Download citation
Download citation
link to html
Two new gold(III) com­plexes with adenine or guanine nitro­genous bases as counter-cations were synthesized. These are 6-amino-7H-purine-1,9-diium tetra­chlorido­gold(III) chloride monohydrate, (C5H7N5)[AuCl4]Cl·H2O, 1, and 2-amino-6-oxo-6,7-di­hydro-1H-purin-9-ium tetra­chlorido­gold(III) hemihydrate, (C5H6N5O)[AuCl4]·0.5H2O, 2. Their crystal structures were studied using single-crystal X-ray diffraction and FT–IR spectroscopic techniques. The arrangement of species in the studied crystal structures implies π-stacking inter­actions, as well as concomitant C—H...π inter­actions, hydrogen bonds and other types of noncovalent inter­actions, which were studied qualitatively and qu­anti­tatively using the method of mol­ecular Voronoi–Dirichlet polyhedra. The variation of the nitro­genous base from adenine to guanine results in evident differences in the packing of the species in the crystals of 1 and 2. The splitting and shifting of bands in the FT–IR spectra of the title com­pounds reveals several features representative of noncovalent inter­actions in their crystal structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619016656/jx3049sup1.cif
Contains datablocks Ad, HGuAu, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619016656/jx3049Adsup2.hkl
Contains datablock Ad

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619016656/jx3049HGuAusup3.hkl
Contains datablock HGuAu

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619016656/jx3049sup4.pdf
FT-IR spectra of the title and reference compounds

CCDC references: 1954064; 1954062

Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT-Plus (Bruker, 2012); data reduction: SAINT-Plus (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020) and VESTA 3 (Momma & Izumi, 2011).; software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015).

6-Amino-7H-purine-1,9-diium tetrachloridogold(III) chloride monohydrate (Ad) top
Crystal data top
(C5H7N5)[AuCl4]Cl·H2ODx = 2.619 Mg m3
Mr = 529.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9853 reflections
a = 15.7712 (10) Åθ = 3.1–30.0°
b = 13.0392 (8) ŵ = 11.94 mm1
c = 13.0556 (8) ÅT = 100 K
V = 2684.8 (3) Å3Fragment, yellow
Z = 80.30 × 0.28 × 0.20 mm
F(000) = 1968
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7427 reflections with I > 2σ(I)
ω and φ scansRint = 0.045
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 30.0°, θmin = 4.2°
Tmin = 0.134, Tmax = 0.199h = 2222
60700 measured reflectionsk = 1818
7787 independent reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + 5.3033P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.038(Δ/σ)max = 0.003
S = 1.05Δρmax = 0.77 e Å3
7787 reflectionsΔρmin = 0.74 e Å3
350 parametersAbsolute structure: Refined as an inversion twin.
17 restraintsAbsolute structure parameter: 0.369 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Single crystals of compounds 1 and 2 suitable for X-ray crystallographic analysis were obtained by slow evaporation of saturated solutions in H2O and studied at nitrogen temperature (100 K). The intensities of reflections for 1 and 2 were measured with a four-circle diffractometer Bruker KAPPA APEX II with area CCD detector. The unit cell parameters were refined over the whole dataset by using SAINT-Plus software (Bruker, 2012). Absorption correction was made using SADABS program (Bruker, 2008). The structures were solved by direct method and were refined by the full-matrix least-squares method on F2 over the whole dataset in the anisotropic approximation for all nonhydrogen atoms using SHELXS97 (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.42408 (2)0.07548 (2)0.72930 (2)0.01264 (4)
Au20.66514 (2)0.41105 (2)0.72194 (2)0.01228 (4)
Cl10.51685 (7)0.21062 (8)0.7258 (2)0.0204 (2)
Cl20.42762 (17)0.07922 (19)0.9028 (3)0.0229 (6)
Cl30.33388 (6)0.06230 (8)0.7318 (2)0.0173 (3)
Cl40.42345 (17)0.07083 (19)0.5535 (3)0.0241 (6)
Cl50.75611 (7)0.27575 (7)0.7238 (2)0.0189 (2)
Cl60.66912 (16)0.41380 (18)0.8954 (3)0.0223 (6)
Cl70.57216 (7)0.54601 (9)0.7201 (2)0.0224 (3)
Cl80.65865 (18)0.4024 (2)0.5459 (3)0.0262 (6)
Cl90.14012 (8)0.15228 (8)1.23258 (16)0.0205 (2)
Cl100.41936 (7)0.10776 (9)0.22012 (18)0.0223 (2)
O1W0.5386 (4)0.2296 (5)1.0710 (4)0.0155 (12)
H1A0.559 (5)0.267 (5)1.120 (4)0.023*
H1B0.505 (4)0.189 (4)1.103 (5)0.023*
O2W0.5375 (4)0.2159 (6)0.3821 (4)0.0169 (11)
H2A0.563 (5)0.250 (5)0.336 (5)0.025*
H2B0.527 (4)0.159 (3)0.355 (5)0.025*
N110.2781 (7)0.2404 (8)1.0871 (6)0.0299 (19)
H11A0.236 (4)0.225 (7)1.127 (5)0.036*
H11B0.330 (3)0.226 (8)1.100 (7)0.036*
N120.1902 (4)0.3429 (5)0.9757 (5)0.0194 (13)
H12B0.148 (3)0.314 (5)1.006 (6)0.023*
N130.2375 (6)0.4499 (6)0.8439 (5)0.0241 (17)
N140.3921 (5)0.4443 (6)0.8367 (5)0.0255 (16)
H14A0.399 (5)0.486 (5)0.785 (4)0.031*
N150.4201 (4)0.3378 (5)0.9613 (5)0.0224 (15)
H15B0.435 (5)0.281 (4)0.993 (6)0.027*
N210.2980 (6)0.2361 (9)0.3632 (7)0.028 (2)
H21A0.336 (4)0.207 (7)0.323 (5)0.033*
H21B0.246 (3)0.220 (8)0.352 (7)0.033*
N220.4007 (4)0.3138 (5)0.4717 (5)0.0187 (14)
H22B0.449 (3)0.296 (5)0.441 (5)0.022*
N230.3700 (5)0.4271 (6)0.6079 (5)0.0252 (16)
N240.2208 (6)0.4563 (6)0.6184 (5)0.0217 (15)
H24A0.217 (4)0.496 (4)0.671 (4)0.026*
N250.1717 (4)0.3602 (5)0.4947 (5)0.0188 (13)
H25B0.136 (4)0.333 (5)0.451 (5)0.023*
C110.2679 (4)0.3063 (4)1.0097 (4)0.0153 (10)
C120.1786 (5)0.4091 (6)0.8984 (5)0.0199 (14)
H12A0.1218350.4274520.8825290.024*
C130.3167 (6)0.4159 (6)0.8760 (5)0.0207 (16)
C140.3349 (4)0.3477 (4)0.9526 (4)0.0173 (11)
C150.4539 (5)0.3969 (5)0.8893 (5)0.0214 (14)
H15A0.5129200.4044570.8768060.026*
C210.3180 (4)0.2981 (4)0.4391 (4)0.0158 (11)
C220.4215 (5)0.3739 (6)0.5514 (6)0.0230 (15)
H22A0.4800570.3779670.5680830.028*
C230.2895 (5)0.4139 (6)0.5758 (6)0.0149 (16)
C240.2589 (3)0.3543 (4)0.4966 (4)0.0124 (10)
C250.1488 (5)0.4232 (5)0.5699 (5)0.0165 (14)
H25A0.0923320.4419310.5869440.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.00994 (7)0.00963 (7)0.01835 (8)0.00058 (5)0.00050 (12)0.00030 (12)
Au20.01002 (7)0.00978 (7)0.01704 (8)0.00116 (5)0.00054 (11)0.00084 (12)
Cl10.0190 (5)0.0158 (4)0.0263 (6)0.0071 (4)0.0002 (9)0.0010 (10)
Cl20.0265 (13)0.0231 (12)0.0190 (12)0.0073 (8)0.0037 (8)0.0040 (7)
Cl30.0134 (5)0.0117 (4)0.0269 (8)0.0021 (3)0.0013 (9)0.0003 (7)
Cl40.0282 (13)0.0246 (12)0.0196 (12)0.0073 (9)0.0024 (8)0.0056 (8)
Cl50.0182 (5)0.0111 (4)0.0275 (6)0.0020 (4)0.0007 (9)0.0009 (9)
Cl60.0295 (11)0.0200 (10)0.0173 (11)0.0035 (7)0.0059 (7)0.0046 (6)
Cl70.0196 (5)0.0187 (5)0.0289 (8)0.0073 (4)0.0053 (10)0.0036 (9)
Cl80.0379 (13)0.0238 (11)0.0168 (11)0.0018 (8)0.0061 (8)0.0046 (8)
Cl90.0231 (5)0.0141 (4)0.0242 (7)0.0017 (4)0.0009 (8)0.0007 (7)
Cl100.0170 (5)0.0217 (5)0.0281 (7)0.0064 (4)0.0025 (10)0.0046 (8)
O1W0.016 (3)0.017 (3)0.014 (2)0.001 (2)0.0003 (18)0.0011 (18)
O2W0.014 (3)0.017 (3)0.020 (3)0.002 (2)0.0012 (19)0.002 (2)
N110.046 (5)0.024 (4)0.020 (3)0.005 (4)0.007 (3)0.010 (3)
N120.016 (3)0.018 (3)0.024 (3)0.007 (2)0.008 (2)0.006 (2)
N130.038 (4)0.015 (3)0.019 (3)0.008 (3)0.015 (3)0.005 (2)
N140.034 (4)0.028 (4)0.015 (3)0.014 (3)0.004 (2)0.001 (2)
N150.023 (3)0.022 (3)0.022 (3)0.008 (3)0.012 (2)0.002 (2)
N210.042 (5)0.027 (4)0.015 (3)0.004 (3)0.005 (3)0.008 (3)
N220.019 (3)0.018 (3)0.020 (3)0.009 (2)0.007 (2)0.005 (2)
N230.038 (4)0.022 (3)0.016 (3)0.014 (3)0.003 (3)0.002 (2)
N240.033 (4)0.015 (3)0.017 (3)0.004 (3)0.009 (2)0.003 (2)
N250.015 (3)0.016 (3)0.024 (3)0.000 (2)0.004 (2)0.005 (2)
C110.015 (3)0.014 (3)0.017 (3)0.001 (2)0.000 (2)0.002 (2)
C120.024 (4)0.017 (3)0.019 (3)0.000 (3)0.003 (3)0.008 (2)
C130.031 (4)0.018 (3)0.013 (3)0.004 (3)0.000 (3)0.001 (2)
C140.018 (3)0.012 (2)0.021 (3)0.000 (2)0.002 (2)0.002 (2)
C150.026 (4)0.023 (3)0.016 (3)0.006 (3)0.006 (3)0.001 (2)
C210.014 (3)0.014 (3)0.020 (3)0.001 (2)0.002 (2)0.002 (2)
C220.017 (3)0.024 (4)0.028 (4)0.005 (3)0.004 (3)0.008 (3)
C230.027 (4)0.008 (3)0.009 (3)0.008 (3)0.002 (2)0.001 (2)
C240.011 (2)0.011 (2)0.016 (3)0.0004 (19)0.001 (2)0.0002 (19)
C250.021 (4)0.014 (3)0.015 (3)0.002 (3)0.004 (2)0.002 (2)
Geometric parameters (Å, º) top
Au1—Cl22.266 (4)N15—C141.354 (8)
Au1—Cl12.2908 (10)N15—H15B0.88 (3)
Au1—Cl32.2918 (10)N21—C211.318 (11)
Au1—Cl42.296 (4)N21—H21A0.88 (3)
Au2—Cl62.266 (4)N21—H21B0.87 (3)
Au2—Cl52.2741 (10)N22—C221.344 (10)
Au2—Cl72.2909 (11)N22—C211.386 (9)
Au2—Cl82.303 (4)N22—H22B0.89 (3)
O1W—H1A0.86 (3)N23—C221.298 (10)
O1W—H1B0.85 (3)N23—C231.348 (10)
O2W—H2A0.85 (3)N24—C231.337 (10)
O2W—H2B0.84 (3)N24—C251.370 (11)
N11—C111.336 (10)N24—H24A0.85 (3)
N11—H11A0.87 (3)N25—C251.330 (9)
N11—H11B0.86 (3)N25—C241.378 (8)
N12—C121.340 (9)N25—H25B0.88 (3)
N12—C111.388 (9)C11—C141.402 (8)
N12—H12B0.86 (3)C12—H12A0.9500
N13—C121.285 (11)C13—C141.368 (10)
N13—C131.391 (12)C15—H15A0.9500
N14—C151.343 (10)C21—C241.403 (8)
N14—C131.347 (11)C22—H22A0.9500
N14—H14A0.88 (3)C23—C241.380 (9)
N15—C151.328 (9)C25—H25A0.9500
Cl2—Au1—Cl189.29 (9)C23—N24—H24A129 (5)
Cl2—Au1—Cl391.04 (9)C25—N24—H24A120 (5)
Cl1—Au1—Cl3178.63 (5)C25—N25—C24107.0 (6)
Cl2—Au1—Cl4178.81 (5)C25—N25—H25B124 (5)
Cl1—Au1—Cl490.18 (9)C24—N25—H25B129 (5)
Cl3—Au1—Cl489.46 (9)N11—C11—N12124.7 (7)
Cl6—Au2—Cl589.09 (9)N11—C11—C14124.0 (7)
Cl6—Au2—Cl790.93 (10)N12—C11—C14111.3 (5)
Cl5—Au2—Cl7179.32 (4)N13—C12—N12125.8 (8)
Cl6—Au2—Cl8177.87 (7)N13—C12—H12A117.1
Cl5—Au2—Cl890.04 (9)N12—C12—H12A117.1
Cl7—Au2—Cl889.92 (10)N14—C13—C14105.8 (7)
H1A—O1W—H1B103 (4)N14—C13—N13126.2 (7)
H2A—O2W—H2B105 (4)C14—C13—N13128.0 (8)
C11—N11—H11A121 (6)N15—C14—C13109.4 (7)
C11—N11—H11B114 (7)N15—C14—C11131.8 (6)
H11A—N11—H11B124 (9)C13—C14—C11118.7 (6)
C12—N12—C11125.7 (6)N15—C15—N14109.7 (7)
C12—N12—H12B121 (5)N15—C15—H15A125.1
C11—N12—H12B113 (5)N14—C15—H15A125.1
C12—N13—C13110.5 (7)N21—C21—N22123.2 (7)
C15—N14—C13108.6 (7)N21—C21—C24124.3 (6)
C15—N14—H14A126 (5)N22—C21—C24112.5 (5)
C13—N14—H14A125 (5)N23—C22—N22126.7 (7)
C15—N15—C14106.5 (6)N23—C22—H22A116.6
C15—N15—H15B135 (5)N22—C22—H22A116.6
C14—N15—H15B113 (5)N24—C23—N23125.6 (7)
C21—N21—H21A123 (6)N24—C23—C24105.2 (6)
C21—N21—H21B121 (7)N23—C23—C24129.3 (6)
H21A—N21—H21B116 (9)N25—C24—C23109.3 (5)
C22—N22—C21123.7 (6)N25—C24—C21133.0 (6)
C22—N22—H22B107 (5)C23—C24—C21117.6 (5)
C21—N22—H22B129 (5)N25—C25—N24108.1 (7)
C22—N23—C23110.2 (7)N25—C25—H25A126.0
C23—N24—C25110.4 (7)N24—C25—H25A126.0
C12—N12—C11—N11179.9 (8)C22—N22—C21—N21177.5 (8)
C12—N12—C11—C140.2 (9)C22—N22—C21—C241.7 (9)
C13—N13—C12—N120.0 (11)C23—N23—C22—N220.2 (11)
C11—N12—C12—N130.6 (12)C21—N22—C22—N231.4 (12)
C15—N14—C13—C141.5 (9)C25—N24—C23—N23177.2 (7)
C15—N14—C13—N13178.7 (8)C25—N24—C23—C241.4 (9)
C12—N13—C13—N14179.1 (8)C22—N23—C23—N24178.8 (7)
C12—N13—C13—C141.1 (11)C22—N23—C23—C240.5 (11)
C15—N15—C14—C131.6 (8)C25—N25—C24—C230.9 (7)
C15—N15—C14—C11177.8 (6)C25—N25—C24—C21177.5 (6)
N14—C13—C14—N151.9 (8)N24—C23—C24—N251.4 (8)
N13—C13—C14—N15178.3 (7)N23—C23—C24—N25177.1 (8)
N14—C13—C14—C11178.7 (6)N24—C23—C24—C21178.6 (6)
N13—C13—C14—C111.5 (11)N23—C23—C24—C210.0 (11)
N11—C11—C14—N153.1 (11)N21—C21—C24—N251.9 (11)
N12—C11—C14—N15176.6 (7)N22—C21—C24—N25177.4 (7)
N11—C11—C14—C13178.9 (8)N21—C21—C24—C23178.2 (8)
N12—C11—C14—C130.7 (8)N22—C21—C24—C231.0 (8)
C14—N15—C15—N140.7 (8)C24—N25—C25—N240.0 (8)
C13—N14—C15—N150.5 (9)C23—N24—C25—N250.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl9i0.86 (3)2.22 (3)3.063 (7)166 (8)
O1W—H1B···Cl10ii0.85 (3)2.30 (3)3.139 (7)166 (6)
O2W—H2A···Cl9iii0.85 (3)2.22 (3)3.064 (7)173 (8)
O2W—H2B···Cl100.84 (3)2.53 (6)3.151 (7)132 (6)
N11—H11A···Cl90.87 (3)2.25 (4)3.109 (9)167 (9)
N11—H11B···Cl10ii0.86 (3)2.61 (7)3.312 (10)140 (8)
N12—H12B···O1Wiv0.86 (3)2.00 (3)2.856 (9)170 (7)
N14—H14A···Cl70.88 (3)2.96 (7)3.484 (8)120 (6)
N14—H14A···Cl9v0.88 (3)2.35 (5)3.076 (8)140 (6)
N14—H14A···N230.88 (3)2.48 (6)3.016 (7)120 (6)
N15—H15B···O1W0.88 (3)2.04 (5)2.745 (9)137 (6)
N21—H21A···Cl100.88 (3)2.28 (3)3.155 (10)170 (8)
N21—H21B···Cl9vi0.87 (3)2.44 (6)3.210 (9)148 (8)
N22—H22B···O2W0.89 (3)1.91 (4)2.766 (9)162 (7)
N24—H24A···Cl10vii0.85 (3)2.68 (6)3.248 (8)125 (6)
N24—H24A···N130.85 (3)2.36 (6)2.957 (7)127 (6)
N25—H25B···O2Wiv0.88 (3)1.90 (3)2.762 (9)165 (7)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z1; (iv) x1/2, y+1/2, z; (v) x+1/2, y+1/2, z1/2; (vi) x, y, z1; (vii) x+1/2, y+1/2, z+1/2.
2-Amino-6-oxo-6,7-dihydro-1H-purin-9-ium tetrachloridogold(III) hemihydrate (HGuAu) top
Crystal data top
(C5H6N5O)[AuCl4]·0.5H2OZ = 4
Mr = 499.92F(000) = 924
Triclinic, P1Dx = 2.778 Mg m3
a = 8.1408 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9063 (4) ÅCell parameters from 9858 reflections
c = 12.4678 (4) Åθ = 2.9–35.3°
α = 84.918 (2)°µ = 13.19 mm1
β = 84.475 (2)°T = 100 K
γ = 85.649 (1)°Fragment, yellow
V = 1195.36 (6) Å30.36 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
9184 reflections with I > 2σ(I)
ω and φ scansRint = 0.052
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 35.0°, θmin = 4.1°
Tmin = 0.098, Tmax = 0.178h = 1313
39106 measured reflectionsk = 1919
10495 independent reflectionsl = 1820
Refinement top
Refinement on F213 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0247P)2 + 0.1971P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
10495 reflectionsΔρmax = 2.36 e Å3
334 parametersΔρmin = 3.73 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single crystals of compounds 1 and 2 suitable for X-ray crystallographic analysis were obtained by slow evaporation of saturated solutions in H2O and studied at nitrogen temperature (100 K). The intensities of reflections for 1 and 2 were measured with a four-circle diffractometer Bruker KAPPA APEX II with area CCD detector. The unit cell parameters were refined over the whole dataset by using SAINT-Plus software (Bruker, 2012). Absorption correction was made using SADABS program (Bruker, 2008). The structures were solved by direct method and were refined by the full-matrix least-squares method on F2 over the whole dataset in the anisotropic approximation for all nonhydrogen atoms using SHELXS97 (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.12774 (2)0.13682 (2)0.48622 (2)0.00959 (3)
Au20.48231 (2)0.75048 (2)0.01255 (2)0.00914 (3)
Cl10.05064 (9)0.18590 (6)0.63012 (6)0.01706 (13)
Cl20.03630 (9)0.29452 (6)0.38464 (6)0.01504 (12)
Cl30.30987 (8)0.08884 (6)0.34522 (6)0.01522 (12)
Cl40.22276 (9)0.01798 (6)0.58943 (6)0.01597 (12)
Cl50.31180 (8)0.81101 (6)0.15607 (6)0.01449 (11)
Cl60.41225 (8)0.91431 (5)0.08714 (5)0.01345 (11)
Cl70.64948 (9)0.69374 (6)0.13226 (6)0.01515 (12)
Cl80.56072 (9)0.58744 (6)0.11203 (6)0.01559 (12)
O110.1170 (3)0.44120 (17)0.68403 (17)0.0173 (4)
O210.7497 (3)0.83893 (17)0.15992 (17)0.0157 (4)
O1W0.6663 (3)0.2478 (2)0.28312 (18)0.0190 (4)
H1A0.672 (5)0.3174 (16)0.273 (3)0.029*
H1B0.594 (4)0.228 (3)0.248 (3)0.029*
N110.2913 (3)0.5778 (2)0.3389 (2)0.0158 (5)
H11A0.358 (4)0.573 (3)0.281 (2)0.019*
H11B0.210 (3)0.630 (2)0.345 (3)0.019*
N120.2122 (3)0.50429 (19)0.51238 (18)0.0114 (4)
H12A0.150 (4)0.566 (2)0.519 (3)0.014*
N130.4340 (3)0.41643 (19)0.4046 (2)0.0126 (4)
N140.3906 (3)0.24492 (19)0.65180 (19)0.0117 (4)
H14A0.332 (4)0.224 (3)0.7144 (19)0.014*
N150.5468 (3)0.24654 (19)0.49946 (19)0.0121 (4)
H15B0.627 (3)0.227 (3)0.451 (2)0.015*
N211.1263 (3)0.5401 (2)0.0942 (2)0.0176 (5)
H21A1.193 (4)0.507 (3)0.048 (3)0.021*
H21B1.082 (5)0.512 (3)0.156 (2)0.021*
N220.9391 (3)0.69180 (19)0.1222 (2)0.0136 (4)
H22A0.920 (5)0.650 (3)0.1844 (19)0.016*
N231.1137 (3)0.68313 (19)0.0426 (2)0.0131 (4)
N240.8678 (3)0.93946 (18)0.06931 (19)0.0115 (4)
H24A0.793 (3)0.992 (2)0.052 (3)0.014*
N251.0572 (3)0.8460 (2)0.16686 (19)0.0137 (4)
H25B1.135 (4)0.835 (3)0.222 (2)0.016*
C110.3151 (3)0.4966 (2)0.4181 (2)0.0111 (4)
C120.2149 (3)0.4283 (2)0.6037 (2)0.0109 (4)
C130.3394 (3)0.3394 (2)0.5874 (2)0.0104 (4)
C140.4391 (3)0.3403 (2)0.4912 (2)0.0099 (4)
C150.5137 (3)0.1906 (2)0.5971 (2)0.0125 (4)
H15A0.5706490.1222850.6226700.015*
C211.0606 (3)0.6398 (2)0.0551 (2)0.0125 (4)
C220.8583 (3)0.7958 (2)0.0969 (2)0.0115 (4)
C230.9150 (3)0.8425 (2)0.0077 (2)0.0103 (4)
C241.0351 (3)0.7834 (2)0.0688 (2)0.0111 (4)
C250.9558 (3)0.9394 (2)0.1643 (2)0.0144 (5)
H25A0.9480610.9970210.2217970.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.00965 (4)0.00832 (4)0.01038 (5)0.00044 (3)0.00084 (3)0.00055 (3)
Au20.00924 (4)0.00878 (4)0.00888 (5)0.00051 (3)0.00096 (3)0.00131 (3)
Cl10.0187 (3)0.0154 (3)0.0149 (3)0.0041 (2)0.0039 (2)0.0008 (2)
Cl20.0182 (3)0.0114 (3)0.0145 (3)0.0039 (2)0.0022 (2)0.0010 (2)
Cl30.0162 (3)0.0137 (3)0.0139 (3)0.0029 (2)0.0027 (2)0.0018 (2)
Cl40.0184 (3)0.0126 (3)0.0148 (3)0.0043 (2)0.0009 (2)0.0035 (2)
Cl50.0159 (3)0.0160 (3)0.0103 (3)0.0029 (2)0.0009 (2)0.0005 (2)
Cl60.0169 (3)0.0101 (2)0.0123 (3)0.0023 (2)0.0013 (2)0.0020 (2)
Cl70.0168 (3)0.0138 (3)0.0129 (3)0.0040 (2)0.0021 (2)0.0011 (2)
Cl80.0173 (3)0.0124 (3)0.0152 (3)0.0026 (2)0.0001 (2)0.0046 (2)
O110.0188 (9)0.0151 (9)0.0142 (9)0.0078 (7)0.0051 (7)0.0054 (7)
O210.0168 (9)0.0157 (9)0.0120 (9)0.0045 (7)0.0047 (7)0.0021 (7)
O1W0.0210 (10)0.0234 (10)0.0116 (10)0.0066 (8)0.0013 (8)0.0023 (8)
N110.0186 (11)0.0145 (10)0.0118 (11)0.0034 (8)0.0004 (9)0.0064 (8)
N120.0122 (9)0.0120 (9)0.0086 (9)0.0027 (7)0.0006 (7)0.0029 (8)
N130.0133 (9)0.0118 (9)0.0116 (10)0.0014 (7)0.0001 (8)0.0013 (8)
N140.0129 (9)0.0107 (9)0.0102 (10)0.0024 (7)0.0011 (7)0.0018 (8)
N150.0119 (9)0.0129 (9)0.0100 (10)0.0036 (7)0.0020 (7)0.0005 (8)
N210.0186 (11)0.0116 (10)0.0205 (13)0.0048 (8)0.0001 (9)0.0030 (9)
N220.0135 (9)0.0123 (9)0.0127 (11)0.0016 (7)0.0008 (8)0.0070 (8)
N230.0132 (9)0.0118 (9)0.0137 (11)0.0016 (7)0.0014 (8)0.0008 (8)
N240.0127 (9)0.0100 (9)0.0105 (10)0.0026 (7)0.0003 (7)0.0019 (7)
N250.0137 (10)0.0187 (10)0.0068 (10)0.0024 (8)0.0019 (7)0.0032 (8)
C110.0125 (10)0.0119 (10)0.0084 (11)0.0016 (8)0.0019 (8)0.0038 (8)
C120.0110 (10)0.0117 (10)0.0092 (11)0.0007 (8)0.0000 (8)0.0013 (8)
C130.0124 (10)0.0087 (9)0.0092 (11)0.0018 (8)0.0005 (8)0.0019 (8)
C140.0105 (9)0.0105 (10)0.0084 (11)0.0009 (7)0.0011 (8)0.0004 (8)
C150.0130 (10)0.0119 (10)0.0119 (12)0.0023 (8)0.0007 (9)0.0001 (9)
C210.0101 (10)0.0116 (10)0.0154 (12)0.0024 (8)0.0031 (9)0.0011 (9)
C220.0122 (10)0.0124 (10)0.0093 (11)0.0012 (8)0.0004 (8)0.0030 (9)
C230.0114 (10)0.0083 (10)0.0102 (11)0.0020 (8)0.0007 (8)0.0006 (8)
C240.0099 (10)0.0117 (10)0.0112 (11)0.0007 (8)0.0007 (8)0.0009 (9)
C250.0157 (11)0.0156 (11)0.0112 (12)0.0004 (9)0.0013 (9)0.0026 (9)
Geometric parameters (Å, º) top
Au1—Cl32.2721 (7)N15—C151.349 (3)
Au1—Cl42.2817 (7)N15—C141.369 (3)
Au1—Cl12.2858 (7)N15—H15B0.875 (18)
Au1—Cl22.2872 (7)N21—C211.336 (3)
Au2—Cl72.2741 (7)N21—H21A0.857 (18)
Au2—Cl62.2831 (6)N21—H21B0.868 (18)
Au2—Cl52.2905 (7)N22—C211.379 (4)
Au2—Cl82.2918 (7)N22—C221.383 (3)
O11—C121.232 (3)N22—H22A0.888 (18)
O21—C221.238 (3)N23—C211.326 (4)
O1W—H1A0.831 (17)N23—C241.340 (3)
O1W—H1B0.827 (18)N24—C251.324 (3)
N11—C111.336 (3)N24—C231.380 (3)
N11—H11A0.862 (18)N24—H24A0.868 (18)
N11—H11B0.872 (18)N25—C251.335 (4)
N12—C111.382 (3)N25—C241.377 (3)
N12—C121.391 (3)N25—H25B0.898 (18)
N12—H12A0.868 (18)C12—C131.422 (4)
N13—C111.317 (3)C13—C141.382 (3)
N13—C141.348 (3)C15—H15A0.9500
N14—C151.318 (3)C22—C231.421 (4)
N14—C131.385 (3)C23—C241.370 (3)
N14—H14A0.901 (18)C25—H25A0.9500
Cl3—Au1—Cl490.32 (2)C23—N24—H24A128 (2)
Cl3—Au1—Cl1178.72 (3)C25—N25—C24108.7 (2)
Cl4—Au1—Cl189.20 (3)C25—N25—H25B122 (2)
Cl3—Au1—Cl289.88 (3)C24—N25—H25B129 (3)
Cl4—Au1—Cl2178.67 (2)N13—C11—N11120.0 (2)
Cl1—Au1—Cl290.58 (3)N13—C11—N12123.5 (2)
Cl7—Au2—Cl689.13 (2)N11—C11—N12116.5 (2)
Cl7—Au2—Cl5178.74 (2)O11—C12—N12121.2 (2)
Cl6—Au2—Cl589.62 (2)O11—C12—C13128.1 (2)
Cl7—Au2—Cl890.05 (3)N12—C12—C13110.7 (2)
Cl6—Au2—Cl8178.28 (2)C14—C13—N14107.4 (2)
Cl5—Au2—Cl891.20 (2)C14—C13—C12119.6 (2)
H1A—O1W—H1B110 (3)N14—C13—C12133.1 (2)
C11—N11—H11A115 (3)N13—C14—N15125.5 (2)
C11—N11—H11B122 (2)N13—C14—C13128.1 (2)
H11A—N11—H11B123 (4)N15—C14—C13106.4 (2)
C11—N12—C12125.7 (2)N14—C15—N15109.7 (2)
C11—N12—H12A117 (2)N14—C15—H15A125.1
C12—N12—H12A117 (2)N15—C15—H15A125.1
C11—N13—C14112.4 (2)N23—C21—N21120.0 (2)
C15—N14—C13108.0 (2)N23—C21—N22124.1 (2)
C15—N14—H14A130 (2)N21—C21—N22116.0 (2)
C13—N14—H14A121 (2)O21—C22—N22122.1 (2)
C15—N15—C14108.5 (2)O21—C22—C23126.3 (2)
C15—N15—H15B125 (2)N22—C22—C23111.6 (2)
C14—N15—H15B127 (2)C24—C23—N24107.6 (2)
C21—N21—H21A114 (3)C24—C23—C22119.5 (2)
C21—N21—H21B117 (3)N24—C23—C22132.9 (2)
H21A—N21—H21B128 (4)N23—C24—C23128.2 (2)
C21—N22—C22124.5 (2)N23—C24—N25125.5 (2)
C21—N22—H22A111 (2)C23—C24—N25106.2 (2)
C22—N22—H22A124 (2)N24—C25—N25109.5 (2)
C21—N23—C24112.1 (2)N24—C25—H25A125.3
C25—N24—C23108.1 (2)N25—C25—H25A125.3
C25—N24—H24A124 (2)
C14—N13—C11—N11178.8 (2)C24—N23—C21—N21179.8 (2)
C14—N13—C11—N122.7 (4)C24—N23—C21—N220.1 (4)
C12—N12—C11—N132.2 (4)C22—N22—C21—N230.6 (4)
C12—N12—C11—N11179.2 (3)C22—N22—C21—N21179.0 (3)
C11—N12—C12—O11179.3 (3)C21—N22—C22—O21179.8 (3)
C11—N12—C12—C130.1 (4)C21—N22—C22—C230.5 (4)
C15—N14—C13—C140.6 (3)C25—N24—C23—C240.0 (3)
C15—N14—C13—C12179.3 (3)C25—N24—C23—C22176.6 (3)
O11—C12—C13—C14179.3 (3)O21—C22—C23—C24179.0 (3)
N12—C12—C13—C141.6 (3)N22—C22—C23—C240.3 (4)
O11—C12—C13—N140.7 (5)O21—C22—C23—N242.8 (5)
N12—C12—C13—N14179.8 (3)N22—C22—C23—N24176.5 (3)
C11—N13—C14—N15178.5 (2)C21—N23—C24—C231.0 (4)
C11—N13—C14—C131.1 (4)C21—N23—C24—N25176.4 (3)
C15—N15—C14—N13179.6 (2)N24—C23—C24—N23178.3 (3)
C15—N15—C14—C130.1 (3)C22—C23—C24—N231.1 (4)
N14—C13—C14—N13179.9 (3)N24—C23—C24—N250.4 (3)
C12—C13—C14—N131.1 (4)C22—C23—C24—N25176.7 (2)
N14—C13—C14—N150.3 (3)C25—N25—C24—N23178.6 (3)
C12—C13—C14—N15179.2 (2)C25—N25—C24—C230.7 (3)
C13—N14—C15—N150.7 (3)C23—N24—C25—N250.4 (3)
C14—N15—C15—N140.5 (3)C24—N25—C25—N240.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···Cl6i0.83 (2)2.74 (3)3.381 (2)135 (3)
O1W—H1B···Cl7i0.83 (2)2.63 (3)3.325 (2)142 (3)
N11—H11A···Cl80.86 (2)2.55 (2)3.407 (3)172 (3)
N11—H11B···Cl1ii0.87 (2)2.49 (2)3.334 (3)162 (3)
N12—H12A···Cl2ii0.87 (2)2.47 (2)3.285 (2)156 (3)
N14—H14A···O21iii0.90 (2)1.77 (2)2.656 (3)168 (4)
N15—H15B···Cl4iv0.88 (2)2.76 (3)3.393 (2)131 (3)
N15—H15B···O1W0.88 (2)2.09 (3)2.777 (3)135 (3)
N21—H21A···Cl7v0.86 (2)2.79 (4)3.236 (3)114 (3)
N21—H21A···Cl8v0.86 (2)2.92 (2)3.775 (3)174 (3)
N21—H21B···O11iii0.87 (2)2.52 (3)3.257 (3)143 (3)
N22—H22A···O11iii0.89 (2)1.90 (2)2.788 (3)178 (4)
N24—H24A···Cl5vi0.87 (2)2.70 (3)3.348 (2)132 (3)
N24—H24A···Cl6vi0.87 (2)2.55 (2)3.343 (2)152 (3)
N25—H25B···Cl4vii0.90 (2)2.87 (3)3.513 (2)130 (3)
N25—H25B···O1Wv0.90 (2)1.96 (3)2.774 (3)150 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+2, y+1, z; (vi) x+1, y+2, z; (vii) x+1, y+1, z1.
IR spectra of adenine, (C5H7N5)[AuCl4]Cl.H2O (1), guanine and (C5H6N5O)[AuCl4].0.5H2O (2) top
Band characteristics in the IR spectra are defined as very strong (vs), strong (s), medium (m), weak (w), shoulder (sh) and broad (br).
**Adenine (Ad)(C5H7N5)[AuCl4]Cl.H2O (1)Guanine (Gu)(C5H6N5O)[AuCl4].0.5H2O (2)
ν(NH2), ν(NH), ν(NH+), ν(CH), ν(H2O)*3357 (w), 3290 (m), 3262 (m), 3102 (s/br), 2981 (m), 2791 (m), 2602 (m), 2342 (m)3249 (m), 3133 (m), 3086 (sh), 2946 (s), 2797 (m), 2543 (s/br), 2359 (sh)3315 (m), 3160 (sh), 3107 (s), 3067 (s), 2984 (m), 2893 (s), 2844 (s), 2688 (s), 2451 (w), 2360 (m)3222 (sh), 3165 (m), 3051 (m), 2998 (sh), 2929 (s), 2716 (w), 2593 (br), 2496 (br), 2355 (m), 2338 (m)
H···Cl1924, 1864, 17881926 (m), 1842 (m)
ν(CO), ν(CN), ν(CC), δ(NH2)in plane, δ(NH+)in plane, δ(H2O)*1672 (vs), 1600 (vs), 1505 (w), 1451 (m)1698 (vs), 1610 (s), 1585 (s), 1509 (w), 1493 (s)1687 (s), 1662 (vs), 1634 (sh), 1550 (s), 1473 (s), 1462 (s)1713 (s), 1666 (vs), 1651 (vs), 1614 (s), 1576 (s), 1504 (m), 1462 (m)
ν(C—N), δ(NH2)out-of-plane, δ(NH+)out-of-plane, δ(CH)in plane and out-of-plane, Ring mode, ρ(NH2), ρ(NH), main ring skeleton vibrations1418 (s), 1367 (m), 1333 (s), 1308 (vs), 1252 (s), 1157 (w), 1125 (m), 938 (vs), 912 (s), 869 (m), 844 (m), 796 (m), 748 (w), 722 (s), 636 (vs), 620 (sh), 543 (s), 336 (vs)1421 (m), 1381 (s), 1318 (m), 1255 (s), 1190 (w), 1172 (s), 1106 (w), 1068 (m), 1022 (m), 937 (m), 891 (s), 849 (vs), 773 (s), 692 (vs), 606 (vs), 544 (m), 522 (m), 333 (vs)1416 (m), 1368 (vs), 1259 (s), 1214 (m), 1173 (s), 1117 (s), 1041 (w), 947 (s), 874 (s), 848 (s), 773 (vs), 726 (w), 701 (s), 688 (s), 644 (m), 598 (s), 555 (m), 539 (m), 514 (w), 455 (s/br), 398 (s), 355 (s), 343 (s)1424 (w), 1379 (s), 1318 (sh), 1274 (w), 1247 (m), 1174 (vs), 1126 (sh), 1067 (m), 1025 (s), 973 (m), 927 (m), 860 (s), 837 (s), 757 (s), 732 (s), 706 (w), 675 (vs), 640 (s), 590 (vs), 521 (s), 500 (vs), 372 (s), 356 (m)
ν(AuCl)307 (m)314 (m)
Notes: (*) for 1 and 2; (**) it is not possible to identify the bands separately due to similar binding energies.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds