Download citation
Download citation
link to html
The lanthanidocene complex [Sm(BH4)(C12H19)2(C4H8O)], (I), shows a distorted tetrahedral arrangement around the central SmIII atom. It consists of two η5-isopropyltetramethylcyclopentadienyl ligands, one tetrahydroborato (BH4) ligand bridging via H atoms to the lanthanide atom and one coordinating tetrahydrofuran (thf) molecule. The BH4 unit of (I) coordinates as a tridentate ligand with three bridging H atoms and one terminal H atom [Sm—B—H4 176 (2)°]. The η5-isopropyl­tetra­methylcyclopentadienyl ligands of this bent-sandwich complex [Cp1—Sm—Cp2 133.53 (1)° where Cp denotes the centroid of the cyclopentadienyl ring] adopt staggered conformations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199013001/jz1369sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013001/jz1369Isup2.hkl
Contains datablock I

CCDC reference: 140937

Comment top

In the course of our work on lanthanidocene complexes for homogeneous catalysis (Schumann et al., 1995), we have synthesized compound (I), which represents an example of tridentate ligation by the tetrahydroborato ligand.

The Cp—Sm distances of (I) are 2.4888 (2) and 2.4910 (2) Å, the Sm—O bond length is 2.470 (2) Å and the Sm—B distance is 2.624 (3) Å. Our related work on tetrahydroborato metallocenes (Schumann et al., 1998) revealed that (η5-EtMe4C5)2Y(κ2H—BH4)(thf) contains a bidentate BH4 ligand with Cp—Y distances of 2.385 (2) and 2.392 (2) Å, a Y—O bond length of 2.389 (2) Å and a Y—B distance of 2.669 (4) Å. The constitution of the SmIII complex (I) and the constitution of the YIII complex differ only regarding the metal centre and the substitution of the cyclopentadienyl rings (iPr instead of Et). The Cp—Sm distance of (I) is about 0.1 Å longer than the Cp—Y distance of the YIII complex, and the Sm—O bond is also 0.081 Å longer than the analogous Y—O bond, due to the larger ionic radius of SmIII [SmIII 1.098 Å, YIII 1.04 Å (Shannon, 1976)]. However, the Sm—B distance [2.624 (3) Å] is 0.045 Å shorter than the Y—B distance [2.669 (4) Å] which is contrary to expectations based on the ionic radii. This can be explained by the observation that the SmIII complex, (I), has a BH4 ligand with three bridging hydrogen atoms whereas the YIII complex contains only two bridging hydrogen atoms. In the case of a tridentate complexation of BH4, (I), the resulting geometry reduces the Sm—B distance and compensates for the larger ionic radius of SmIII. Generally, for larger lanthanide atoms tridentate complexation is favored (Lappert et al., 1983). It was observed earlier that an increased number of bridging hydrogen atoms leads to a shorter distance between the two corresponding central atoms (Mayo et al., 1994). In agreement with these results the single-crystal structure of (η5-Me5C5)2SmBH4(thf) (Schumann et al., 1998) with two molecules per asymmetric unit and Sm—B distances of 2.58 (2) and 2.62 (2) Å corresponds to parameters for tridentate ligation; however, in this structure the H atoms of the BH4 moiety could not be located. Tetrahydroborato lanthanide complexes with the larger PrIII and NdIII atoms and the distances Pr—B [2.757 Å] and Nd—B [2.664 Å] were also suggested to have tridentate BH4 ligation (Deng et al., 1994). These examples show that the variation of the lanthanide centre influences the steric behaviour of lanthanidocene complexes, and there are further examples published in literature (Evans et al., 1999). The geometrical parameters of the three bridging H atoms of (I) indicate that only H2 and H3 are equivalent [B—H2 1.13 (3), B—H3 1.13 (3), Sm—H2 2.51 (3), Sm—H3 2.49 (3) Å, Sm—H2—B 83 (2) and Sm—H3—B 84 (2)°]. The H1 atom is located slightly closer to the Sm atom [B—H1 1.18 (3), Sm—H1 2.36 (3) Å and Sm—H1—B 89 (2)°]. As a result the Sm—B—H4 angle, involving the terminal H4 atom, is 176 (2)°. As expected regarding the bridging H atoms the average Y—H distance of 2.35 Å of the complex (η5-EtMe4C5)2Y(κ2H—BH4)(thf) is shorter than the average Sm—H distance of 2.45 Å of (I).

The average Cp—Sm distances of (η5-Me5C5)2SmBH4(thf) [2.456 (8) Å] and of (η5-Me5C5)2SmMe(thf) [2.458 Å] (Evans et al., 1988) are slightly shorter than in (I) [2.490 (2) Å], probably due to the larger cyclopentadienyl ring substituent (isopropyl group) of (I).

Experimental top

The synthesis of (I) was conducted by the reaction of samarium trichloride and isopropyl-tetramethylcyclopentadienyl sodium (molar ratio 1:2) refluxing in anhydrous tetrahydrofuran solution for 3 h followed by the addition of one equivalent of NaBH4 and further refluxing for 3 h yielding 54% of (I). The lanthanidocene complex is air- and moisture-sensitive. Single crystals could be obtained by slow cooling of n-hexane solution to 245 K. 1H and 13C{1H} NMR spectra were recorded on a Bruker ARX 200.

[C3H7(CH3)4C5]2Sm(κ3H—BH4)(thf): 1H NMR (200 MHz, C6D6, p.p.m.): δ = 2.27 (m, 2H, CH), 1.96 (s, 12H, CH3), 0.88 (s, 12H, CH3), −0.30 (s, 12H, (CH3)2), −1.36 (s, 4H, thf), −1.97 (s, 4H, thf), −16.36 (sbr, 4H, BH4). 13C{1H} NMR (50.32 MHz, C6D6, p.p.m.): δ = 123.43 (CC3H7), 116.24 (CCH3), 115.76 (CCH3), 65.92 (thf), 32.62 (CH(CH3)2), 21.47 (thf), 21.17 ((CH3)2), 19.17 (CH3), 18.58 (CH3).

Refinement top

The coverage of the unique data set is 99.9% complete to θ = 30.45°. The structure was solved by direct methods and subsequent difference Fourier syntheses. The peaks for the H atoms of the BH4 ligand [peak height 0.57 to 0.40 e Å−3] were located in the last difference Fourier maps. All hydrogen atoms were refined with isotropic displacement parameters. The Flack parameter was based on 3741 Friedel pairs.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing 40% probability displacement ellipsoids. H atoms are omitted for clarity, except for the BH4 ligand.
Bis(η5-isopropyl-tetramethyl-cyclopentadienyl)- (tetrahydroborato-κ3H,H',H'')-(tetrahydrofuran)-samarium(III) top
Crystal data top
[Sm(C12H19)2(C4H8O)(BH4)]Dx = 1.344 Mg m3
Mr = 563.84Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8192 reflections
a = 8.9875 (1) Åθ = 1.7–30.5°
b = 15.4363 (1) ŵ = 2.12 mm1
c = 20.0845 (2) ÅT = 173 K
V = 2786.40 (5) Å3Prismatic, orange
Z = 40.42 × 0.26 × 0.18 mm
F(000) = 1172
Data collection top
Siemens SMART CCD
diffractometer
8462 independent reflections
Radiation source: fine-focus sealed tube7687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 30.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.507, Tmax = 0.682k = 2221
26346 measured reflectionsl = 2825
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.002P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.064
8462 reflectionsΔρmax = 0.52 e Å3
480 parametersΔρmin = 0.90 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.022 (9)
Crystal data top
[Sm(C12H19)2(C4H8O)(BH4)]V = 2786.40 (5) Å3
Mr = 563.84Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9875 (1) ŵ = 2.12 mm1
b = 15.4363 (1) ÅT = 173 K
c = 20.0845 (2) Å0.42 × 0.26 × 0.18 mm
Data collection top
Siemens SMART CCD
diffractometer
8462 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7687 reflections with I > 2σ(I)
Tmin = 0.507, Tmax = 0.682Rint = 0.057
26346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.050Δρmax = 0.52 e Å3
S = 1.01Δρmin = 0.90 e Å3
8462 reflectionsAbsolute structure: Flack (1983)
480 parametersAbsolute structure parameter: 0.022 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm0.591176 (14)0.490793 (7)0.119379 (6)0.01580 (3)
O0.7497 (2)0.40702 (13)0.19651 (10)0.0244 (5)
B0.3770 (4)0.3769 (2)0.13404 (19)0.0247 (8)
H10.342 (3)0.4437 (19)0.1101 (16)0.034 (9)*
H20.412 (5)0.4003 (18)0.1849 (17)0.034 (9)*
H30.478 (4)0.3440 (19)0.1125 (18)0.038 (9)*
H40.291 (6)0.335 (3)0.137 (3)0.101 (18)*
C110.6543 (3)0.53055 (19)0.01194 (14)0.0227 (6)
C120.7956 (3)0.5288 (2)0.02030 (14)0.0257 (7)
C130.8261 (4)0.4425 (2)0.03805 (15)0.0251 (7)
C140.7053 (4)0.3896 (2)0.01766 (14)0.0232 (6)
C150.5986 (4)0.44439 (17)0.01278 (13)0.0210 (6)
C160.5928 (6)0.6075 (2)0.04966 (18)0.0372 (8)
H16A0.654 (5)0.659 (3)0.043 (2)0.059 (13)*
H16B0.499 (5)0.629 (3)0.036 (2)0.058 (15)*
H16C0.580 (5)0.592 (2)0.0946 (18)0.043 (10)*
C170.9048 (5)0.6019 (3)0.0258 (2)0.0417 (9)
H17A0.868 (5)0.652 (3)0.001 (2)0.063 (14)*
H17B0.987 (5)0.584 (3)0.006 (2)0.060 (14)*
H17C0.930 (5)0.615 (2)0.0656 (19)0.035 (10)*
C180.9746 (4)0.4090 (3)0.0633 (2)0.0422 (10)
H18A0.969 (5)0.357 (3)0.094 (2)0.056 (13)*
H18B1.017 (5)0.454 (3)0.090 (2)0.059 (13)*
H18C1.040 (4)0.392 (2)0.0251 (18)0.038 (10)*
C190.7016 (6)0.2922 (2)0.0189 (2)0.0374 (9)
H19A0.745 (4)0.266 (3)0.021 (2)0.052 (12)*
H19B0.617 (6)0.269 (3)0.024 (2)0.054 (15)*
H19C0.752 (5)0.266 (3)0.054 (2)0.075 (16)*
C1100.4592 (4)0.4090 (2)0.04769 (16)0.0277 (7)
H1100.425 (4)0.3602 (19)0.0225 (15)0.032 (9)*
C1110.5002 (5)0.3768 (3)0.1174 (2)0.0406 (8)
H11A0.574 (5)0.337 (2)0.119 (2)0.065 (13)*
H11B0.527 (4)0.423 (2)0.1457 (17)0.030 (9)*
H11C0.421 (5)0.346 (2)0.1397 (19)0.052 (11)*
C1120.3261 (4)0.4691 (3)0.0512 (2)0.0453 (10)
H11D0.228 (5)0.439 (3)0.072 (2)0.058 (13)*
H11E0.343 (4)0.510 (2)0.0836 (17)0.037 (10)*
H11F0.302 (4)0.494 (3)0.0086 (18)0.056 (11)*
C210.4053 (4)0.58623 (16)0.20227 (15)0.0238 (6)
C220.4185 (4)0.63409 (16)0.14162 (16)0.0271 (7)
C230.5665 (4)0.66731 (17)0.13802 (15)0.0266 (7)
C240.6446 (3)0.63818 (18)0.19452 (15)0.0230 (6)
C250.5457 (3)0.58816 (18)0.23519 (15)0.0200 (6)
C260.2602 (4)0.5500 (3)0.2278 (2)0.0374 (9)
H26A0.203 (7)0.567 (3)0.202 (3)0.09 (2)*
H26B0.233 (6)0.581 (3)0.267 (2)0.076 (16)*
H26C0.259 (5)0.497 (3)0.2415 (19)0.063 (14)*
C270.2953 (5)0.6537 (3)0.0935 (2)0.0406 (10)
H27A0.234 (5)0.614 (3)0.090 (2)0.052 (14)*
H27B0.325 (5)0.672 (3)0.050 (2)0.069 (15)*
H27C0.225 (5)0.684 (3)0.121 (3)0.082 (16)*
C280.6172 (6)0.7387 (2)0.0921 (2)0.0415 (10)
H28A0.564 (5)0.737 (2)0.053 (2)0.054 (12)*
H28B0.727 (5)0.740 (3)0.085 (2)0.052 (13)*
H28C0.609 (5)0.792 (2)0.108 (2)0.064 (12)*
C290.7973 (4)0.6700 (3)0.2148 (2)0.0329 (8)
H29A0.852 (7)0.636 (3)0.233 (3)0.10 (2)*
H29B0.786 (5)0.720 (3)0.243 (2)0.047 (12)*
H29C0.848 (6)0.684 (3)0.177 (2)0.074 (16)*
C2100.5832 (4)0.56107 (18)0.30613 (15)0.0243 (6)
H2100.682 (4)0.5578 (18)0.3090 (15)0.018 (8)*
C2110.5321 (5)0.6316 (2)0.35498 (19)0.0372 (9)
H21A0.557 (5)0.616 (2)0.4032 (19)0.049 (11)*
H21B0.409 (5)0.639 (2)0.3547 (19)0.057 (11)*
H21C0.578 (5)0.685 (2)0.3397 (18)0.052 (11)*
C2120.5265 (5)0.4727 (2)0.32877 (18)0.0363 (8)
H21D0.565 (4)0.455 (2)0.374 (2)0.054 (10)*
H21E0.540 (4)0.427 (2)0.2991 (17)0.026 (10)*
H21F0.426 (5)0.470 (2)0.3389 (16)0.047 (11)*
C310.8839 (4)0.4385 (2)0.22942 (18)0.0284 (7)
H31A0.852 (5)0.470 (3)0.270 (2)0.067 (14)*
H31B0.932 (4)0.472 (2)0.1979 (16)0.035 (9)*
C320.9720 (4)0.3586 (2)0.24839 (19)0.0334 (8)
H32A1.029 (4)0.367 (2)0.2819 (16)0.028 (10)*
H32B1.028 (4)0.338 (2)0.2108 (17)0.035 (10)*
C330.8492 (4)0.2950 (2)0.26392 (19)0.0349 (8)
H33A0.808 (4)0.308 (2)0.3067 (19)0.037 (10)*
H33B0.874 (4)0.2402 (19)0.2640 (15)0.023 (8)*
C340.7322 (5)0.3146 (2)0.21113 (19)0.0312 (8)
H34A0.754 (4)0.280 (2)0.1682 (18)0.038 (10)*
H34B0.636 (4)0.308 (2)0.2258 (17)0.034 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm0.01475 (5)0.01518 (5)0.01746 (5)0.00060 (5)0.00117 (6)0.00073 (5)
O0.0221 (13)0.0245 (11)0.0267 (11)0.0029 (8)0.0035 (9)0.0016 (8)
B0.022 (2)0.0224 (15)0.029 (2)0.0036 (12)0.0038 (14)0.0001 (13)
C110.0214 (15)0.0280 (16)0.0187 (14)0.0030 (11)0.0002 (11)0.0034 (11)
C120.0209 (15)0.0374 (18)0.0188 (14)0.0108 (12)0.0000 (12)0.0017 (12)
C130.0179 (16)0.0429 (19)0.0146 (15)0.0020 (13)0.0025 (12)0.0020 (13)
C140.0239 (16)0.0294 (16)0.0165 (14)0.0023 (13)0.0042 (12)0.0027 (12)
C150.0182 (14)0.0297 (14)0.0150 (13)0.0050 (14)0.0004 (14)0.0002 (10)
C160.052 (2)0.0314 (17)0.0278 (18)0.004 (2)0.007 (2)0.0088 (13)
C170.037 (2)0.057 (2)0.032 (2)0.026 (2)0.004 (2)0.0055 (17)
C180.0240 (19)0.070 (3)0.033 (2)0.0154 (18)0.0012 (17)0.003 (2)
C190.053 (3)0.0265 (19)0.032 (2)0.0104 (18)0.0038 (19)0.0052 (15)
C1100.0255 (16)0.0382 (18)0.0193 (16)0.0123 (13)0.0033 (12)0.0003 (13)
C1110.047 (2)0.052 (2)0.0220 (17)0.0113 (18)0.0034 (19)0.0060 (19)
C1120.0272 (18)0.074 (3)0.035 (2)0.0030 (18)0.0084 (16)0.006 (2)
C210.0211 (14)0.0196 (12)0.0307 (16)0.0046 (14)0.0039 (16)0.0050 (10)
C220.0269 (17)0.0206 (12)0.0338 (17)0.0071 (14)0.0071 (15)0.0049 (11)
C230.0318 (19)0.0195 (12)0.0285 (16)0.0014 (12)0.0019 (13)0.0006 (11)
C240.0257 (16)0.0187 (14)0.0245 (16)0.0041 (11)0.0049 (12)0.0015 (11)
C250.0213 (15)0.0161 (13)0.0228 (15)0.0001 (11)0.0008 (11)0.0029 (11)
C260.0228 (19)0.041 (2)0.049 (2)0.0016 (16)0.0074 (18)0.0070 (19)
C270.032 (2)0.043 (2)0.047 (3)0.0139 (18)0.0139 (18)0.0080 (19)
C280.063 (3)0.0235 (16)0.038 (2)0.0033 (18)0.007 (2)0.0090 (14)
C290.030 (2)0.0315 (19)0.037 (2)0.0140 (15)0.0057 (17)0.0012 (16)
C2100.0263 (17)0.0259 (14)0.0207 (15)0.0029 (15)0.0016 (15)0.0015 (10)
C2110.055 (3)0.0327 (18)0.0242 (17)0.0027 (16)0.0036 (17)0.0065 (14)
C2120.054 (2)0.0286 (18)0.0262 (18)0.0005 (16)0.0087 (16)0.0011 (14)
C310.0194 (18)0.0285 (15)0.0372 (19)0.0017 (12)0.0062 (14)0.0003 (14)
C320.0295 (18)0.043 (2)0.0280 (19)0.0125 (15)0.0066 (16)0.0005 (15)
C330.043 (2)0.0289 (18)0.033 (2)0.0079 (15)0.0087 (16)0.0084 (15)
C340.034 (2)0.0233 (16)0.036 (2)0.0027 (14)0.0053 (17)0.0006 (14)
Geometric parameters (Å, º) top
Sm—Cp12.4888 (2)C11—C161.513 (4)
Sm—Cp22.4910 (2)C12—C131.406 (4)
Sm—O2.470 (2)C12—C171.499 (5)
Sm—B2.624 (3)C13—C141.419 (4)
Sm—H12.36 (3)C13—C181.518 (5)
Sm—H22.51 (3)C14—C151.418 (4)
Sm—H32.49 (3)C14—C191.503 (5)
B—H11.18 (3)C15—C1101.536 (4)
B—H21.13 (3)C110—C1121.515 (5)
B—H31.13 (3)C110—C1111.530 (5)
B—H41.01 (5)C21—C251.425 (5)
Sm—C222.739 (3)C21—C221.430 (4)
Sm—C152.750 (3)C21—C261.508 (5)
Sm—C232.759 (3)C22—C231.428 (5)
Sm—C112.767 (3)C22—C271.501 (5)
Sm—C142.769 (3)C23—C241.408 (4)
Sm—C122.771 (3)C23—C281.508 (5)
Sm—C132.771 (3)C24—C251.433 (4)
Sm—C242.772 (3)C24—C291.514 (5)
Sm—C212.781 (3)C25—C2101.523 (4)
Sm—C252.799 (3)C210—C2121.526 (4)
O—C311.459 (4)C210—C2111.535 (4)
O—C341.465 (4)C31—C321.514 (5)
C11—C151.421 (4)C32—C331.510 (5)
C11—C121.426 (4)C33—C341.524 (5)
Cp1—Sm—Cp2133.53 (1)C12—Sm—C25125.43 (9)
Cp1—Sm—O102.45 (5)C13—Sm—C25138.20 (9)
Cp2—Sm—O105.44 (5)C24—Sm—C2529.80 (9)
Cp1—Sm—B109.35 (8)C21—Sm—C2529.58 (9)
Cp2—Sm—B107.01 (8)C31—O—C34108.8 (2)
O—Sm—B90.11 (9)C31—O—Sm125.91 (17)
Sm—H1—B89 (2)C34—O—Sm125.01 (19)
Sm—H2—B83 (2)C15—C11—C12107.6 (3)
Sm—H3—B84 (2)C15—C11—C16126.8 (3)
Sm—B—H4176 (2)C12—C11—C16124.6 (3)
H1—B—H299 (2)C15—C11—Sm74.43 (17)
H1—B—H3117 (2)C12—C11—Sm75.26 (16)
H1—B—H4112 (3)C16—C11—Sm125.2 (2)
H2—B—H3106 (3)C13—C12—C11107.8 (2)
H2—B—H4111 (4)C13—C12—C17124.6 (3)
H3—B—H4111 (3)C11—C12—C17127.0 (3)
O—Sm—C22130.34 (8)C13—C12—Sm75.30 (18)
B—Sm—C2296.14 (11)C11—C12—Sm74.90 (16)
O—Sm—C15117.06 (8)C17—C12—Sm122.7 (2)
B—Sm—C1587.22 (10)C12—C13—C14108.9 (3)
C22—Sm—C15112.43 (9)C12—C13—C18125.3 (3)
O—Sm—C23118.57 (8)C14—C13—C18125.0 (3)
B—Sm—C23125.98 (10)C12—C13—Sm75.30 (19)
C22—Sm—C2330.10 (10)C14—C13—Sm75.08 (17)
C15—Sm—C23112.96 (8)C18—C13—Sm124.3 (2)
O—Sm—C11126.56 (8)C15—C14—C13107.4 (3)
B—Sm—C11113.96 (10)C15—C14—C19126.1 (3)
C22—Sm—C1195.31 (9)C13—C14—C19126.0 (3)
C15—Sm—C1129.85 (8)C15—C14—Sm74.37 (16)
C23—Sm—C1185.80 (9)C13—C14—Sm75.25 (17)
O—Sm—C1487.34 (8)C19—C14—Sm122.9 (2)
B—Sm—C1488.65 (10)C14—C15—C11108.4 (3)
C22—Sm—C14141.82 (9)C14—C15—C110122.4 (3)
C15—Sm—C1429.77 (9)C11—C15—C110128.7 (3)
C23—Sm—C14133.41 (9)C14—C15—Sm75.86 (16)
C11—Sm—C1449.15 (9)C11—C15—Sm75.72 (17)
O—Sm—C12100.30 (8)C110—C15—Sm120.9 (2)
B—Sm—C12135.15 (10)C112—C110—C111110.3 (3)
C22—Sm—C12108.78 (10)C112—C110—C15116.6 (3)
C15—Sm—C1249.16 (9)C111—C110—C15109.7 (3)
C23—Sm—C1286.66 (9)C25—C21—C22108.2 (3)
C11—Sm—C1229.84 (8)C25—C21—C26128.0 (3)
C14—Sm—C1249.01 (9)C22—C21—C26123.5 (3)
O—Sm—C1377.85 (8)C25—C21—Sm75.94 (18)
B—Sm—C13116.40 (10)C22—C21—Sm73.38 (18)
C22—Sm—C13138.18 (10)C26—C21—Sm121.8 (2)
C15—Sm—C1348.89 (10)C23—C22—C21107.8 (3)
C23—Sm—C13114.02 (10)C23—C22—C27125.6 (3)
C11—Sm—C1348.82 (9)C21—C22—C27126.4 (4)
C14—Sm—C1329.67 (9)C23—C22—Sm75.74 (17)
C12—Sm—C1329.40 (9)C21—C22—Sm76.61 (17)
O—Sm—C2489.34 (8)C27—C22—Sm118.4 (2)
B—Sm—C24128.02 (10)C24—C23—C22108.0 (3)
C22—Sm—C2449.20 (9)C24—C23—C28125.1 (3)
C15—Sm—C24137.31 (8)C22—C23—C28125.1 (3)
C23—Sm—C2429.49 (9)C24—C23—Sm75.75 (16)
C11—Sm—C24107.54 (9)C22—C23—Sm74.16 (15)
C14—Sm—C24143.19 (9)C28—C23—Sm127.9 (2)
C12—Sm—C2495.87 (9)C23—C24—C25108.8 (3)
C13—Sm—C24114.20 (10)C23—C24—C29124.5 (3)
O—Sm—C21104.37 (8)C25—C24—C29125.7 (3)
B—Sm—C2181.21 (10)C23—C24—Sm74.76 (16)
C22—Sm—C2130.01 (9)C25—C24—Sm76.16 (16)
C15—Sm—C21136.93 (10)C29—C24—Sm124.7 (2)
C23—Sm—C2149.25 (9)C21—C25—C24107.2 (3)
C11—Sm—C21125.20 (8)C21—C25—C210128.6 (3)
C14—Sm—C21164.42 (10)C24—C25—C210123.0 (3)
C12—Sm—C21135.73 (9)C21—C25—Sm74.48 (17)
C13—Sm—C21162.37 (10)C24—C25—Sm74.04 (17)
C24—Sm—C2148.95 (10)C210—C25—Sm126.71 (18)
O—Sm—C2581.03 (8)C25—C210—C212116.8 (3)
B—Sm—C2599.18 (10)C25—C210—C211109.7 (3)
C22—Sm—C2549.32 (9)C212—C210—C211110.1 (3)
C15—Sm—C25160.97 (8)O—C31—C32106.0 (3)
C23—Sm—C2549.10 (9)C33—C32—C31101.5 (3)
C11—Sm—C25134.66 (9)C32—C33—C34103.4 (3)
C14—Sm—C25165.95 (9)O—C34—C33105.0 (3)

Experimental details

Crystal data
Chemical formula[Sm(C12H19)2(C4H8O)(BH4)]
Mr563.84
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)8.9875 (1), 15.4363 (1), 20.0845 (2)
V3)2786.40 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.12
Crystal size (mm)0.42 × 0.26 × 0.18
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.507, 0.682
No. of measured, independent and
observed [I > 2σ(I)] reflections
26346, 8462, 7687
Rint0.057
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.050, 1.01
No. of reflections8462
No. of parameters480
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.52, 0.90
Absolute structureFlack (1983)
Absolute structure parameter0.022 (9)

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON99 (Spek, 1990).

Selected geometric parameters (Å, º) top
Sm—Cp12.4888 (2)Sm—H32.49 (3)
Sm—Cp22.4910 (2)B—H11.18 (3)
Sm—O2.470 (2)B—H21.13 (3)
Sm—B2.624 (3)B—H31.13 (3)
Sm—H12.36 (3)B—H41.01 (5)
Sm—H22.51 (3)
Cp1—Sm—Cp2133.53 (1)Sm—H3—B84 (2)
Cp1—Sm—O102.45 (5)Sm—B—H4176 (2)
Cp2—Sm—O105.44 (5)H1—B—H299 (2)
Cp1—Sm—B109.35 (8)H1—B—H3117 (2)
Cp2—Sm—B107.01 (8)H1—B—H4112 (3)
O—Sm—B90.11 (9)H2—B—H3106 (3)
Sm—H1—B89 (2)H2—B—H4111 (4)
Sm—H2—B83 (2)H3—B—H4111 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds