0.0802 (3)0.6526 (4)0.0878 (16)
H25A0.90910.10600.73350.105*
H25B0.89900.02770.66450.105*
C260.9437 (5)0.0016 (2)0.4249 (4)0.0641 (11)
C270.9732 (6)0.1038 (3)0.3028 (5)0.0909 (15)
H27A1.07590.09340.30830.136*
H27B0.92550.12660.22240.136*
H27C0.96880.13670.37050.136*
C280.9550 (4)0.1257 (2)0.2659 (4)0.0559 (10)
C290.9175 (4)0.1628 (2)0.1393 (3)0.0536 (9)
C300.7819 (5)0.1536 (2)0.0480 (4)0.0650 (11)
H300.71040.12200.06400.078*
C310.7509 (5)0.1908 (3)0.0671 (4)0.0749 (12)
H310.65900.18390.12750.090*
C320.8538 (5)0.2372 (3)0.0927 (4)0.0773 (13)
H320.83250.26250.16970.093*
C330.9890 (6)0.2461 (3)0.0034 (5)0.0866 (14)
H331.06000.27760.02030.104*
C341.0218 (5)0.2093 (3)0.1112 (4)0.0750 (13)
H341.11480.21570.17030.090*
C350.5630 (4)0.0576 (2)0.3413 (3)0.0500 (9)
H350.57160.02130.27730.060*
C360.4254 (4)0.0393 (2)0.3801 (3)0.0600 (10)
H36A0.44070.00630.42900.072*
H36B0.40470.07870.43300.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.087 (2)0.165 (4)0.076 (2)0.001 (3)0.0422 (18)0.029 (2)
O20.0511 (15)0.0775 (19)0.0725 (17)0.0027 (15)0.0215 (13)0.0032 (15)
O30.0692 (18)0.0518 (15)0.0747 (17)0.0117 (14)0.0303 (15)0.0032 (13)
O40.0542 (15)0.0553 (16)0.0504 (15)0.0044 (13)0.0203 (12)0.0010 (13)
O50.097 (2)0.0529 (17)0.0636 (18)0.0233 (18)0.0075 (16)0.0024 (14)
N10.0518 (19)0.0522 (19)0.0437 (17)0.0105 (17)0.0156 (15)0.0010 (14)
C10.083 (3)0.065 (2)0.051 (2)0.002 (2)0.018 (2)0.0139 (19)
C20.055 (2)0.055 (2)0.0403 (18)0.0048 (19)0.0153 (16)0.0014 (17)
C30.049 (2)0.056 (2)0.0428 (17)0.0011 (19)0.0141 (15)0.0078 (16)
C40.069 (3)0.084 (3)0.0403 (19)0.003 (3)0.0007 (19)0.000 (2)
C50.068 (3)0.121 (4)0.064 (3)0.022 (3)0.006 (2)0.014 (3)
C60.092 (4)0.095 (4)0.056 (3)0.040 (3)0.008 (2)0.004 (2)
C70.090 (3)0.095 (3)0.038 (2)0.014 (3)0.018 (2)0.009 (2)
C80.063 (3)0.074 (3)0.053 (2)0.011 (2)0.023 (2)0.000 (2)
C90.056 (3)0.104 (4)0.116 (4)0.002 (3)0.035 (3)0.002 (3)
C100.044 (2)0.042 (2)0.054 (2)0.0003 (18)0.0102 (17)0.0059 (17)
C110.049 (2)0.0401 (19)0.051 (2)0.0025 (18)0.0094 (17)0.0015 (16)
C120.093 (3)0.063 (2)0.065 (3)0.015 (3)0.031 (2)0.016 (2)
C130.138 (5)0.080 (3)0.074 (3)0.008 (3)0.060 (3)0.009 (3)
C140.116 (4)0.106 (4)0.054 (3)0.011 (4)0.020 (3)0.020 (3)
C150.085 (3)0.101 (4)0.075 (3)0.015 (3)0.008 (3)0.030 (3)
C160.064 (3)0.081 (3)0.068 (3)0.010 (3)0.009 (2)0.011 (2)
C170.045 (2)0.048 (2)0.0466 (18)0.0064 (18)0.0054 (16)0.0052 (16)
C180.064 (3)0.057 (2)0.055 (2)0.009 (2)0.0023 (19)0.0078 (19)
O60.0616 (16)0.0592 (17)0.0652 (16)0.0082 (15)0.0017 (13)0.0054 (14)
O70.118 (3)0.122 (3)0.0713 (19)0.062 (3)0.0285 (19)0.004 (2)
O80.0373 (15)0.102 (2)0.0743 (17)0.0130 (16)0.0048 (13)0.0099 (16)
O90.0462 (15)0.0624 (16)0.0583 (15)0.0068 (14)0.0014 (13)0.0070 (13)
O100.0434 (15)0.093 (2)0.0628 (16)0.0065 (16)0.0150 (13)0.0142 (15)
N20.0351 (17)0.066 (2)0.0563 (19)0.0074 (17)0.0019 (15)0.0045 (16)
C190.063 (3)0.090 (4)0.060 (3)0.005 (3)0.009 (2)0.014 (2)
C200.056 (2)0.059 (2)0.0439 (19)0.007 (2)0.0019 (17)0.0005 (18)
C210.058 (2)0.069 (2)0.0433 (19)0.005 (2)0.0057 (17)0.0074 (18)
C220.076 (3)0.130 (5)0.046 (2)0.012 (3)0.014 (2)0.010 (2)
C230.101 (4)0.122 (5)0.078 (3)0.042 (4)0.004 (3)0.041 (3)
C240.111 (5)0.092 (4)0.079 (3)0.012 (4)0.003 (3)0.030 (3)
C250.084 (3)0.121 (4)0.046 (2)0.019 (3)0.001 (2)0.004 (2)
C260.057 (2)0.074 (3)0.051 (2)0.015 (2)0.0027 (19)0.003 (2)
C270.094 (4)0.060 (3)0.104 (4)0.012 (3)0.005 (3)0.015 (3)
C280.039 (2)0.060 (2)0.064 (2)0.0054 (19)0.0092 (18)0.0134 (19)
C290.043 (2)0.060 (2)0.060 (2)0.001 (2)0.0177 (18)0.0108 (18)
C300.058 (3)0.077 (3)0.059 (2)0.016 (2)0.014 (2)0.004 (2)
C310.071 (3)0.094 (3)0.057 (3)0.015 (3)0.014 (2)0.007 (2)
C320.081 (3)0.090 (3)0.067 (3)0.006 (3)0.032 (3)0.005 (2)
C330.075 (3)0.095 (4)0.100 (4)0.012 (3)0.041 (3)0.011 (3)
C340.052 (2)0.088 (3)0.084 (3)0.005 (2)0.018 (2)0.000 (3)
C350.046 (2)0.055 (2)0.0452 (18)0.0077 (19)0.0071 (15)0.0025 (17)
C360.049 (2)0.079 (3)0.052 (2)0.009 (2)0.0148 (18)0.001 (2)
Geometric parameters (Å, º) top
O1—C81.192 (5)O6—C261.322 (4)
O2—C81.330 (5)O6—C271.444 (5)
O2—C91.449 (5)O7—C261.192 (4)
O3—C101.237 (4)O8—C281.239 (4)
O4—C171.422 (4)O9—C351.444 (5)
O4—H4O0.81 (4)O9—H9O0.92 (6)
O5—C181.412 (5)O10—C361.430 (4)
O5—H5O0.81 (6)O10—H10O0.86 (4)
N1—C101.324 (4)N2—C281.317 (5)
N1—C21.463 (4)N2—C201.458 (5)
N1—H1A0.85 (3)N2—H2A0.82 (3)
C1—C61.514 (6)C19—C241.502 (8)
C1—C21.549 (5)C19—C251.519 (6)
C1—C71.552 (6)C19—C201.552 (5)
C1—H10.9800C19—H190.9800
C2—C81.520 (5)C20—C261.524 (6)
C2—C31.577 (5)C20—C211.573 (5)
C3—C171.524 (5)C21—C351.530 (5)
C3—C41.541 (5)C21—C221.551 (6)
C3—H30.9800C21—H210.9800
C4—C51.504 (6)C22—C231.509 (8)
C4—C71.524 (6)C22—C251.572 (6)
C4—H40.9800C22—H220.9800
C5—C61.514 (7)C23—C241.528 (8)
C5—H5A0.9700C23—H23A0.9700
C5—H5B0.9700C23—H23B0.9700
C6—H6B0.9700C24—H24A0.9700
C6—H6A0.9700C24—H24B0.9700
C7—H7A0.9700C25—H25A0.9700
C7—H7B0.9700C25—H25B0.9700
C9—H9A0.9600C27—H27A0.9600
C9—H9B0.9600C27—H27B0.9600
C9—H9C0.9600C27—H27C0.9600
C10—C111.492 (5)C28—C291.490 (5)
C11—C121.371 (6)C29—C301.381 (5)
C11—C161.386 (5)C29—C341.383 (5)
C12—C131.374 (6)C30—C311.386 (6)
C12—H120.9300C30—H300.9300
C13—C141.380 (7)C31—C321.361 (6)
C13—H130.9300C31—H310.9300
C14—C151.347 (7)C32—C331.367 (7)
C14—H140.9300C32—H320.9300
C15—C161.379 (6)C33—C341.377 (7)
C15—H150.9300C33—H330.9300
C16—H160.9300C34—H340.9300
C17—C181.513 (5)C35—C361.499 (5)
C17—H170.9800C35—H350.9800
C18—H18A0.9700C36—H36A0.9700
C18—H18B0.9700C36—H36B0.9700
C8—O2—C9115.9 (3)C26—O6—C27115.5 (3)
C17—O4—H4O106 (3)C35—O9—H9O107 (5)
C18—O5—H5O114 (4)C36—O10—H10O109 (3)
C10—N1—C2124.6 (3)C28—N2—C20123.2 (3)
C10—N1—H1A121 (2)C28—N2—H2A121 (2)
C2—N1—H1A113 (2)C20—N2—H2A115 (2)
C6—C1—C2109.0 (3)C24—C19—C25102.7 (4)
C6—C1—C799.2 (4)C24—C19—C20109.3 (3)
C2—C1—C7101.5 (3)C25—C19—C20102.8 (4)
C6—C1—H1115.1C24—C19—H19113.6
C2—C1—H1115.1C25—C19—H19113.6
C7—C1—H1115.1C20—C19—H19113.6
N1—C2—C8109.5 (3)N2—C20—C26108.3 (3)
N1—C2—C1114.8 (3)N2—C20—C19114.4 (3)
C8—C2—C1111.4 (3)C26—C20—C19110.3 (3)
N1—C2—C3110.3 (3)N2—C20—C21111.9 (3)
C8—C2—C3108.2 (3)C26—C20—C21109.8 (3)
C1—C2—C3102.4 (3)C19—C20—C21102.0 (3)
C17—C3—C4119.8 (3)C35—C21—C22118.4 (4)
C17—C3—C2117.6 (3)C35—C21—C20118.7 (3)
C4—C3—C2102.8 (3)C22—C21—C20102.9 (3)
C17—C3—H3105.1C35—C21—H21105.1
C4—C3—H3105.1C22—C21—H21105.1
C2—C3—H3105.1C20—C21—H21105.1
C5—C4—C7101.4 (4)C23—C22—C21110.7 (4)
C5—C4—C3111.9 (3)C23—C22—C25100.3 (5)
C7—C4—C3100.3 (3)C21—C22—C2598.7 (4)
C5—C4—H4113.9C23—C22—H22115.0
C7—C4—H4113.9C21—C22—H22115.0
C3—C4—H4113.9C25—C22—H22115.0
C4—C5—C6103.3 (4)C22—C23—C24105.7 (5)
C4—C5—H5A111.1C22—C23—H23A110.6
C6—C5—H5A111.1C24—C23—H23A110.6
C4—C5—H5B111.1C22—C23—H23B110.6
C6—C5—H5B111.1C24—C23—H23B110.6
H5A—C5—H5B109.1H23A—C23—H23B108.7
C1—C6—C5105.1 (4)C19—C24—C23101.9 (5)
C1—C6—H6B110.7C19—C24—H24A111.4
C5—C6—H6B110.7C23—C24—H24A111.4
C1—C6—H6A110.7C19—C24—H24B111.4
C5—C6—H6A110.7C23—C24—H24B111.4
H6B—C6—H6A108.8H24A—C24—H24B109.2
C4—C7—C194.2 (3)C19—C25—C2293.3 (3)
C4—C7—H7A112.9C19—C25—H25A113.0
C1—C7—H7A112.9C22—C25—H25A113.0
C4—C7—H7B112.9C19—C25—H25B113.0
C1—C7—H7B112.9C22—C25—H25B113.0
H7A—C7—H7B110.3H25A—C25—H25B110.4
O1—C8—O2123.5 (4)O7—C26—O6122.3 (4)
O1—C8—C2124.4 (4)O7—C26—C20124.5 (4)
O2—C8—C2112.0 (3)O6—C26—C20113.1 (3)
O2—C9—H9A109.5O6—C27—H27A109.5
O2—C9—H9B109.5O6—C27—H27B109.5
H9A—C9—H9B109.5H27A—C27—H27B109.5
O2—C9—H9C109.5O6—C27—H27C109.5
H9A—C9—H9C109.5H27A—C27—H27C109.5
H9B—C9—H9C109.5H27B—C27—H27C109.5
O3—C10—N1121.2 (3)O8—C28—N2121.1 (4)
O3—C10—C11121.0 (3)O8—C28—C29122.2 (4)
N1—C10—C11117.6 (3)N2—C28—C29116.7 (3)
C12—C11—C16117.4 (4)C30—C29—C34117.9 (4)
C12—C11—C10123.9 (3)C30—C29—C28123.0 (4)
C16—C11—C10118.7 (4)C34—C29—C28119.1 (4)
C11—C12—C13121.6 (4)C29—C30—C31120.8 (4)
C11—C12—H12119.2C29—C30—H30119.6
C13—C12—H12119.2C31—C30—H30119.6
C12—C13—C14119.6 (5)C32—C31—C30120.6 (4)
C12—C13—H13120.2C32—C31—H31119.7
C14—C13—H13120.2C30—C31—H31119.7
C15—C14—C13119.9 (4)C31—C32—C33119.0 (4)
C15—C14—H14120.0C31—C32—H32120.5
C13—C14—H14120.0C33—C32—H32120.5
C14—C15—C16120.2 (5)C32—C33—C34121.1 (5)
C14—C15—H15119.9C32—C33—H33119.5
C16—C15—H15119.9C34—C33—H33119.5
C15—C16—C11121.1 (5)C33—C34—C29120.6 (4)
C15—C16—H16119.4C33—C34—H34119.7
C11—C16—H16119.4C29—C34—H34119.7
O4—C17—C18110.9 (3)O9—C35—C36109.8 (3)
O4—C17—C3111.1 (3)O9—C35—C21111.4 (3)
C18—C17—C3111.5 (3)C36—C35—C21111.6 (3)
O4—C17—H17107.7O9—C35—H35107.9
C18—C17—H17107.7C36—C35—H35107.9
C3—C17—H17107.7C21—C35—H35107.9
O5—C18—C17108.3 (3)O10—C36—C35108.9 (3)
O5—C18—H18A110.0O10—C36—H36A109.9
C17—C18—H18A110.0C35—C36—H36A109.9
O5—C18—H18B110.0O10—C36—H36B109.9
C17—C18—H18B110.0C35—C36—H36B109.9
H18A—C18—H18B108.4H36A—C36—H36B108.3
C10—N1—C2—C852.3 (5)C28—N2—C20—C2652.4 (5)
C10—N1—C2—C173.7 (4)C28—N2—C20—C1971.0 (5)
C10—N1—C2—C3171.3 (3)C28—N2—C20—C21173.6 (4)
C6—C1—C2—N147.4 (5)C24—C19—C20—N244.5 (5)
C7—C1—C2—N1151.5 (3)C25—C19—C20—N2153.2 (3)
C6—C1—C2—C8172.5 (4)C24—C19—C20—C26166.9 (4)
C7—C1—C2—C883.4 (4)C25—C19—C20—C2684.4 (4)
C6—C1—C2—C372.0 (4)C24—C19—C20—C2176.4 (5)
C7—C1—C2—C332.0 (4)C25—C19—C20—C2132.2 (4)
N1—C2—C3—C1715.8 (4)N2—C20—C21—C3516.9 (5)
C8—C2—C3—C17103.9 (3)C26—C20—C21—C35103.5 (4)
C1—C2—C3—C17138.4 (3)C19—C20—C21—C35139.5 (4)
N1—C2—C3—C4118.1 (3)N2—C20—C21—C22116.2 (4)
C8—C2—C3—C4122.2 (3)C26—C20—C21—C22123.5 (4)
C1—C2—C3—C44.5 (3)C19—C20—C21—C226.5 (4)
C17—C3—C4—C565.9 (5)C35—C21—C22—C2369.8 (6)
C2—C3—C4—C566.7 (4)C20—C21—C22—C2363.3 (5)
C17—C3—C4—C7172.7 (3)C35—C21—C22—C25174.4 (4)
C2—C3—C4—C740.1 (4)C20—C21—C22—C2541.2 (5)
C7—C4—C5—C635.3 (4)C21—C22—C23—C2471.2 (5)
C3—C4—C5—C670.8 (4)C25—C22—C23—C2432.3 (4)
C2—C1—C6—C569.9 (4)C25—C19—C24—C2338.5 (4)
C7—C1—C6—C535.7 (4)C20—C19—C24—C2370.2 (5)
C4—C5—C6—C10.8 (4)C22—C23—C24—C192.6 (5)
C5—C4—C7—C156.1 (4)C24—C19—C25—C2256.8 (4)
C3—C4—C7—C158.9 (4)C20—C19—C25—C2256.7 (4)
C6—C1—C7—C455.5 (4)C23—C22—C25—C1953.3 (4)
C2—C1—C7—C456.2 (4)C21—C22—C25—C1959.7 (4)
C9—O2—C8—O12.5 (6)C27—O6—C26—O73.4 (6)
C9—O2—C8—C2173.5 (4)C27—O6—C26—C20179.8 (4)
N1—C2—C8—O1136.9 (4)N2—C20—C26—O7140.6 (5)
C1—C2—C8—O18.9 (6)C19—C20—C26—O714.7 (6)
C3—C2—C8—O1102.9 (5)C21—C20—C26—O797.0 (5)
N1—C2—C8—O247.1 (4)N2—C20—C26—O642.7 (4)
C1—C2—C8—O2175.1 (3)C19—C20—C26—O6168.5 (4)
C3—C2—C8—O273.1 (4)C21—C20—C26—O679.8 (4)
C2—N1—C10—O31.6 (5)C20—N2—C28—O82.7 (6)
C2—N1—C10—C11177.3 (3)C20—N2—C28—C29176.1 (3)
O3—C10—C11—C12176.6 (4)O8—C28—C29—C30150.1 (4)
N1—C10—C11—C127.7 (5)N2—C28—C29—C3028.6 (5)
O3—C10—C11—C163.6 (5)O8—C28—C29—C3430.5 (6)
N1—C10—C11—C16172.1 (3)N2—C28—C29—C34150.7 (4)
C16—C11—C12—C133.0 (7)C34—C29—C30—C311.0 (6)
C10—C11—C12—C13176.7 (4)C28—C29—C30—C31178.4 (4)
C11—C12—C13—C140.1 (8)C29—C30—C31—C320.0 (7)
C12—C13—C14—C153.1 (8)C30—C31—C32—C330.6 (7)
C13—C14—C15—C162.7 (8)C31—C32—C33—C340.3 (8)
C14—C15—C16—C110.6 (8)C32—C33—C34—C290.7 (8)
C12—C11—C16—C153.4 (6)C30—C29—C34—C331.3 (6)
C10—C11—C16—C15176.3 (4)C28—C29—C34—C33178.1 (4)
C4—C3—C17—O463.9 (4)C22—C21—C35—O969.4 (5)
C2—C3—C17—O462.0 (4)C20—C21—C35—O956.4 (5)
C4—C3—C17—C1860.3 (5)C22—C21—C35—C3653.8 (5)
C2—C3—C17—C18173.8 (3)C20—C21—C35—C36179.6 (4)
O4—C17—C18—O565.6 (4)O9—C35—C36—O1067.1 (4)
C3—C17—C18—O5170.0 (3)C21—C35—C36—O10168.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O100.81 (4)1.96 (4)2.714 (4)155 (4)
O5—H5O···O3i0.81 (6)1.96 (6)2.739 (4)161 (5)
N1—H1A···O40.85 (3)1.97 (4)2.712 (4)146 (3)
O9—H9O···O50.92 (6)1.94 (6)2.783 (4)153 (5)
O10—H10O···O8ii0.86 (4)1.86 (4)2.673 (4)159 (4)
N2—H2A···O90.82 (3)1.98 (3)2.698 (4)146 (3)
O4—H4O···O50.81 (4)2.49 (4)2.857 (4)109 (3)
O9—H9O···O100.92 (6)2.48 (6)2.874 (4)106 (5)
C5—H5B···O40.972.303.005 (5)129
C7—H7A···O10.972.623.140 (6)114
C12—H12···O40.932.833.701 (5)157
C4—H4···O7iii0.982.523.121 (5)119
C5—H5A···O7iii0.972.653.298 (6)125
C15—H15···O8iv0.932.823.711 (6)161
C23—H23B···O90.972.353.067 (6)131
C25—H25B···O70.972.583.107 (6)114
C33—H33···O3v0.932.443.230 (6)143
Symmetry codes: (i) x+1, y+1/2, z; (ii) x1, y, z; (iii) x1, y, z1; (iv) x+2, y1/2, z+1; (v) x+2, y+1/2, z.
(endoI) methyl (1R,2S,3R,4S)-2-benzamido-3-(1,2-dihydroxyethyl)bicyclo[2.2.1]heptane-2- carboxylate top
Crystal data top
C18H23NO5Dx = 1.298 Mg m3
Mr = 333.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 28 reflections
a = 7.187 (5) Åθ = 7.6–12.5°
b = 11.720 (5) ŵ = 0.10 mm1
c = 20.258 (5) ÅT = 293 K
V = 1706.4 (15) Å3Prism, colourless
Z = 40.40 × 0.36 × 0.30 mm
F(000) = 712
Data collection top
Siemens P4
diffractometer
θmax = 25.0°, θmin = 2.0°
ω/2θ scansh = 88
3472 measured reflectionsk = 1313
1748 independent reflectionsl = 2424
1525 reflections with I > 2σ(I)3 standard reflections every 97 reflections
Rint = 0.013 intensity decay: none
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.031P)2 + 0.3022P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.070Δρmax = 0.16 e Å3
S = 1.06Δρmin = 0.11 e Å3
1748 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
231 parametersExtinction coefficient: 0.054 (2)
Crystal data top
C18H23NO5V = 1706.4 (15) Å3
Mr = 333.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.187 (5) ŵ = 0.10 mm1
b = 11.720 (5) ÅT = 293 K
c = 20.258 (5) Å0.40 × 0.36 × 0.30 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.013
3472 measured reflections3 standard reflections every 97 reflections
1748 independent reflections intensity decay: none
1525 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.029231 parameters
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.16 e Å3
1748 reflectionsΔρmin = 0.11 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4223 (2)0.79237 (16)0.88666 (9)0.0566 (5)
O20.2728 (2)0.66717 (12)0.82224 (8)0.0491 (4)
O30.3937 (2)0.84340 (16)0.73155 (8)0.0504 (4)
O40.0100 (3)1.08672 (15)0.78474 (9)0.0553 (5)
H4O0.000 (5)1.143 (3)0.7567 (15)0.074 (9)*
O50.2572 (3)1.25889 (15)0.78843 (10)0.0526 (5)
H5O0.359 (4)1.282 (3)0.7807 (14)0.063 (9)*
N0.0940 (3)0.84494 (17)0.76384 (9)0.0345 (4)
H0.020 (4)0.850 (2)0.7516 (12)0.048 (7)*
C10.0446 (3)0.8040 (2)0.87218 (12)0.0438 (6)
H10.10710.73910.85130.053*
C20.1312 (3)0.84683 (18)0.83492 (10)0.0345 (5)
C30.1556 (3)0.97147 (18)0.86306 (10)0.0364 (5)
H30.26970.97310.88950.044*
C40.0109 (4)0.9823 (2)0.91031 (12)0.0503 (6)
H40.04721.06110.92020.060*
C50.0270 (5)0.9086 (2)0.97168 (12)0.0618 (8)
H5A0.15190.92110.98840.074*
H5B0.06190.92481.00650.074*
C60.0038 (4)0.7858 (2)0.94560 (12)0.0544 (7)
H6A0.11810.74260.95050.065*
H6B0.09570.74640.96850.065*
C70.1613 (3)0.9121 (2)0.87566 (14)0.0540 (7)
H7A0.19320.94190.83240.065*
H7B0.27260.90290.90220.065*
C80.2964 (3)0.76988 (19)0.85022 (11)0.0396 (5)
C90.4266 (4)0.5888 (2)0.82789 (15)0.0659 (8)
H9A0.43520.56190.87260.099*
H9B0.40710.52530.79880.099*
H9C0.53990.62700.81610.099*
C100.2261 (3)0.84975 (19)0.71729 (11)0.0377 (5)
C110.1621 (3)0.86560 (19)0.64807 (11)0.0400 (5)
C120.0215 (4)0.9407 (2)0.63307 (12)0.0534 (7)
H120.03820.98050.66660.064*
C130.0316 (5)0.9570 (2)0.56801 (13)0.0644 (8)
H130.12571.00860.55800.077*
C140.0534 (5)0.8978 (3)0.51866 (13)0.0671 (8)
H140.01670.90850.47510.081*
C150.1921 (5)0.8230 (3)0.53323 (14)0.0770 (10)
H150.24920.78200.49960.092*
C160.2484 (4)0.8077 (3)0.59764 (13)0.0648 (8)
H160.34550.75780.60710.078*
C170.1692 (3)1.06546 (19)0.81111 (11)0.0387 (5)
H170.24971.03850.77530.046*
C180.2513 (4)1.17388 (18)0.83864 (13)0.0489 (6)
H18A0.37601.15920.85480.059*
H18B0.17621.20060.87530.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0474 (10)0.0585 (11)0.0638 (11)0.0028 (9)0.0193 (9)0.0009 (9)
O20.0479 (10)0.0376 (8)0.0618 (10)0.0042 (8)0.0006 (9)0.0017 (8)
O30.0325 (8)0.0664 (11)0.0525 (10)0.0016 (9)0.0039 (8)0.0020 (9)
O40.0560 (11)0.0452 (10)0.0649 (11)0.0055 (9)0.0220 (10)0.0113 (9)
O50.0358 (9)0.0488 (10)0.0733 (12)0.0085 (8)0.0033 (9)0.0182 (9)
N0.0269 (10)0.0401 (10)0.0364 (10)0.0008 (9)0.0004 (8)0.0024 (8)
C10.0375 (12)0.0438 (13)0.0500 (14)0.0104 (11)0.0072 (11)0.0004 (11)
C20.0326 (11)0.0369 (11)0.0340 (11)0.0051 (10)0.0008 (10)0.0008 (10)
C30.0361 (12)0.0367 (12)0.0364 (12)0.0011 (10)0.0022 (10)0.0008 (9)
C40.0571 (16)0.0452 (13)0.0486 (13)0.0019 (13)0.0148 (13)0.0045 (11)
C50.080 (2)0.0651 (16)0.0406 (13)0.0112 (17)0.0131 (15)0.0023 (13)
C60.0636 (16)0.0559 (14)0.0436 (13)0.0099 (15)0.0134 (13)0.0082 (12)
C70.0360 (12)0.0653 (16)0.0608 (16)0.0011 (13)0.0153 (13)0.0013 (14)
C80.0390 (13)0.0405 (12)0.0392 (12)0.0017 (11)0.0019 (11)0.0053 (10)
C90.0648 (18)0.0520 (15)0.081 (2)0.0207 (16)0.0128 (16)0.0063 (15)
C100.0345 (12)0.0359 (11)0.0427 (13)0.0021 (10)0.0026 (10)0.0020 (10)
C110.0415 (12)0.0379 (12)0.0407 (12)0.0020 (11)0.0069 (11)0.0006 (10)
C120.0615 (16)0.0525 (14)0.0461 (14)0.0108 (14)0.0016 (13)0.0013 (11)
C130.075 (2)0.0635 (17)0.0544 (16)0.0129 (17)0.0096 (16)0.0099 (14)
C140.085 (2)0.0762 (19)0.0399 (15)0.0061 (19)0.0014 (16)0.0081 (14)
C150.090 (2)0.100 (2)0.0408 (15)0.020 (2)0.0126 (17)0.0068 (15)
C160.0669 (17)0.0782 (19)0.0492 (15)0.0232 (17)0.0074 (15)0.0032 (14)
C170.0366 (11)0.0403 (12)0.0392 (12)0.0000 (10)0.0001 (10)0.0013 (10)
C180.0487 (14)0.0438 (12)0.0542 (14)0.0059 (12)0.0097 (13)0.0071 (11)
Geometric parameters (Å, º) top
O1—C81.197 (3)C5—H5B0.9700
O2—C81.341 (3)C6—H6A0.9700
O2—C91.442 (3)C6—H6B0.9700
O3—C101.241 (3)C7—H7A0.9700
O4—C171.416 (3)C7—H7B0.9700
O4—H4O0.87 (3)C9—H9A0.9600
O5—C181.424 (3)C9—H9B0.9600
O5—H5O0.80 (3)C9—H9C0.9600
N—C101.340 (3)C10—C111.488 (3)
N—C21.465 (3)C11—C121.374 (3)
N—H0.86 (3)C11—C161.375 (3)
C1—C71.521 (4)C12—C131.385 (4)
C1—C61.542 (4)C12—H120.9300
C1—C21.555 (3)C13—C141.361 (4)
C1—H10.9800C13—H130.9300
C2—C81.523 (3)C14—C151.360 (4)
C2—C31.578 (3)C14—H140.9300
C3—C171.527 (3)C15—C161.378 (4)
C3—C41.538 (3)C15—H150.9300
C3—H30.9800C16—H160.9300
C4—C71.529 (4)C17—C181.508 (3)
C4—C51.538 (4)C17—H170.9800
C4—H40.9800C18—H18A0.9700
C5—C61.542 (4)C18—H18B0.9700
C5—H5A0.9700
C8—O2—C9116.2 (2)C1—C7—H7B112.8
C17—O4—H4O108 (2)C4—C7—H7B112.8
C18—O5—H5O114 (2)H7A—C7—H7B110.3
C10—N—C2124.19 (19)O1—C8—O2123.6 (2)
C10—N—H118.1 (17)O1—C8—C2125.8 (2)
C2—N—H117.2 (17)O2—C8—C2110.29 (19)
C7—C1—C6101.2 (2)O2—C9—H9A109.5
C7—C1—C2101.65 (18)O2—C9—H9B109.5
C6—C1—C2109.2 (2)H9A—C9—H9B109.5
C7—C1—H1114.4O2—C9—H9C109.5
C6—C1—H1114.4H9A—C9—H9C109.5
C2—C1—H1114.4H9B—C9—H9C109.5
N—C2—C8109.48 (17)O3—C10—N121.5 (2)
N—C2—C1108.91 (18)O3—C10—C11121.8 (2)
C8—C2—C1110.10 (17)N—C10—C11116.71 (19)
N—C2—C3112.92 (18)C12—C11—C16118.9 (2)
C8—C2—C3112.82 (18)C12—C11—C10121.1 (2)
C1—C2—C3102.34 (18)C16—C11—C10120.0 (2)
C17—C3—C4114.78 (19)C11—C12—C13120.1 (2)
C17—C3—C2115.21 (18)C11—C12—H12120.0
C4—C3—C2102.40 (17)C13—C12—H12120.0
C17—C3—H3108.0C14—C13—C12120.3 (3)
C4—C3—H3108.0C14—C13—H13119.9
C2—C3—H3108.0C12—C13—H13119.9
C7—C4—C3102.71 (18)C15—C14—C13119.9 (3)
C7—C4—C5101.2 (2)C15—C14—H14120.1
C3—C4—C5108.6 (2)C13—C14—H14120.1
C7—C4—H4114.3C14—C15—C16120.3 (3)
C3—C4—H4114.3C14—C15—H15119.8
C5—C4—H4114.3C16—C15—H15119.8
C4—C5—C6103.2 (2)C11—C16—C15120.5 (3)
C4—C5—H5A111.1C11—C16—H16119.8
C6—C5—H5A111.1C15—C16—H16119.8
C4—C5—H5B111.1O4—C17—C18110.30 (19)
C6—C5—H5B111.1O4—C17—C3109.21 (18)
H5A—C5—H5B109.1C18—C17—C3112.21 (19)
C5—C6—C1103.1 (2)O4—C17—H17108.3
C5—C6—H6A111.2C18—C17—H17108.3
C1—C6—H6A111.2C3—C17—H17108.3
C5—C6—H6B111.2O5—C18—C17109.7 (2)
C1—C6—H6B111.2O5—C18—H18A109.7
H6A—C6—H6B109.1C17—C18—H18A109.7
C1—C7—C494.5 (2)O5—C18—H18B109.7
C1—C7—H7A112.8C17—C18—H18B109.7
C4—C7—H7A112.8H18A—C18—H18B108.2
C10—N—C2—C842.8 (3)C9—O2—C8—O111.4 (3)
C10—N—C2—C1163.2 (2)C9—O2—C8—C2174.77 (19)
C10—N—C2—C383.8 (3)N—C2—C8—O1136.3 (2)
C7—C1—C2—N83.3 (2)C1—C2—C8—O1104.0 (3)
C6—C1—C2—N170.3 (2)C3—C2—C8—O19.6 (3)
C7—C1—C2—C8156.65 (19)N—C2—C8—O250.1 (2)
C6—C1—C2—C850.2 (2)C1—C2—C8—O269.6 (2)
C7—C1—C2—C336.5 (2)C3—C2—C8—O2176.72 (18)
C6—C1—C2—C370.0 (2)C2—N—C10—O38.2 (4)
N—C2—C3—C179.8 (3)C2—N—C10—C11170.5 (2)
C8—C2—C3—C17115.0 (2)O3—C10—C11—C12137.0 (3)
C1—C2—C3—C17126.7 (2)N—C10—C11—C1241.7 (3)
N—C2—C3—C4115.51 (19)O3—C10—C11—C1640.7 (4)
C8—C2—C3—C4119.7 (2)N—C10—C11—C16140.6 (2)
C1—C2—C3—C41.4 (2)C16—C11—C12—C130.1 (4)
C17—C3—C4—C791.6 (2)C10—C11—C12—C13177.8 (3)
C2—C3—C4—C734.0 (2)C11—C12—C13—C140.9 (5)
C17—C3—C4—C5161.8 (2)C12—C13—C14—C150.6 (5)
C2—C3—C4—C572.6 (2)C13—C14—C15—C160.7 (5)
C7—C4—C5—C635.3 (3)C12—C11—C16—C151.3 (4)
C3—C4—C5—C672.4 (3)C10—C11—C16—C15179.0 (3)
C4—C5—C6—C10.0 (3)C14—C15—C16—C111.6 (5)
C7—C1—C6—C535.5 (3)C4—C3—C17—O443.2 (3)
C2—C1—C6—C571.2 (3)C2—C3—C17—O475.4 (2)
C6—C1—C7—C456.2 (2)C4—C3—C17—C1879.5 (3)
C2—C1—C7—C456.3 (2)C2—C3—C17—C18161.9 (2)
C3—C4—C7—C156.0 (2)O4—C17—C18—O556.9 (3)
C5—C4—C7—C156.2 (2)C3—C17—C18—O5178.93 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···Ni0.87 (3)2.50 (3)3.239 (3)143 (3)
O4—H4O···O2i0.87 (3)2.55 (3)3.026 (2)116 (3)
O5—H5O···O3ii0.80 (3)1.93 (3)2.728 (3)175 (3)
N—H···O5iii0.86 (3)2.17 (3)2.917 (3)146 (2)
O4—H4O···O50.87 (3)2.39 (3)2.787 (3)109 (2)
C3—H3···O10.982.392.882 (3)111
C7—H7A···O40.972.362.960 (3)120
C12—H12···O40.932.703.524 (3)148
C12—H12···O2i0.932.773.513 (3)138
C7—H7B···O1iv0.972.573.313 (4)134
C9—H9B···O3v0.962.643.375 (3)134
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1, y+1/2, z+3/2; (iii) x, y1/2, z+3/2; (iv) x+1, y, z; (v) x1, y1/2, z+3/2.

Experimental details

(exoI)(endoI)
Crystal data
Chemical formulaC18H23NO5C18H23NO5
Mr333.37333.37
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121
Temperature (K)293293
a, b, c (Å)9.323 (5), 18.038 (5), 10.968 (5)7.187 (5), 11.720 (5), 20.258 (5)
α, β, γ (°)90, 106.570 (5), 9090, 90, 90
V3)1767.9 (13)1706.4 (15)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.10
Crystal size (mm)0.64 × 0.32 × 0.100.40 × 0.36 × 0.30
Data collection
DiffractometerSiemens P4
diffractometer
Siemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7359, 3213, 2274 3472, 1748, 1525
Rint0.0470.013
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 1.05 0.029, 0.070, 1.06
No. of reflections32131748
No. of parameters459231
No. of restraints??
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.160.16, 0.11

Computer programs: XSCANS (Siemens, 1993), XSCANS, SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1989), SHELXL97.

Selected geometric parameters (Å, º) for (exoI) top
O1—C81.192 (5)C2—C31.577 (5)
O4—C171.422 (4)C3—C171.524 (5)
O5—C181.412 (5)C3—C41.541 (5)
N1—C21.463 (4)C4—C51.504 (6)
C1—C61.514 (6)C4—C71.524 (6)
C1—C21.549 (5)C5—C61.514 (7)
C1—C71.552 (6)C17—C181.513 (5)
C2—C81.520 (5)
C6—C1—C2109.0 (3)C5—C4—C3111.9 (3)
C6—C1—C799.2 (4)C7—C4—C3100.3 (3)
C2—C1—C7101.5 (3)C4—C5—C6103.3 (4)
N1—C2—C1114.8 (3)C1—C6—C5105.1 (4)
C8—C2—C1111.4 (3)O1—C8—C2124.4 (4)
N1—C2—C3110.3 (3)O2—C8—C2112.0 (3)
C8—C2—C3108.2 (3)N1—C10—C11117.6 (3)
C1—C2—C3102.4 (3)O4—C17—C18110.9 (3)
C17—C3—C4119.8 (3)O4—C17—C3111.1 (3)
C17—C3—C2117.6 (3)C18—C17—C3111.5 (3)
C4—C3—C2102.8 (3)O5—C18—C17108.3 (3)
C5—C4—C7101.4 (4)
Hydrogen-bond geometry (Å, º) for (exoI) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O100.81 (4)1.96 (4)2.714 (4)155 (4)
O5—H5O···O3i0.81 (6)1.96 (6)2.739 (4)161 (5)
N1—H1A···O40.85 (3)1.97 (4)2.712 (4)146 (3)
O9—H9O···O50.92 (6)1.94 (6)2.783 (4)153 (5)
O10—H10O···O8ii0.86 (4)1.86 (4)2.673 (4)159 (4)
N2—H2A···O90.82 (3)1.98 (3)2.698 (4)146 (3)
O4—H4O···O50.81 (4)2.49 (4)2.857 (4)109 (3)
O9—H9O···O100.92 (6)2.48 (6)2.874 (4)106 (5)
C5—H5B···O40.972.303.005 (5)129
C23—H23B···O90.972.353.067 (6)131
C33—H33···O3iii0.932.443.230 (6)143
Symmetry codes: (i) x+1, y+1/2, z; (ii) x1, y, z; (iii) x+2, y+1/2, z.
Selected geometric parameters (Å, º) for (endoI) top
O1—C81.197 (3)C2—C31.578 (3)
O4—C171.416 (3)C3—C171.527 (3)
O5—C181.424 (3)C3—C41.538 (3)
N—C21.465 (3)C4—C71.529 (4)
C1—C71.521 (4)C4—C51.538 (4)
C1—C61.542 (4)C5—C61.542 (4)
C1—C21.555 (3)C17—C181.508 (3)
C2—C81.523 (3)
C7—C1—C6101.2 (2)C7—C4—C5101.2 (2)
C7—C1—C2101.65 (18)C3—C4—C5108.6 (2)
C6—C1—C2109.2 (2)C4—C5—C6103.2 (2)
N—C2—C1108.91 (18)C5—C6—C1103.1 (2)
C8—C2—C1110.10 (17)O1—C8—C2125.8 (2)
N—C2—C3112.92 (18)O2—C8—C2110.29 (19)
C8—C2—C3112.82 (18)N—C10—C11116.71 (19)
C1—C2—C3102.34 (18)O4—C17—C18110.30 (19)
C17—C3—C4114.78 (19)O4—C17—C3109.21 (18)
C17—C3—C2115.21 (18)C18—C17—C3112.21 (19)
C4—C3—C2102.40 (17)O5—C18—C17109.7 (2)
C7—C4—C3102.71 (18)
Hydrogen-bond geometry (Å, º) for (endoI) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···Ni0.87 (3)2.50 (3)3.239 (3)143 (3)
O4—H4O···O2i0.87 (3)2.55 (3)3.026 (2)116 (3)
O5—H5O···O3ii0.80 (3)1.93 (3)2.728 (3)175 (3)
N—H···O5iii0.86 (3)2.17 (3)2.917 (3)146 (2)
O4—H4O···O50.87 (3)2.39 (3)2.787 (3)109 (2)
C3—H3···O10.982.392.882 (3)111
C7—H7A···O40.972.362.960 (3)120
C7—H7B···O1iv0.972.573.313 (4)134
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1, y+1/2, z+3/2; (iii) x, y1/2, z+3/2; (iv) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds