research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chiral crystallization of a zinc(II) complex

crossmark logo

aDepartment of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi-110025, India, bDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and cDepartment of Applied, Sciences and Humanities , Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi - 110025, India
*Correspondence e-mail: akitsu2@rs.tus.ac.jp

Edited by J. Reibenspies, Texas A & M University, USA (Received 10 March 2021; accepted 5 April 2021; online 23 April 2021)

The compound, {6,6′-dimeth­oxy-2,2′-[(4-azaheptane-1,7-di­yl)bis­(nitrilo­meth­an­yl­idyne)]diphenolato}zinc(II) methanol monosolvate, [Zn(C22H27N3O4)]·CH3OH, at 298 K crystallizes in the ortho­rhom­bic space group Pna21. The Zn atom is coordinated by a penta­dentate Schiff base ligand in a distorted trigonal–bipyramidal N3O2 geometry. The equatorial plane is formed by the two phenolic O and one amine N atom. The axial positions are occupied by two amine N atoms. The distorted bipyramidal geometry is also supported by the trigonality index (τ), which is found to be 0.85 for the mol­ecule. In the crystal, methanol solvent mol­ecule is connected to the complex mol­ecule by an O—H⋯O hydrogen bond and the complex mol­ecules are connected by weak supra­molecular inter­actions, so achiral mol­ecules generate a chiral crystal. The Hirshfeld surface analysis suggests that H⋯H contacts account for the largest percentage of all inter­actions.

1. Chemical context

Schiff bases and their coordination compounds play an important role in metal coordination chemistry owing to their thermal stability, relevant biological properties and high synthesis flexibility (Bartyzel, 2018[Bartyzel, A. (2018). J. Therm. Anal. Calorim. 131, 1221-1236.]; Siddiqui et al., 2006[Siddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, W. (2006). Molecules, 11, 206-211.]; Sacconi, 1966[Sacconi, L. (1966). Coord. Chem. Rev. 1, 126-132.]). These ligands are able to coordinate a wide variety of metal ions and to stabilize them in various oxidation states. The coordination geometry of the complexes depends upon the chemical structure of the chosen ligand, the coordination geometry preferred by the metal, the metal-to-ligand ratio, the reaction time and temperature (Thakurta et al., 2010[Thakurta, S., Rizzoli, C., Butcher, R. J., Gómez-García, C. J., Garribba, E. & Mitra, S. (2010). Inorg. Chim. Acta, 336, 1395-1403.]; Fleck et al., 2013[Fleck, M., Layek, M., Saha, R. & Bandyopadhyay, D. (2013). Transition Met. Chem. 38, 715-724.]; Sanmartín et al., 2001[Sanmartín, J., Bermejo, M. R., García-Deibe, A. M., Nascimento, O. & Costa-Filho, A. J. (2001). Inorg. Chim. Acta, 318, 135-142.]; Khalaji et al., 2011[Khalaji, A. D. & Triki, S. (2011). Russ. J. Coord. Chem. 37, 518-522.]). A number of zinc(II) complexes with different Schiff base ligands and their potential applications in sensing and as anti­bacterial and anti­cancer agents have been documented in the literature (Lui et al.,2019[Lui, W., Li, G., Zhao, X. & Wang, L. (2019). ChemistrySelect, 4, 29, 9317-9321.]; Niu et al., 2015[Niu, M. J., Li, Z., Chang, G. L., Kong, X. J., Hong, M. & Zhang, Q. F. (2015). PLOS ONE. https://doi.org/10.1317/journal.pone.0130922.]; Tang et al., 2013[Tang, B., Ma, H., Li, G., Wang, Y., Anwar, G., Shi, R. & Li, H. (2013). CrystEngComm, 15, 8069-8073.]; AlDamen et al., 2016[AlDamen, M. A., Charef, N., Juwhari, H. K., Sweidan, K., Mubarak, M. S. & Peters, D. G. (2016). J. Chem. Crystallogr. 46, 411-420.]; Iksi et al., 2020[Iksi, S., Guemmout, F. E., Reguero, M., Masdeu-Bulto, A. M. & Ghnux, A. (2020). J Chem Crystallogr. https://doi.org/10.1007/s10870-020-00865-y.]). In addition, lanthanide Schiff base compounds are the subject of immense research inter­est because of their unique structures and their potential applications in advanced materials such as undoped semiconductors, magnetic, catalytic and florescent and non-linear optical materials (Li et al., 2016[Li, B., Wen, H. M., Cui, Y., Zhou, W., Qian, G. & Chen, B. (2016). Adv. Mater. 28, 8819-8860.]; Ishikawa et al., 2003[Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. Y. & Kaizu, Y. (2003). J. Am. Chem. Soc. 125, 8694-8695.]; Long et al., 2018b[Long, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D. & Larionova, J. (2018b). Coord. Chem. Rev. 363, 57-70.]).

In a previous work, we reported the crystal and mol­ecular structure of a CuII complex based on Schiff base ligand N1,N3-bis­(3-meth­oxy­salicylicyl­idene)di­ethyl­enetri­amine where two Schiff base ligands join two CuII ions in a chelate–spacer–chelate mode, in which the protonated aliphatic secondary amine moieties represents the spacer to form a double helix (Noor et al., 2018[Noor, S., Goddard, R., Kumar, S., Ahmad, N., Sabir, S., Mitra, P. & Seidel, R. (2018). J. Chem. Crystallogr. 48, 164-169.]). In an another report, we redetermined the crystal structure of an organic–inorganic salt of an MnII–Schiff base ligand complex Mn(C18H18N2O4)(H2O)2]ClO4 at 100 K. In contrast to crystal-structure determinations at room temperature (Akitsu et al., 2005[Akitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. C61, m324-m328.], Bermejo et al., 2007[Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. (2007). Eur. J. Inorg. Chem. pp. 3789-3797.]), positional disorder of the ethyl­ene bridge in the Schiff base and the perchlorate anion was not observed at 100 K (Noor et al. 2016[Noor, S. W., Seidel, R. W., Goddard, R., Kumar, S. & Sabir, S. (2016). IUCrData, 1, x161735.]). We now report the chiral crystallization on a zinc(II) complex.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the Zn atom is coordinated by a penta­dentate Schiff base ligand in distorted trigonal–bipyramidal [ONNNO] geometry. The equatorial plane is formed by the two phenolic O [Zn—O3 = 2.001 (2) Å; Zn—O2 = 1.975 (2) Å] and one amine N [Zn—N2 = 2.152 (3) Å]. The axial positions are occupied by amine N atoms [Zn—N1 = 2.094 (2) Å, Zn—N3; 2.107 (2) Å]. The trigonality index (τ) for the complex is calculated as τ = (β − α) /60 where α and β are the main opposing angles in the coordination polyhedron (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For perfect square-pyramidal and trigonal–bipyramidal coordination geometries, the values of τ are zero and unity, respectively. In the present complex, for Zn, β = O2—Zn—O3 = 122.87 (10)° and α = N1—Zn—N3 = 173.91 (12)° so the trigonality index is 0.85. According to this value, the coordination geometry around the zinc ion is best described as distorted trigonal–bipyramidal. An intra­molecular O—H⋯O hydrogen bond is observed between the meth­oxy function and the oxygen atom in the six-membered ring (Table 1[link]). This mol­ecule has neither an asymmetric carbon nor a helical structure, so it is an achiral compound.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O2i 0.97 2.58 3.549 (6) 172
C10—H10B⋯O5 0.97 2.50 3.340 (7) 144
O5—H5A⋯O3 0.82 2.01 2.722 (5) 144
Symmetry code: (i) [-x+1, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme.

3. Supra­molecular features

In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds (Fig. 2[link], Table 1[link]). In addition, weak supra­molecular C—H⋯O inter­actions are found (Table 1[link] and Fig. 3[link]).

[Figure 2]
Figure 2
A view of the O5—H5A⋯O3 and C10—H10B⋯O5 inter­actions (dashed lines).
[Figure 3]
Figure 3
A view of the C13—H13A⋯O2 inter­action (dashed lines).

4. Hirshfeld Surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The fingerprint plot for this structure shows typical `wings' (Fig. 4[link]i). The percentage contribution to the Hirshfeld surface area by close contacts with H atoms inside the surface and H atoms outside is 57.4% (Fig. 4[link]ii), for O atoms inside the surface and H atoms outside it is 9.1% (Fig. 4[link]iii), for H atoms inside the surface and O atoms outside it is 8.5% (Fig. 4[link]iv), for C atoms inside the surface and H atoms outside it is 14.5% (Fig. 4[link]v), and for H atoms inside the surface and C atoms outside it is 8.2% (Fig. 4[link]vi). Hirshfeld surface analysis of the H⋯O inter­action clearly shows the close inter­molecular contact near methanol, (di is 1.1 Å and de is 0.75 Å).

[Figure 4]
Figure 4
The three-dimensional Hirshfeld surface showing the inter­molecular inter­actions plotted over dnorm and the two-dimensional fingerprint plots of the title compound, showing (i) all inter­actions, and delineated into (ii) H⋯H, (iii) O⋯H, (iv) H⋯O, (v) C⋯H and (vi) H⋯C inter­actions.

5. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.41, update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures returned three relevant entries: (2,2′-bi­pyridine-κ2N,N′)[N-(2-oxido-1-naphthyl­idene)threoninato-κ3O1,N,O2]copper(II) (BIZGIB; Qiu et al., 2008[Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745-m746.]), di­aqua­(N-salicyl­idene-L-threoninato)copper(II) (SLCDCU; Korhonen & Hämäläinen, 1981[Korhonen, K. & Hämäläinen, R. (1981). Acta Cryst. B37, 829-834.]) and [N-(3-meth­oxy-2-oxido­benzyl­idene-κO2)threoninato-κ2O1,N](1,10-phenanthroline-κ2N,N′)copper(II) hemihydrate (UQUYUB; Jing et al., 2011[Jing, B., Li, L., Dong, J. & Li, J. (2011). Acta Cryst. E67, m536.]). The metal atom in BIZGIB is five-coordinated by one N atom and two O atoms, and two N atoms from a distorted square-pyramidal 2,2-bi­pyridine ligand. In the crystal, a two-dimensional network is formed by a combination of inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. In SLCDCU, two mol­ecules form square planes by two inter­molecular hydrogen bonds. In UQUYUB, inter­molecular O—H⋯O hydrogen bonds form a one-dimensional left-handed helical structure extending parallel to [001].

6. Synthesis and crystallization

The Schiff base ligand H2L was prepared according to a reported procedure (Matar et al., 2015[Matar, S. A., Talib, W. H., Mustafa, M. S., Mubarak, M. S. & AlDamen, M. A. (2015). Arab. J. Chem. 8, 850-857.]) by a condensation reaction between 3-meth­oxy-2-hy­droxy­benzaldehyde (10 mmol, 1.52 mg) and di­propyl­enetri­amine (5.0 mmol, 0.641 mL) in ethanol solution (30 cm3) under reflux conditions. After solvent removal, a yellow oil was obtained in 85% yield. ν(C=N) 1630 cm−1.

The title compound was synthesized by the reaction of H2L (1 mmol, 0.399 mg) with Zn(OAc)2·2H2O (1 mmol, 0.18 mg) in MeOH:H2O (v/v, 10:1) (50 cm3) with a few drops of LiOH (1%). The reaction mixture was heated to 343 K for 1 h. The yellow solid obtained was filtered off and dried. ν(C=N) 1618 cm−1. Single crystals suitable for X-ray crystallography were obtained several days after dissolving the solid in 40 cm3 of hot methanol.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were placed in geometrically calculated positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms]. The O-bound H atom was located in a difference-Fourier map and refined using a riding model [O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O)].

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C22H27N3O4)]·CH4O
Mr 494.88
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 293
a, b, c (Å) 14.5937 (6), 11.4425 (5), 13.5794 (5)
V3) 2267.60 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.12
Crystal size (mm) 0.53 × 0.49 × 0.45
 
Data collection
Diffractometer Bruker APEXIII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.53, 0.63
No. of measured, independent and observed [I > 2σ(I)] reflections 28025, 6099, 4682
Rint 0.035
(sin θ/λ)max−1) 0.730
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.04
No. of reflections 6099
No. of parameters 294
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.47
Absolute structure Flack x determined using 1852 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.006 (5)
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: APEX3 (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

{6,6'-Dimethoxy-2,2'-[(4-azaheptane-1,7-diyl)bis(nitrilomethanylidyne)]diphenolato}zinc(II) methanol monosolvate top
Crystal data top
[Zn(C22H27N3O4)]·CH4ODx = 1.450 Mg m3
Mr = 494.88Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 3270 reflections
a = 14.5937 (6) Åθ = 2.2–23.9°
b = 11.4425 (5) ŵ = 1.12 mm1
c = 13.5794 (5) ÅT = 293 K
V = 2267.60 (16) Å3Prism, yellow
Z = 40.53 × 0.49 × 0.45 mm
F(000) = 1040
Data collection top
Bruker APEXIII CCD
diffractometer
4682 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.035
φ and ω scansθmax = 31.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 2120
Tmin = 0.53, Tmax = 0.63k = 1616
28025 measured reflectionsl = 1818
6099 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max = 0.001
wR(F2) = 0.087Δρmax = 0.56 e Å3
S = 1.04Δρmin = 0.47 e Å3
6099 reflectionsExtinction correction: SHELXL-2016/6 (Sheldrick 2015b)
294 parametersExtinction coefficient: 0.0091 (12)
1 restraintAbsolute structure: Flack x determined using 1852 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.006 (5)
Hydrogen site location: inferred from neighbouring sites
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.52170 (2)0.52816 (3)0.56294 (4)0.04284 (12)
O10.40493 (18)0.1936 (2)0.4333 (2)0.0724 (8)
N10.65984 (15)0.4787 (2)0.5612 (3)0.0493 (5)
C10.3627 (3)0.1110 (5)0.3702 (4)0.0857 (13)
H1A0.3968830.105380.3100170.129*
H1B0.3012170.1355160.3559790.129*
H1C0.3614080.0360450.4019990.129*
O20.48708 (13)0.3687 (2)0.52144 (19)0.0520 (5)
N20.5413 (2)0.5782 (3)0.7143 (2)0.0650 (8)
H20.5295720.6624820.7157390.078*
C20.4980 (2)0.1835 (3)0.4463 (3)0.0549 (8)
O30.53164 (12)0.6620 (2)0.46866 (16)0.0457 (5)
N30.38225 (17)0.5711 (2)0.58014 (19)0.0486 (6)
C30.5487 (3)0.0903 (3)0.4162 (3)0.0693 (10)
H30.5200340.0281290.384650.083*
C40.6437 (3)0.0868 (3)0.4321 (3)0.0720 (10)
H40.6774660.0212750.4141270.086*
O40.58178 (14)0.7754 (2)0.30994 (16)0.0545 (5)
C50.6856 (2)0.1802 (3)0.4741 (3)0.0610 (8)
H50.748750.1790290.4832880.073*
O50.5841 (3)0.8341 (4)0.5950 (4)0.140 (2)
H5A0.5815120.8018460.5411040.21*
C60.5391 (2)0.2829 (3)0.4930 (2)0.0453 (6)
C70.6353 (2)0.2785 (3)0.5037 (2)0.0479 (6)
C80.68830 (19)0.3763 (3)0.54147 (19)0.0502 (7)
H80.7502280.3622780.5525060.06*
C90.7273 (3)0.5641 (4)0.5954 (3)0.0735 (11)
H9A0.7316880.6259570.546780.088*
H9B0.7866560.5260170.598610.088*
C100.7079 (3)0.6176 (5)0.6924 (4)0.0995 (17)
H10A0.7639260.6158870.7308310.119*
H10B0.6923030.6989780.6817510.119*
C110.6358 (4)0.5649 (5)0.7506 (3)0.0890 (14)
H11A0.6387480.5977580.8163660.107*
H11B0.6487320.482010.7563210.107*
C130.4737 (4)0.5284 (4)0.7786 (4)0.0809 (15)
H13A0.4888740.5510240.8454820.097*
H13B0.479080.4440520.7748710.097*
C140.3754 (4)0.5598 (5)0.7606 (3)0.0848 (14)
H14A0.3696520.6442020.7632310.102*
H14B0.3388130.5279060.813840.102*
C150.3349 (3)0.5172 (4)0.6626 (3)0.0708 (11)
H15A0.3407110.4329010.6583090.085*
H15B0.2702990.5366780.6598410.085*
C160.33585 (19)0.6329 (3)0.5196 (2)0.0491 (7)
H160.2732120.6387290.5312790.059*
C170.37116 (18)0.6945 (3)0.4351 (2)0.0444 (6)
C180.46571 (18)0.7052 (3)0.4135 (2)0.0395 (6)
C190.3057 (2)0.7452 (3)0.3712 (3)0.0560 (8)
H190.2437490.7396020.3866740.067*
C200.3314 (2)0.8021 (3)0.2878 (3)0.0606 (8)
H200.2872890.8337510.2462360.073*
C210.4235 (2)0.8127 (3)0.2647 (2)0.0536 (8)
H210.4409550.8505230.2070940.064*
C220.4898 (2)0.7674 (3)0.3267 (2)0.0432 (6)
C230.6092 (3)0.8324 (4)0.2225 (3)0.0684 (10)
H23A0.5850950.7910830.1666490.103*
H23B0.6748740.8337280.2188690.103*
H23C0.5862210.9109780.2225020.103*
C240.5060 (6)0.8915 (6)0.6115 (6)0.123 (2)
H24A0.5193320.9718690.6260960.185*
H24B0.474690.8567890.6663770.185*
H24C0.4678350.8873060.5540730.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04857 (18)0.04890 (19)0.03106 (16)0.00482 (12)0.00223 (18)0.00193 (18)
O10.0517 (13)0.0781 (16)0.0876 (19)0.0119 (13)0.0060 (13)0.0318 (16)
N10.0489 (10)0.0563 (13)0.0427 (11)0.0010 (10)0.0077 (17)0.0044 (15)
C10.075 (3)0.101 (3)0.081 (3)0.025 (2)0.002 (2)0.032 (3)
O20.0430 (9)0.0563 (12)0.0568 (13)0.0031 (9)0.0028 (9)0.0092 (11)
N20.0852 (19)0.073 (2)0.0362 (14)0.0177 (17)0.0110 (14)0.0066 (15)
C20.0546 (15)0.057 (2)0.0533 (19)0.0019 (15)0.0102 (15)0.0081 (17)
O30.0393 (9)0.0580 (13)0.0399 (10)0.0031 (9)0.0055 (8)0.0109 (10)
N30.0498 (12)0.0543 (13)0.0416 (15)0.0015 (11)0.0116 (11)0.0017 (11)
C30.078 (2)0.056 (2)0.073 (2)0.0023 (18)0.011 (2)0.0154 (19)
C40.075 (2)0.058 (2)0.083 (3)0.0167 (18)0.013 (2)0.010 (2)
O40.0462 (10)0.0713 (14)0.0459 (11)0.0025 (10)0.0006 (9)0.0192 (11)
C50.0577 (17)0.065 (2)0.0597 (19)0.0159 (16)0.0042 (15)0.0035 (17)
O50.152 (4)0.088 (2)0.181 (5)0.016 (2)0.098 (4)0.033 (3)
C60.0496 (14)0.0481 (16)0.0383 (14)0.0045 (13)0.0059 (12)0.0011 (13)
C70.0490 (14)0.0536 (16)0.0411 (15)0.0061 (14)0.0025 (13)0.0063 (13)
C80.0425 (12)0.0681 (18)0.0399 (18)0.0039 (13)0.0036 (11)0.0076 (13)
C90.068 (2)0.072 (2)0.080 (3)0.0142 (19)0.0219 (19)0.007 (2)
C100.085 (3)0.116 (4)0.097 (4)0.006 (3)0.036 (3)0.028 (3)
C110.111 (4)0.109 (3)0.047 (2)0.009 (3)0.029 (2)0.002 (2)
C130.115 (4)0.088 (4)0.041 (2)0.000 (2)0.009 (2)0.0057 (19)
C140.108 (3)0.099 (3)0.047 (2)0.027 (3)0.028 (2)0.010 (2)
C150.074 (2)0.075 (2)0.063 (2)0.0035 (19)0.026 (2)0.0137 (19)
C160.0394 (12)0.0556 (16)0.0522 (15)0.0033 (13)0.0045 (13)0.0066 (15)
C170.0406 (13)0.0490 (14)0.0436 (14)0.0035 (12)0.0033 (12)0.0017 (13)
C180.0405 (12)0.0432 (14)0.0347 (13)0.0033 (11)0.0082 (10)0.0015 (11)
C190.0407 (14)0.0634 (19)0.064 (2)0.0070 (14)0.0124 (15)0.0038 (17)
C200.0544 (16)0.0613 (19)0.066 (2)0.0089 (15)0.0237 (16)0.0129 (17)
C210.0617 (18)0.0544 (17)0.0446 (16)0.0014 (15)0.0120 (15)0.0125 (14)
C220.0459 (14)0.0437 (15)0.0401 (15)0.0009 (12)0.0065 (12)0.0036 (13)
C230.064 (2)0.083 (3)0.058 (2)0.002 (2)0.0065 (18)0.026 (2)
C240.189 (6)0.083 (4)0.097 (4)0.033 (4)0.034 (4)0.016 (3)
Geometric parameters (Å, º) top
Zn1—O21.975 (2)C9—C101.480 (7)
Zn1—O32.001 (2)C9—H9A0.97
Zn1—N12.094 (2)C9—H9B0.97
Zn1—N32.107 (2)C10—C111.448 (7)
Zn1—N22.152 (3)C10—H10A0.97
O1—C21.375 (4)C10—H10B0.97
O1—C11.416 (5)C11—H11A0.97
N1—C81.273 (4)C11—H11B0.97
N1—C91.462 (5)C13—C141.499 (7)
C1—H1A0.96C13—H13A0.97
C1—H1B0.96C13—H13B0.97
C1—H1C0.96C14—C151.535 (7)
O2—C61.300 (4)C14—H14A0.97
N2—C131.435 (6)C14—H14B0.97
N2—C111.473 (6)C15—H15A0.97
N2—H20.98C15—H15B0.97
C2—C31.361 (5)C16—C171.443 (4)
C2—C61.432 (5)C16—H160.93
O3—C181.316 (3)C17—C191.415 (4)
N3—C161.278 (4)C17—C181.416 (4)
N3—C151.453 (4)C18—C221.421 (4)
C3—C41.403 (6)C19—C201.359 (5)
C3—H30.93C19—H190.93
C4—C51.357 (6)C20—C211.386 (5)
C4—H40.93C20—H200.93
O4—C221.365 (4)C21—C221.382 (4)
O4—C231.413 (4)C21—H210.93
C5—C71.402 (4)C23—H23A0.96
C5—H50.93C23—H23B0.96
O5—C241.334 (8)C23—H23C0.96
O5—H5A0.82C24—H24A0.96
C6—C71.413 (4)C24—H24B0.96
C7—C81.453 (5)C24—H24C0.96
C8—H80.93
O2—Zn1—O3122.87 (10)C9—C10—H10A108.1
O2—Zn1—N189.63 (9)C11—C10—H10B108.1
O3—Zn1—N197.45 (10)C9—C10—H10B108.1
O2—Zn1—N390.01 (9)H10A—C10—H10B107.3
O3—Zn1—N387.84 (9)C10—C11—N2117.1 (4)
N1—Zn1—N3173.91 (12)C10—C11—H11A108.0
O2—Zn1—N2123.50 (13)N2—C11—H11A108.0
O3—Zn1—N2113.44 (12)C10—C11—H11B108.0
N1—Zn1—N287.40 (13)N2—C11—H11B108.0
N3—Zn1—N287.73 (11)H11A—C11—H11B107.3
C2—O1—C1116.9 (3)N2—C13—C14117.6 (4)
C8—N1—C9117.5 (3)N2—C13—H13A107.9
C8—N1—Zn1124.4 (2)C14—C13—H13A107.9
C9—N1—Zn1117.7 (2)N2—C13—H13B107.9
O1—C1—H1A109.5C14—C13—H13B107.9
O1—C1—H1B109.5H13A—C13—H13B107.2
H1A—C1—H1B109.5C13—C14—C15115.7 (4)
O1—C1—H1C109.5C13—C14—H14A108.4
H1A—C1—H1C109.5C15—C14—H14A108.4
H1B—C1—H1C109.5C13—C14—H14B108.4
C6—O2—Zn1129.32 (19)C15—C14—H14B108.4
C13—N2—C11113.5 (4)H14A—C14—H14B107.4
C13—N2—Zn1112.6 (3)N3—C15—C14110.5 (3)
C11—N2—Zn1114.6 (3)N3—C15—H15A109.5
C13—N2—H2105.0C14—C15—H15A109.5
C11—N2—H2105.0N3—C15—H15B109.5
Zn1—N2—H2105.0C14—C15—H15B109.5
C3—C2—O1124.3 (4)H15A—C15—H15B108.1
C3—C2—C6121.8 (3)N3—C16—C17126.3 (3)
O1—C2—C6113.8 (3)N3—C16—H16116.8
C18—O3—Zn1126.77 (18)C17—C16—H16116.8
C16—N3—C15118.6 (3)C19—C17—C18119.8 (3)
C16—N3—Zn1124.7 (2)C19—C17—C16116.5 (3)
C15—N3—Zn1116.4 (2)C18—C17—C16123.7 (3)
C2—C3—C4120.9 (4)O3—C18—C17124.3 (3)
C2—C3—H3119.6O3—C18—C22118.7 (2)
C4—C3—H3119.6C17—C18—C22117.1 (2)
C5—C4—C3119.2 (3)C20—C19—C17121.3 (3)
C5—C4—H4120.4C20—C19—H19119.3
C3—C4—H4120.4C17—C19—H19119.3
C22—O4—C23116.7 (2)C19—C20—C21119.9 (3)
C4—C5—C7121.1 (3)C19—C20—H20120.0
C4—C5—H5119.5C21—C20—H20120.0
C7—C5—H5119.5C22—C21—C20120.5 (3)
C24—O5—H5A109.5C22—C21—H21119.7
O2—C6—C7125.2 (3)C20—C21—H21119.7
O2—C6—C2119.2 (3)O4—C22—C21124.1 (3)
C7—C6—C2115.7 (3)O4—C22—C18114.5 (2)
C5—C7—C6121.3 (3)C21—C22—C18121.4 (3)
C5—C7—C8116.1 (3)O4—C23—H23A109.5
C6—C7—C8122.6 (3)O4—C23—H23B109.5
N1—C8—C7127.6 (3)H23A—C23—H23B109.5
N1—C8—H8116.2O4—C23—H23C109.5
C7—C8—H8116.2H23A—C23—H23C109.5
N1—C9—C10115.4 (4)H23B—C23—H23C109.5
N1—C9—H9A108.4O5—C24—H24A109.5
C10—C9—H9A108.4O5—C24—H24B109.5
N1—C9—H9B108.4H24A—C24—H24B109.5
C10—C9—H9B108.4O5—C24—H24C109.5
H9A—C9—H9B107.5H24A—C24—H24C109.5
C11—C10—C9116.9 (4)H24B—C24—H24C109.5
C11—C10—H10A108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O2i0.972.583.549 (6)172
C10—H10B···O50.972.503.340 (7)144
O5—H5A···O30.822.012.722 (5)144
Symmetry code: (i) x+1, y+1, z+1/2.
 

Funding information

This work was partly supported by a Grant-in-Aid for Scientific Research (A) KAKENHI (20H00336).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAkitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. C61, m324–m328.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAlDamen, M. A., Charef, N., Juwhari, H. K., Sweidan, K., Mubarak, M. S. & Peters, D. G. (2016). J. Chem. Crystallogr. 46, 411–420.  CSD CrossRef CAS Google Scholar
First citationBartyzel, A. (2018). J. Therm. Anal. Calorim. 131, 1221–1236.  CSD CrossRef CAS Google Scholar
First citationBermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. (2007). Eur. J. Inorg. Chem. pp. 3789–3797.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFleck, M., Layek, M., Saha, R. & Bandyopadhyay, D. (2013). Transition Met. Chem. 38, 715–724.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIksi, S., Guemmout, F. E., Reguero, M., Masdeu-Bulto, A. M. & Ghnux, A. (2020). J Chem Crystallogr. https://doi.org/10.1007/s10870-020-00865-y.  Google Scholar
First citationIshikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. Y. & Kaizu, Y. (2003). J. Am. Chem. Soc. 125, 8694–8695.  CrossRef PubMed CAS Google Scholar
First citationJing, B., Li, L., Dong, J. & Li, J. (2011). Acta Cryst. E67, m536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D. & Triki, S. (2011). Russ. J. Coord. Chem. 37, 518–522.  CrossRef CAS Google Scholar
First citationKorhonen, K. & Hämäläinen, R. (1981). Acta Cryst. B37, 829–834.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, B., Wen, H. M., Cui, Y., Zhou, W., Qian, G. & Chen, B. (2016). Adv. Mater. 28, 8819–8860.  CrossRef CAS PubMed Google Scholar
First citationLong, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D. & Larionova, J. (2018b). Coord. Chem. Rev. 363, 57–70.  CrossRef CAS Google Scholar
First citationLui, W., Li, G., Zhao, X. & Wang, L. (2019). ChemistrySelect, 4, 29, 9317-9321.  Google Scholar
First citationMatar, S. A., Talib, W. H., Mustafa, M. S., Mubarak, M. S. & AlDamen, M. A. (2015). Arab. J. Chem. 8, 850–857.  CrossRef CAS Google Scholar
First citationNiu, M. J., Li, Z., Chang, G. L., Kong, X. J., Hong, M. & Zhang, Q. F. (2015). PLOS ONE. https://doi.org/10.1317/journal.pone.0130922.  Google Scholar
First citationNoor, S., Goddard, R., Kumar, S., Ahmad, N., Sabir, S., Mitra, P. & Seidel, R. (2018). J. Chem. Crystallogr. 48, 164–169.  CSD CrossRef CAS Google Scholar
First citationNoor, S. W., Seidel, R. W., Goddard, R., Kumar, S. & Sabir, S. (2016). IUCrData, 1, x161735.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSacconi, L. (1966). Coord. Chem. Rev. 1, 126–132.  CrossRef CAS Google Scholar
First citationSanmartín, J., Bermejo, M. R., García-Deibe, A. M., Nascimento, O. & Costa-Filho, A. J. (2001). Inorg. Chim. Acta, 318, 135–142.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, W. (2006). Molecules, 11, 206–211.  CrossRef PubMed CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTang, B., Ma, H., Li, G., Wang, Y., Anwar, G., Shi, R. & Li, H. (2013). CrystEngComm, 15, 8069–8073.  CSD CrossRef CAS Google Scholar
First citationThakurta, S., Rizzoli, C., Butcher, R. J., Gómez-García, C. J., Garribba, E. & Mitra, S. (2010). Inorg. Chim. Acta, 336, 1395–1403.  CSD CrossRef Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds