Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, [Zn(C12­H11­N2­O2S)2(C10H8N2)], consists of monomeric mol­ecules in which the central ZnN2N′N′′ unit has a distorted tetrahedral geometry, with bond lengths ranging from 2.020 (3) to 2.109 (3) Å. The anionic ligands are potential bidentate donors and thus there are two secondary Zn—N interactions. The shorter of these is 2.317 (3) Å and completes at the Zn atom an irregular five-coordinated geometry, which can be described as a square pyramid showing 30% distortion towards the trigonal bipyramid; the other Zn—N contact is much longer at 2.549 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827019901536X/jz1373sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827019901536X/jz1373Isup2.hkl
Contains datablock I

CCDC reference: 143223

Comment top

The coordination chemistry of sulfonamide ligands has been the subject of some recent investigation (Otter et al., 1998). The electron-withdrawing nature of the sulfonyl group causes important changes both in the neutral ligand and in its complexes. Free ligands, such as tosylsulfonyl-imino-1H-pyridine, are expected to exist as sulfonamides; however, crystallographic and spectroscopic data show that the most stable form bears the acidic hydrogen at the pyridine nitrogen (Cabaleiro et al., 1999a). Therefore, its metal complexes could be easily obtained by its electrochemical deprotonation (Cabaleiro et al., 1999a,b) following an electrochemical procedure similar to that described by Oldham & Tuck (1982).

The title compound, (I), was obtained (see Experimental) by electrolysis of a solution of [(4-methylphenyl)sulfonyl]-imino-1H-pyridine and 2,2'-bipyridine in a mixture of acetonitrile and dichloromethane, using a zinc plate as the anode. The value of the electrochemical efficiency, defined as the amount of zinc dissolved per number of Faradays, was close to 0.5 mol F-1. This fact and the formation of hydrogen gas at the cathode are compatible with a reaction mechanism involving the anodic oxidation to zinc(II) and the deprotonation of the ligand at the cathode. \sch

The molecule consists of monomeric units where the zinc atom is coordinated to two anionic ligands and to one neutral bipyridine ligand resulting in a highly distorted tetrahedral environment, ZnN4; the disposition of the anionic ligands around the metal corresponds approximately to non-crystallographic twofold point symmetry. The distortion is, in part, due to the small bite of the 2,2'-bipyridine, N31—Zn—N32 77.86 (10)°, which also leads to non-ideal values for the other N—Zn—N angles, 99.32 (10)–134.82 (10)°. The Zn—N bond lengths, between 2.020 (3) and 2.109 (3) Å, are slightly longer than in other tetracoordinated complexes with tosylamide ligands such as bis{N-[(2-pyrrolyl)methylene]-N'-tosylbenzene-1,2-diaminato}-zinc(II) with values between 1.962 (3) and 2.049 (4) Å (Romero et al., 1997). Nevertheless, the Zn—Nbipy bond distances, 2.106 (3) and 2.110 (3) Å, are similar to those observed in another complexes containing tetrahedral zinc and bipyridine, e.g. [Zn(S-2,4,6-Pri3C6H2)2bipy] (Corwin & Koch, 1988) or 2,2'-bipyridine bis(benzothiazole-2-thionato)zinc(II) (Castro et al., 1993).

The Zn—Npy bond lengths, 2.020 (3) and 2.082 (3) Å are as expected for tetrahedral pyridine complexes of zinc(II) (Steffen & Palenik, 1977; Xiong et al., 1997; Xu et al., 1998) but they are also consistent with values for pentacoordinated zinc(II), e.g. the cation [µ2-(4-nitrophenyl)phosphato-O,O']-bis[tris(2-pyridylmethyl)amine-N,N',N"] zinc(II) showed values in the range 2.034–2.082 Å (Adams et al., 1995).

In the title compound further Zn—N contacts are provided by the second nitrogen atoms of the potentially bidentate amide ligands. One such nitrogen, N22, is located 2.317 (3) Å from the zinc atom, whereas N12 is appreciably more distant at 2.549 (3) Å. We consider the latter as a contact rather than a bond. However, the former is close to the sum of the covalent radii (0.19 Å larger), and could thus be considered as a bond. Similar Zn—N distances of of 2.330 (6), 2.362 (4), 2.345 (3) or 2.437 (3) Å have been found in various pentacoordinated zinc complexes with N-donors (Alcock et al., 1988; Shionoya et al., 1994; Bhattacharyya et al., 1996; Meyer & Rutsch, 1998), and also interpreted as corresponding to bonds. Accordingly, the coordination polyhedron in the title compound could be described as a square pyramid showing 30% distortion towards a trigonal bipyramid (τ = 0.3) (Addison et al., 1984). The N—Zn—N angle of the four-membered chelate ring is 60.44 (10)°, slightly smaller than those found in other four-membered chelate rings, 63.58 and 63.21° (Engelhardt et al., 1991).

Both tosyl ligands are similar, but with different dihedral angles between the pyridine ring and the benzene ring, 79.30 (11) and 89.86 (12)°, the former corresponding to the bidentate ligand. This angle is smaller than that in the free ligand [83.7 (3) and 87.6 (1)°] (Cabaleiro et al., 1999a) probably due to the coordination.

Although the hydrogen atoms have been included in their idealized positions, some of them are situated close to sulfonyl O atoms, providing evidence for CH···O hydrogen bonds (Taylor & Kennard, 1982) (Table 2). The intramolecular interactions might be due to geometrical constraints, but intermolecular ones may be assumed to play a significant role in the packing arrangement.

In the bipyridyl ligand, the pyridine rings are essentially coplanar, with a dihedral angle of 6.9 (2)°.

Experimental top

The electrochemical oxidation of a zinc anode in an acetonitrile/dichloromethane solution (25 + 25 ml) containing the free ligand HL (198.7 mg, 0.8 mmol), 2,2'-bipyridine (62.5 mg, 0.4 mmol) and tetramethylammonium perchlorate (ca 10 mg) for 2 h at 12.5 V and 10 mA, resulted in a loss of 28.5 mg of zinc from the anode and the formation of a colourless solution, which after concentration gave a well crystallized solid. This solid was identified as [Zn(C12H11N2SO2)2(C10H8N2)]. Found; H 4.5 C 56.8, N 12.1, S 9.0 Calculated for C34H30N6O4S2Zn, H 4.2, C 57.0, N 11.7, S 8.9.

Refinement top

Hydrogen atoms were refined using a riding model (HFIX 43 for aromatic H) and rigid methyl groups (HFIX 137).

Computing details top

Data collection: CAD-4 EXPRESS (Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The title molecule, including atomic numbering scheme, drawn using ORTEP-3 (Farrugia, 1998). Hydrogen atoms are represented as circles of arbitrary radius, other atoms as displacement ellipsoids drawn at the 30% probability level.
2,2'-bipyridine bis{[(4-methylphenyl) sulfonyl]-2-pyridyl-amide}zinc(II) top
Crystal data top
[Zn(C12H11N2O2S)2(C10H8N2)]F(000) = 1480
Mr = 716.13Dx = 1.421 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.8157 (7) ÅCell parameters from 25 reflections
b = 21.6466 (6) Åθ = 19.1–45.2°
c = 14.354 (2) ŵ = 2.58 mm1
β = 95.114 (8)°T = 293 K
V = 3347.3 (5) Å3Block, colourless
Z = 40.30 × 0.20 × 0.15 mm
Data collection top
CAD4 Enraf Nonius
diffractometer
4479 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 75.9°, θmin = 3.7°
ωθ scansh = 013
Absorption correction: ψ scan
(North et al., 1968) and PLATON (Spek, 1998)
k = 270
Tmin = 0.610, Tmax = 0.679l = 1817
7357 measured reflections3 standard reflections every 200 reflections
6986 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.137Calculated w = 1/[σ2(Fo2) + (0.0693P)2 + 0.9056P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6986 reflectionsΔρmax = 0.48 e Å3
427 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00124 (11)
Crystal data top
[Zn(C12H11N2O2S)2(C10H8N2)]V = 3347.3 (5) Å3
Mr = 716.13Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.8157 (7) ŵ = 2.58 mm1
b = 21.6466 (6) ÅT = 293 K
c = 14.354 (2) Å0.30 × 0.20 × 0.15 mm
β = 95.114 (8)°
Data collection top
CAD4 Enraf Nonius
diffractometer
4479 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968) and PLATON (Spek, 1998)
Rint = 0.039
Tmin = 0.610, Tmax = 0.6793 standard reflections every 200 reflections
7357 measured reflections intensity decay: none
6986 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
6986 reflectionsΔρmin = 0.38 e Å3
427 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.86020 (4)0.63768 (2)0.31084 (3)0.04617 (14)
S11.06592 (8)0.77267 (4)0.21262 (6)0.0564 (2)
O111.1379 (3)0.82034 (12)0.2620 (2)0.0786 (8)
O120.9607 (2)0.79283 (14)0.15122 (19)0.0785 (8)
S21.01866 (8)0.48652 (4)0.28286 (7)0.0576 (2)
O211.0251 (3)0.47998 (15)0.38255 (19)0.0855 (9)
O220.9826 (3)0.43263 (11)0.2285 (2)0.0865 (9)
N111.0121 (2)0.65668 (11)0.39838 (17)0.0440 (6)
N121.0152 (2)0.72193 (12)0.27819 (17)0.0487 (6)
C111.0559 (4)0.63081 (17)0.4793 (2)0.0588 (9)
H111.01010.59950.50420.071*
C121.1649 (4)0.6485 (2)0.5266 (3)0.0701 (11)
H121.19450.62910.58200.084*
C131.2305 (4)0.6964 (2)0.4896 (3)0.0673 (10)
H131.30430.71020.52100.081*
C141.1869 (3)0.72348 (16)0.4071 (2)0.0552 (8)
H141.23100.75540.38220.066*
C151.0759 (3)0.70291 (14)0.3606 (2)0.0427 (7)
C161.1673 (3)0.73517 (18)0.1400 (2)0.0586 (9)
C171.1277 (4)0.6833 (2)0.0908 (3)0.0766 (12)
H171.04960.66690.09780.092*
C181.2043 (5)0.6554 (2)0.0309 (3)0.0932 (14)
H181.17660.62020.00190.112*
C191.3208 (5)0.6784 (3)0.0184 (3)0.0912 (15)
C1101.3574 (4)0.7297 (3)0.0676 (4)0.0959 (16)
H1101.43570.74590.06060.115*
C1111.2830 (4)0.7591 (2)0.1280 (3)0.0806 (12)
H1111.31090.79450.16000.097*
C1121.4026 (6)0.6466 (3)0.0470 (4)0.138 (3)
H11A1.44960.67690.07750.207*
H11B1.35180.62360.09320.207*
H11C1.45830.61890.01190.207*
N210.8292 (2)0.61491 (12)0.16982 (17)0.0450 (6)
N220.9325 (3)0.54432 (12)0.25828 (18)0.0504 (6)
C210.7752 (3)0.63849 (17)0.0899 (2)0.0592 (9)
H210.73590.67660.09160.071*
C220.7759 (4)0.6088 (2)0.0066 (3)0.0776 (12)
H220.73770.62610.04800.093*
C230.8348 (4)0.5523 (2)0.0052 (3)0.0874 (14)
H230.83720.53130.05110.105*
C240.8896 (4)0.5271 (2)0.0856 (3)0.0716 (11)
H240.92870.48890.08450.086*
C250.8862 (3)0.55931 (15)0.1693 (2)0.0484 (7)
C261.1695 (3)0.50495 (15)0.2542 (2)0.0483 (7)
C271.2504 (3)0.45805 (17)0.2356 (2)0.0549 (8)
H271.22430.41710.23590.066*
C281.3692 (3)0.4721 (2)0.2169 (2)0.0641 (10)
H281.42280.44020.20420.077*
C291.4117 (4)0.5325 (2)0.2162 (3)0.0677 (10)
C2101.3304 (4)0.5786 (2)0.2365 (3)0.0748 (11)
H2101.35720.61940.23740.090*
C2111.2103 (4)0.56568 (17)0.2553 (3)0.0657 (10)
H2111.15690.59750.26860.079*
C2121.5429 (4)0.5466 (3)0.1943 (4)0.1020 (17)
H21A1.55340.59050.18940.153*
H21B1.55830.52740.13610.153*
H21C1.60040.53070.24340.153*
N310.7220 (2)0.70561 (12)0.31843 (18)0.0486 (6)
N320.7424 (2)0.59677 (12)0.40280 (18)0.0483 (6)
C310.7137 (4)0.75811 (17)0.2697 (3)0.0618 (9)
H310.77550.76730.23070.074*
C320.6178 (4)0.79907 (19)0.2747 (3)0.0770 (12)
H320.61420.83520.23940.092*
C330.5276 (4)0.7857 (2)0.3327 (3)0.0881 (14)
H330.46170.81280.33750.106*
C340.5353 (4)0.73187 (19)0.3839 (3)0.0746 (12)
H340.47500.72230.42380.090*
C350.5743 (3)0.61491 (19)0.4954 (2)0.0606 (9)
H350.51080.64050.51200.073*
C360.5956 (4)0.55891 (19)0.5385 (2)0.0653 (10)
H360.54600.54600.58450.078*
C370.6898 (4)0.52225 (19)0.5137 (3)0.0663 (10)
H370.70480.48410.54240.080*
C380.7620 (3)0.54237 (17)0.4460 (2)0.0599 (9)
H380.82670.51750.42960.072*
C390.6495 (3)0.63294 (15)0.4259 (2)0.0479 (7)
C3100.6341 (3)0.69209 (15)0.3753 (2)0.0498 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0440 (2)0.0516 (3)0.0436 (2)0.00204 (19)0.00753 (16)0.00034 (19)
S10.0548 (5)0.0567 (5)0.0582 (5)0.0068 (4)0.0075 (4)0.0169 (4)
O110.095 (2)0.0531 (15)0.089 (2)0.0250 (15)0.0133 (16)0.0048 (14)
O120.0586 (16)0.102 (2)0.0757 (17)0.0103 (15)0.0084 (13)0.0426 (16)
S20.0565 (5)0.0494 (5)0.0687 (6)0.0025 (4)0.0154 (4)0.0154 (4)
O210.0732 (18)0.114 (2)0.0730 (17)0.0265 (17)0.0280 (14)0.0503 (17)
O220.0753 (19)0.0416 (14)0.142 (3)0.0106 (13)0.0084 (19)0.0008 (15)
N110.0493 (14)0.0421 (13)0.0417 (13)0.0006 (11)0.0099 (11)0.0044 (10)
N120.0483 (15)0.0559 (16)0.0416 (14)0.0081 (13)0.0022 (11)0.0074 (12)
C110.065 (2)0.062 (2)0.0507 (18)0.0076 (18)0.0084 (16)0.0133 (16)
C120.074 (3)0.089 (3)0.0469 (19)0.019 (2)0.0021 (18)0.0081 (19)
C130.058 (2)0.090 (3)0.052 (2)0.004 (2)0.0069 (17)0.012 (2)
C140.0506 (19)0.059 (2)0.0550 (19)0.0099 (16)0.0000 (15)0.0039 (16)
C150.0460 (17)0.0408 (15)0.0420 (16)0.0017 (13)0.0072 (13)0.0036 (12)
C160.053 (2)0.070 (2)0.0530 (19)0.0063 (17)0.0079 (15)0.0170 (17)
C170.072 (3)0.082 (3)0.078 (3)0.013 (2)0.024 (2)0.004 (2)
C180.108 (4)0.089 (3)0.086 (3)0.002 (3)0.024 (3)0.002 (3)
C190.090 (4)0.108 (4)0.081 (3)0.017 (3)0.035 (3)0.025 (3)
C1100.066 (3)0.118 (4)0.109 (4)0.002 (3)0.039 (3)0.026 (3)
C1110.063 (2)0.091 (3)0.089 (3)0.018 (2)0.015 (2)0.015 (3)
C1120.139 (5)0.166 (6)0.119 (5)0.059 (5)0.069 (4)0.025 (4)
N210.0425 (14)0.0459 (14)0.0473 (14)0.0011 (11)0.0083 (11)0.0003 (11)
N220.0545 (16)0.0510 (15)0.0465 (14)0.0070 (13)0.0095 (12)0.0009 (12)
C210.059 (2)0.061 (2)0.058 (2)0.0075 (18)0.0053 (16)0.0087 (17)
C220.081 (3)0.100 (3)0.051 (2)0.017 (3)0.0006 (19)0.005 (2)
C230.101 (3)0.109 (4)0.051 (2)0.027 (3)0.003 (2)0.023 (2)
C240.077 (3)0.075 (3)0.062 (2)0.019 (2)0.003 (2)0.019 (2)
C250.0454 (17)0.0494 (18)0.0512 (18)0.0033 (14)0.0093 (14)0.0044 (14)
C260.060 (2)0.0448 (17)0.0413 (16)0.0015 (15)0.0103 (14)0.0042 (13)
C270.061 (2)0.0514 (19)0.0524 (19)0.0090 (16)0.0055 (16)0.0049 (15)
C280.056 (2)0.080 (3)0.057 (2)0.015 (2)0.0079 (17)0.0042 (19)
C290.059 (2)0.093 (3)0.052 (2)0.008 (2)0.0090 (17)0.003 (2)
C2100.071 (3)0.060 (2)0.097 (3)0.013 (2)0.025 (2)0.003 (2)
C2110.073 (3)0.0446 (19)0.083 (3)0.0013 (18)0.024 (2)0.0018 (18)
C2120.062 (3)0.144 (5)0.102 (4)0.021 (3)0.024 (2)0.002 (3)
N310.0480 (15)0.0497 (15)0.0493 (15)0.0004 (12)0.0111 (12)0.0009 (12)
N320.0453 (14)0.0518 (15)0.0489 (14)0.0004 (12)0.0102 (12)0.0032 (12)
C310.067 (2)0.055 (2)0.066 (2)0.0086 (18)0.0173 (18)0.0109 (17)
C320.089 (3)0.060 (2)0.086 (3)0.021 (2)0.024 (2)0.016 (2)
C330.082 (3)0.073 (3)0.113 (4)0.034 (2)0.033 (3)0.012 (3)
C340.069 (3)0.067 (2)0.093 (3)0.016 (2)0.036 (2)0.009 (2)
C350.058 (2)0.076 (2)0.0503 (19)0.0033 (18)0.0181 (16)0.0031 (17)
C360.065 (2)0.084 (3)0.0482 (19)0.011 (2)0.0130 (17)0.0106 (19)
C370.066 (2)0.073 (2)0.060 (2)0.004 (2)0.0034 (18)0.0218 (19)
C380.059 (2)0.059 (2)0.063 (2)0.0029 (17)0.0092 (17)0.0147 (17)
C390.0451 (16)0.0551 (19)0.0442 (16)0.0043 (15)0.0077 (13)0.0082 (14)
C3100.0485 (18)0.0503 (18)0.0523 (18)0.0011 (15)0.0127 (14)0.0044 (14)
Geometric parameters (Å, º) top
Zn—N112.020 (3)C21—H210.9300
Zn—N212.082 (3)C22—C231.381 (6)
Zn—N312.106 (3)C22—H220.9300
Zn—N322.109 (3)C23—C241.364 (6)
Zn—N222.317 (3)C23—H230.9300
Zn—N122.549 (3)C24—C251.393 (5)
S1—O111.440 (3)C24—H240.9300
S1—O121.443 (3)C26—C271.381 (5)
S1—N121.576 (3)C26—C2111.386 (5)
S1—C161.775 (4)C27—C281.371 (5)
S2—O211.434 (3)C27—H270.9300
S2—O221.438 (3)C28—C291.387 (6)
S2—N221.581 (3)C28—H280.9300
S2—C261.763 (3)C29—C2101.377 (6)
N11—C111.337 (4)C29—C2121.512 (5)
N11—C151.356 (4)C210—C2111.379 (5)
N12—C151.364 (4)C210—H2100.9300
C11—C121.362 (5)C211—H2110.9300
C11—H110.9300C212—H21A0.9600
C12—C131.389 (6)C212—H21B0.9600
C12—H120.9300C212—H21C0.9600
C13—C141.366 (5)N31—C311.333 (4)
C13—H130.9300N31—C3101.340 (4)
C14—C151.394 (4)N32—C381.339 (4)
C14—H140.9300N32—C391.339 (4)
C16—C171.375 (6)C31—C321.371 (5)
C16—C1111.379 (5)C31—H310.9300
C17—C181.386 (6)C32—C331.369 (6)
C17—H170.9300C32—H320.9300
C18—C191.381 (7)C33—C341.376 (6)
C18—H180.9300C33—H330.9300
C19—C1101.355 (7)C34—C3101.386 (5)
C19—C1121.513 (6)C34—H340.9300
C110—C1111.388 (6)C35—C361.371 (5)
C110—H1100.9300C35—C391.397 (4)
C111—H1110.9300C35—H350.9300
C112—H11A0.9600C36—C371.363 (5)
C112—H11B0.9600C36—H360.9300
C112—H11C0.9600C37—C381.372 (5)
N21—C211.341 (4)C37—H370.9300
N21—C251.353 (4)C38—H380.9300
N22—C251.369 (4)C39—C3101.474 (5)
C21—C221.358 (5)
N11—Zn—N21134.82 (10)S2—N22—Zn145.77 (16)
N11—Zn—N31111.56 (10)N21—C21—C22122.5 (4)
N21—Zn—N3199.32 (10)N21—C21—H21118.7
N11—Zn—N32101.51 (10)C22—C21—H21118.7
N21—Zn—N32117.07 (10)C21—C22—C23118.1 (4)
N31—Zn—N3277.86 (10)C21—C22—H22121.0
N11—Zn—N2295.78 (10)C23—C22—H22121.0
N21—Zn—N2260.44 (10)C24—C23—C22120.6 (4)
N31—Zn—N22152.52 (10)C24—C23—H23119.7
N32—Zn—N2294.46 (10)C22—C23—H23119.7
N11—Zn—N1257.09 (9)C23—C24—C25119.1 (4)
N21—Zn—N1292.43 (9)C23—C24—H24120.4
N31—Zn—N1289.52 (10)C25—C24—H24120.4
N32—Zn—N12149.25 (9)N21—C25—N22109.6 (3)
N22—Zn—N12108.51 (9)N21—C25—C24119.8 (3)
O11—S1—O12116.48 (19)N22—C25—C24130.6 (3)
O11—S1—N12114.02 (15)C27—C26—C211119.5 (3)
O12—S1—N12106.15 (15)C27—C26—S2119.6 (3)
O11—S1—C16106.34 (18)C211—C26—S2120.8 (3)
O12—S1—C16105.92 (17)C28—C27—C26119.7 (3)
N12—S1—C16107.32 (16)C28—C27—H27120.1
O21—S2—O22116.7 (2)C26—C27—H27120.1
O21—S2—N22106.02 (16)C27—C28—C29121.9 (4)
O22—S2—N22113.25 (16)C27—C28—H28119.1
O21—S2—C26106.93 (16)C29—C28—H28119.1
O22—S2—C26105.61 (16)C210—C29—C28117.6 (4)
N22—S2—C26107.95 (15)C210—C29—C212121.8 (4)
C11—N11—C15120.2 (3)C28—C29—C212120.6 (4)
C11—N11—Zn131.3 (2)C29—C210—C211121.7 (4)
C15—N11—Zn108.43 (19)C29—C210—H210119.2
C15—N12—S1124.2 (2)C211—C210—H210119.2
C15—N12—Zn84.16 (17)C210—C211—C26119.6 (4)
S1—N12—Zn151.38 (15)C210—C211—H211120.2
N11—C11—C12122.7 (3)C26—C211—H211120.2
N11—C11—H11118.7C29—C212—H21A109.5
C12—C11—H11118.7C29—C212—H21B109.5
C11—C12—C13117.9 (3)H21A—C212—H21B109.5
C11—C12—H12121.1C29—C212—H21C109.5
C13—C12—H12121.1H21A—C212—H21C109.5
C14—C13—C12120.2 (4)H21B—C212—H21C109.5
C14—C13—H13119.9C31—N31—C310119.2 (3)
C12—C13—H13119.9C31—N31—Zn125.6 (2)
C13—C14—C15119.6 (3)C310—N31—Zn115.1 (2)
C13—C14—H14120.2C38—N32—C39119.4 (3)
C15—C14—H14120.2C38—N32—Zn125.4 (2)
N11—C15—N12110.3 (3)C39—N32—Zn114.7 (2)
N11—C15—C14119.4 (3)N31—C31—C32122.6 (3)
N12—C15—C14130.3 (3)N31—C31—H31118.7
C17—C16—C111119.1 (4)C32—C31—H31118.7
C17—C16—S1119.6 (3)C33—C32—C31118.6 (4)
C111—C16—S1121.1 (3)C33—C32—H32120.7
C16—C17—C18119.9 (4)C31—C32—H32120.7
C16—C17—H17120.0C32—C33—C34119.4 (4)
C18—C17—H17120.0C32—C33—H33120.3
C19—C18—C17121.7 (5)C34—C33—H33120.3
C19—C18—H18119.1C33—C34—C310119.3 (4)
C17—C18—H18119.1C33—C34—H34120.4
C110—C19—C18117.1 (5)C310—C34—H34120.4
C110—C19—C112122.5 (5)C36—C35—C39119.0 (4)
C18—C19—C112120.4 (6)C36—C35—H35120.5
C19—C110—C111122.8 (5)C39—C35—H35120.5
C19—C110—H110118.6C37—C36—C35119.7 (3)
C111—C110—H110118.6C37—C36—H36120.1
C16—C111—C110119.3 (5)C35—C36—H36120.1
C16—C111—H111120.4C36—C37—C38119.1 (4)
C110—C111—H111120.4C36—C37—H37120.5
C19—C112—H11A109.5C38—C37—H37120.5
C19—C112—H11B109.5N32—C38—C37122.1 (4)
H11A—C112—H11B109.5N32—C38—H38119.0
C19—C112—H11C109.5C37—C38—H38119.0
H11A—C112—H11C109.5N32—C39—C35120.7 (3)
H11B—C112—H11C109.5N32—C39—C310116.1 (3)
C21—N21—C25119.9 (3)C35—C39—C310123.2 (3)
C21—N21—Zn139.7 (2)N31—C310—C34120.9 (3)
C25—N21—Zn100.5 (2)N31—C310—C39115.8 (3)
C25—N22—S2123.7 (2)C34—C310—C39123.4 (3)
C25—N22—Zn89.49 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O21i0.932.423.281 (4)154
C13—H13···O12ii0.932.413.257 (5)152
C14—H14···O110.932.382.970 (5)121
C111—H111···O110.932.542.908 (6)104
C24—H24···O220.932.423.005 (5)121
C27—H27···O11iii0.932.573.216 (4)127
C27—H27···O220.932.632.941 (5)100
C28—H28···O11iii0.932.733.301 (5)120
C31—H31···O120.932.463.377 (5)171
C32—H32···O22iv0.932.423.087 (5)129
C33—H33···O22iv0.932.843.298 (5)111
C35—H35···O12v0.932.563.316 (4)139
C38—H38···O210.932.443.348 (5)164
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x+5/2, y1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C12H11N2O2S)2(C10H8N2)]
Mr716.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.8157 (7), 21.6466 (6), 14.354 (2)
β (°) 95.114 (8)
V3)3347.3 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.58
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerCAD4 Enraf Nonius
diffractometer
Absorption correctionψ scan
(North et al., 1968) and PLATON (Spek, 1998)
Tmin, Tmax0.610, 0.679
No. of measured, independent and
observed [I > 2σ(I)] reflections
7357, 6986, 4479
Rint0.039
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.137, 1.02
No. of reflections6986
No. of parameters427
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.38

Computer programs: CAD-4 EXPRESS (Nonius, 1994), CAD-4 EXPRESS, HELENA (Spek, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
Zn—N112.020 (3)Zn—N122.549 (3)
Zn—N212.082 (3)S1—N121.576 (3)
Zn—N312.106 (3)S1—C161.775 (4)
Zn—N322.109 (3)S2—N221.581 (3)
Zn—N222.317 (3)S2—C261.763 (3)
N11—Zn—N21134.82 (10)N31—Zn—N22152.52 (10)
N11—Zn—N31111.56 (10)N32—Zn—N2294.46 (10)
N21—Zn—N3199.32 (10)N11—Zn—N1257.09 (9)
N11—Zn—N32101.51 (10)N21—Zn—N1292.43 (9)
N21—Zn—N32117.07 (10)N31—Zn—N1289.52 (10)
N31—Zn—N3277.86 (10)N32—Zn—N12149.25 (9)
N11—Zn—N2295.78 (10)N22—Zn—N12108.51 (9)
N21—Zn—N2260.44 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O21i0.932.423.281 (4)153.9
C13—H13···O12ii0.932.413.257 (5)151.8
C14—H14···O110.932.382.970 (5)121.3
C111—H111···O110.932.542.908 (6)104.1
C24—H24···O220.932.423.005 (5)120.5
C27—H27···O11iii0.932.573.216 (4)126.9
C27—H27···O220.932.632.941 (5)100.3
C28—H28···O11iii0.932.733.301 (5)120.4
C31—H31···O120.932.463.377 (5)170.8
C32—H32···O22iv0.932.423.087 (5)128.9
C35—H35···O12v0.932.563.316 (4)138.5
C38—H38···O210.932.443.348 (5)163.9
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x+5/2, y1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x1/2, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds