Download citation
Download citation
link to html
The sulfur coordination polymer catena-poly[zinc(II)-μ2-bis[5-(methyl­sulfan­yl)-2-sulfanyl­idene-2,3-di­hydro-1,3,4-thia­diazol-3-ido-κ2N3:S]], [Zn(C3H3N2S3)2]n or [Zn2MTT4]n, constructed from Zn2+ ions and 5-methyl­sulfanyl-1,3,4-thia­diazole-2-thione (HMTT), was synthesized successfully and structurally char­acterized. [Zn2MTT4]n crystallizes in the tetra­gonal space group I\overline{4} (No. 82). Each MTT ligand (systematic name: 5-methyl­sulfanyl-2-sulfanyl­idene-2,3-di­hydro-1,3,4-thia­diazol-3-ide) coordinates to two different ZnII ions, one via the thione group and the other via a ring N atom, with one ZnII atom being in a tetra­hedral ZnS4 and the other in a tetra­hedral ZnN4 coordination environment. These tetra­hedral ZnS4 and ZnN4 units are alternately linked by the organic ligands, forming a one-dimensional chain structure along the c axis. The one-dimensional chains are further linked via C—H...N and C—H...S hydrogen bonds to form a three-dimensional network adopting an ABAB-style arrangement that lies along both the a and b axes. The three-dimensional Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots confirm the major inter­actions as C—H...S hydrogen bonds with a total of 35.1%, while 7.4% are C—H...N hydrogen-bond inter­actions. [Zn2MTT4]n possesses high thermal and chemical stability and a linear temperature dependence of the bandgap from room temperature to 270 °C. Further investigation revealed that the bandgap changes sharply in ammonia, but only fluctuates slightly in other solvents, indicating its promising application as a selective sensor.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619010945/jx3043sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619010945/jx3043Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619010945/jx3043sup3.pdf
Additional synthesis details, FT-IR/Raman spectra, bandgap calculations, PXRD patterns and Tauc plots

CCDC reference: 1828049

Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: APEX3 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

catena-Poly[zinc(II)-bis[µ2-5-(methylsulfanyl)-2-sulfanylidene-2,3-dihydro-1,3,4-thiadiazol-3-ido-κ2N3:S]] top
Crystal data top
[Zn(C3H3N2S3)2]Dx = 1.817 Mg m3
Mr = 391.96Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 3909 reflections
a = 18.1367 (12) Åθ = 2.5–25.8°
c = 8.7103 (9) ŵ = 2.57 mm1
V = 2865.2 (5) Å3T = 296 K
Z = 8Block, colorless
F(000) = 15680.20 × 0.16 × 0.16 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2550 reflections with I > 2σ(I)
phi and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.2°, θmin = 1.6°
Tmin = 0.624, Tmax = 0.746h = 2323
10994 measured reflectionsk = 2322
2908 independent reflectionsl = 1110
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0273P)2 + 1.9481P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.31 e Å3
2908 reflectionsΔρmin = 0.33 e Å3
155 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.32 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

The data adsorption correction was carried out by multi-scan techniques using SADABS routine of APEX program (Bruker, 2014). The crystal structure was solved by Shelxt (Sheldrick, 2015a) subprogram using dual space algorithm and refined by full-matrix least-squares on F2 using Shelxl (Sheldrick, 2015b) under the SHELXTL (Bruker, 2000) software package. All non-hydrogen atoms were refined anisotropically with displacement parameters during the final cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn40.5000000.5000000.5000000.0280 (3)
Zn30.5000000.5000001.0000000.0317 (3)
S40.52520 (7)0.39832 (7)0.84020 (14)0.0337 (3)
S50.36726 (8)0.34550 (9)0.80060 (16)0.0483 (4)
S60.22995 (10)0.35088 (14)0.6101 (2)0.0818 (7)
N40.4278 (2)0.4347 (2)0.6163 (4)0.0288 (9)
N30.3570 (2)0.4251 (2)0.5583 (5)0.0351 (10)
C40.4419 (3)0.3974 (2)0.7436 (6)0.0308 (10)
C50.3197 (3)0.3792 (3)0.6432 (6)0.0430 (13)
C60.2128 (4)0.3882 (4)0.4237 (9)0.082 (2)
H6A0.2437050.3639860.3498550.123*
H6B0.2233650.4400660.4240450.123*
H6C0.1619650.3806360.3969550.123*
Zn21.0000000.5000000.7500000.0275 (2)
Zn11.0000000.5000001.2500000.0307 (3)
S10.95148 (8)0.59642 (7)1.10196 (16)0.0368 (3)
S20.79737 (8)0.53882 (9)1.03997 (15)0.0451 (4)
S30.70135 (8)0.44608 (10)0.83252 (18)0.0513 (4)
N10.8472 (2)0.4695 (2)0.8064 (4)0.0330 (10)
N20.9062 (2)0.5067 (2)0.8707 (5)0.0311 (9)
C10.8903 (2)0.5448 (2)0.9943 (6)0.0294 (10)
C20.7868 (3)0.4817 (3)0.8825 (6)0.0350 (12)
C30.7250 (3)0.4016 (4)0.6546 (8)0.0606 (18)
H3A0.7426440.4377590.5830210.091*
H3B0.6820970.3777930.6131510.091*
H3C0.7627320.3655830.6727830.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn40.0299 (4)0.0299 (4)0.0241 (6)0.0000.0000.000
Zn30.0351 (4)0.0351 (4)0.0249 (6)0.0000.0000.000
S40.0337 (7)0.0364 (7)0.0310 (7)0.0030 (6)0.0034 (6)0.0030 (5)
S50.0457 (8)0.0616 (10)0.0377 (8)0.0195 (7)0.0040 (6)0.0160 (7)
S60.0449 (10)0.1328 (19)0.0677 (12)0.0372 (11)0.0127 (9)0.0203 (12)
N40.029 (2)0.034 (2)0.024 (2)0.0016 (18)0.0017 (17)0.0011 (18)
N30.033 (2)0.044 (3)0.028 (2)0.0017 (19)0.0014 (18)0.0020 (19)
C40.034 (3)0.029 (2)0.030 (3)0.0013 (19)0.006 (2)0.005 (2)
C50.036 (3)0.059 (3)0.034 (3)0.008 (3)0.001 (2)0.000 (3)
C60.051 (4)0.098 (6)0.098 (6)0.008 (4)0.038 (4)0.006 (5)
Zn20.0271 (3)0.0271 (3)0.0284 (6)0.0000.0000.000
Zn10.0342 (4)0.0342 (4)0.0237 (6)0.0000.0000.000
S10.0430 (8)0.0327 (7)0.0347 (7)0.0031 (6)0.0095 (6)0.0020 (5)
S20.0305 (7)0.0719 (10)0.0329 (7)0.0005 (7)0.0046 (6)0.0105 (7)
S30.0309 (8)0.0835 (12)0.0396 (8)0.0152 (7)0.0043 (6)0.0014 (8)
N10.027 (2)0.042 (2)0.030 (2)0.0039 (18)0.0022 (18)0.0001 (18)
N20.029 (2)0.036 (2)0.029 (2)0.0003 (17)0.0004 (18)0.0008 (19)
C10.028 (2)0.033 (3)0.027 (2)0.0001 (19)0.003 (2)0.007 (2)
C20.031 (3)0.045 (3)0.029 (3)0.003 (2)0.006 (2)0.004 (2)
C30.049 (4)0.077 (5)0.056 (4)0.006 (3)0.019 (3)0.015 (3)
Geometric parameters (Å, º) top
Zn4—N42.036 (4)Zn2—N22.004 (4)
Zn4—N4i2.036 (4)Zn2—N2vi2.004 (4)
Zn4—N4ii2.036 (4)Zn2—N2vii2.004 (4)
Zn4—N4iii2.036 (4)Zn2—N2viii2.004 (4)
Zn3—S42.3551 (13)Zn1—S12.3442 (13)
Zn3—S4iv2.3552 (13)Zn1—S1ix2.3442 (13)
Zn3—S4v2.3552 (13)Zn1—S1vii2.3442 (13)
Zn3—S4i2.3552 (13)Zn1—S1x2.3442 (13)
S4—C41.730 (5)S1—C11.728 (5)
S5—C41.722 (5)S2—C21.730 (5)
S5—C51.732 (5)S2—C11.736 (5)
S6—C51.730 (5)S3—C21.734 (5)
S6—C61.787 (8)S3—C31.798 (6)
N4—C41.324 (7)N1—C21.299 (6)
N4—N31.391 (5)N1—N21.383 (5)
N3—C51.304 (6)N2—C11.311 (6)
C6—H6A0.9600C3—H3A0.9600
C6—H6B0.9599C3—H3B0.9600
C6—H6C0.9600C3—H3C0.9600
N4—Zn4—N4i120.3 (2)N2—Zn2—N2vi105.99 (11)
N4—Zn4—N4ii104.35 (10)N2—Zn2—N2vii116.7 (2)
N4i—Zn4—N4ii104.35 (10)N2vi—Zn2—N2vii105.99 (11)
N4—Zn4—N4iii104.35 (10)N2—Zn2—N2viii105.99 (11)
N4i—Zn4—N4iii104.35 (10)N2vi—Zn2—N2viii116.7 (2)
N4ii—Zn4—N4iii120.3 (2)N2vii—Zn2—N2viii105.99 (11)
S4—Zn3—S4iv110.44 (3)S1—Zn1—S1ix107.61 (3)
S4—Zn3—S4v110.44 (3)S1—Zn1—S1vii113.26 (7)
S4iv—Zn3—S4v107.55 (6)S1ix—Zn1—S1vii107.61 (3)
S4—Zn3—S4i107.55 (6)S1—Zn1—S1x107.61 (3)
S4iv—Zn3—S4i110.44 (3)S1ix—Zn1—S1x113.26 (7)
S4v—Zn3—S4i110.44 (3)S1vii—Zn1—S1x107.61 (3)
C4—S4—Zn397.21 (16)C1—S1—Zn197.79 (16)
C4—S5—C588.3 (3)C2—S2—C187.9 (2)
C5—S6—C6101.7 (3)C2—S3—C399.8 (3)
C4—N4—N3114.7 (4)C2—N1—N2111.3 (4)
C4—N4—Zn4126.2 (3)C1—N2—N1114.8 (4)
N3—N4—Zn4119.1 (3)C1—N2—Zn2130.5 (3)
C5—N3—N4110.7 (4)N1—N2—Zn2114.5 (3)
N4—C4—S5111.7 (4)N2—C1—S1126.2 (4)
N4—C4—S4124.8 (4)N2—C1—S2111.6 (4)
S5—C4—S4123.5 (3)S1—C1—S2122.2 (3)
N3—C5—S6125.7 (4)N1—C2—S2114.4 (4)
N3—C5—S5114.6 (4)N1—C2—S3124.2 (4)
S6—C5—S5119.7 (3)S2—C2—S3121.4 (3)
S6—C6—H6A109.5S3—C3—H3A109.5
S6—C6—H6B109.5S3—C3—H3B109.5
H6A—C6—H6B109.5H3A—C3—H3B109.5
S6—C6—H6C109.5S3—C3—H3C109.5
H6A—C6—H6C109.5H3A—C3—H3C109.5
H6B—C6—H6C109.5H3B—C3—H3C109.5
C4—N4—N3—C51.1 (6)C2—N1—N2—C11.1 (6)
Zn4—N4—N3—C5177.0 (3)C2—N1—N2—Zn2174.1 (3)
N3—N4—C4—S50.9 (5)N1—N2—C1—S1179.5 (3)
Zn4—N4—C4—S5177.2 (2)Zn2—N2—C1—S16.2 (7)
N3—N4—C4—S4179.6 (3)N1—N2—C1—S21.2 (5)
Zn4—N4—C4—S41.5 (6)Zn2—N2—C1—S2173.1 (3)
C5—S5—C4—N40.3 (4)Zn1—S1—C1—N282.5 (4)
C5—S5—C4—S4179.0 (4)Zn1—S1—C1—S298.2 (3)
Zn3—S4—C4—N489.0 (4)C2—S2—C1—N20.7 (4)
Zn3—S4—C4—S592.5 (3)C2—S2—C1—S1179.9 (3)
N4—N3—C5—S6179.0 (4)N2—N1—C2—S20.6 (5)
N4—N3—C5—S50.9 (6)N2—N1—C2—S3178.3 (3)
C6—S6—C5—N38.9 (6)C1—S2—C2—N10.1 (4)
C6—S6—C5—S5170.9 (4)C1—S2—C2—S3179.0 (3)
C4—S5—C5—N30.4 (4)C3—S3—C2—N14.7 (5)
C4—S5—C5—S6179.5 (4)C3—S3—C2—S2174.1 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) y+1, x, z+1; (iii) y, x+1, z+1; (iv) y+1, x, z+2; (v) y, x+1, z+2; (vi) y+3/2, x1/2, z+3/2; (vii) x+2, y+1, z; (viii) y+1/2, x+3/2, z+3/2; (ix) y+1/2, x+3/2, z+5/2; (x) y+3/2, x1/2, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···S6xi0.963.023.887 (7)151
C3—H3B···N3ii0.962.483.392 (7)158
C6—H6B···S1xii0.963.043.599 (7)119
C6—H6B···S1xii0.963.043.599 (7)119
C3—H3B···N3ii0.962.483.392 (7)158
C3—H3C···S6xi0.963.023.887 (7)151
Symmetry codes: (ii) y+1, x, z+1; (xi) y+1/2, x+1/2, z+3/2; (xii) y1/2, x+3/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds