Download citation
Download citation
link to html
A new inorganic–organic hybrid based on an aspartate functionalized poly­oxomolybdate, [penta­aqua­cobalt(II)]-μ-aspartate-[γ-octa­molybdate]-μ-as­partate-[penta­aqua­cobalt(II)] tetrahydrate, [Co2(C4H6NO4)2(γ-Mo8O26)(H2O)10]·4H2O (1), has been synthesized under hydro­thermal conditions from the reaction of an Evans–Showell-type polyoxometalate, (NH4)6[Co2Mo10H4O38], and L-aspartic acid. The complex exhibits a supra­molecular three-dimensional framework structure in the crystal lattice. Compound 1 was structurally characterized by elemental analyses, IR and UV–Vis (diffuse reflectance) spectroscopy and single-crystal X-ray diffraction. In this compound, aspartic acid acts as a bridge between the two Co atoms and the Mo centres, with the –CH2COOH side chain directly linked to the Mo centre in γ-[Mo8O26]4− and the α-carb­oxy­late side chain bound to the Co centre. Commonly, the binding of transition-metal complexes to POMs involves coordination of the metal to a terminal O atom of the POM so that 1, with a bridging ligand between Mo and Co atoms, belongs to a separate class of hybrid materials. While the starting materials are both chiral and one might expect them to form a chiral hybrid, the decomposition of the chiral Evans–Showell-type POM and its conversion to the centrosymmetric γ-octa­molybdate POM, plus the presence of two aspartate ligands centrosymmetrically placed on either side of the POM, leads to the formation of an achiral hybrid. We have studied energetically by means of density functional theory (DFT) calculations and using the Bader's `atoms-in-mol­ecules' analysis the electrostatically enhanced hydrogen bonds (EEHBs) observed in the solid state of 1, which are crucial for the formation of one-dimensional supra­molecular assemblies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619004029/jx3036sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619004029/jx3036Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619004029/jx3036sup3.pdf
Hydrogen-bond geometry

CCDC reference: 1902500

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016) and DIAMOND (Macrae et al., 2008).

[Pentaaquacobalt(III)]-µ-aspartato-[γ-octamolybdato]-µ-aspartato- [pentaaquacobalt(III)] top
Crystal data top
[Co2(C4H6NO4)2(Mo8O26)(H2O)10]·4H2OF(000) = 1752
Mr = 1817.80Dx = 2.761 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.507 (4) ÅCell parameters from 9042 reflections
b = 12.853 (5) Åθ = 2.5–29.9°
c = 15.795 (6) ŵ = 3.09 mm1
β = 110.602 (5)°T = 120 K
V = 2186.6 (13) Å3Plate, pale pink
Z = 20.30 × 0.17 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6170 independent reflections
Radiation source: fine-focus sealed tube5156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.3333 pixels mm-1θmax = 30.1°, θmin = 1.9°
φ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1818
Tmin = 0.50, Tmax = 0.73l = 2121
41259 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: mixed
wR(F2) = 0.078H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
6170 reflections(Δ/σ)max = 0.003
307 parametersΔρmax = 2.36 e Å3
0 restraintsΔρmin = 1.21 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = -30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A suitable crystal of 1 was mounted on a polymer loop with a drop of heavy oil and placed in the cold nitrogen stream of a Bruker AXS SMART APEX diffractometer. A full sphere of intensity data was collected under control of the APEX3 software and reduced to F2 values with SAINT. Correction for absorption and merging of equivalent reflections was accomplished with SADABS, the structure was solved by direct methods (SHELXT) and refined by full-matrix, least-squares procedures (SHELXL).

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 %A and O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Residual density remote from the main molecule and attributed to partially occupied/disordered lattice water sites was removed with PLATON SQUEEZE (Spek, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.79282 (2)0.56969 (2)1.02435 (2)0.00994 (7)
Mo20.70115 (2)0.35694 (2)1.08690 (2)0.00876 (7)
Mo30.49705 (2)0.52283 (2)1.10597 (2)0.00749 (6)
Mo40.60173 (2)0.72713 (2)0.87952 (2)0.00887 (7)
Co10.18917 (4)0.44228 (3)0.31910 (3)0.01078 (9)
O10.86206 (19)0.59318 (17)1.13777 (14)0.0155 (4)
O20.7988 (2)0.38560 (17)1.19477 (14)0.0149 (4)
O30.58767 (19)0.54451 (16)1.21552 (14)0.0123 (4)
O40.90484 (19)0.59807 (17)0.97852 (14)0.0153 (4)
O50.80114 (18)0.41971 (16)1.02516 (13)0.0118 (4)
O60.7225 (2)0.22598 (16)1.07333 (14)0.0138 (4)
O70.54432 (18)0.35937 (15)1.10358 (13)0.0098 (4)
O80.35557 (19)0.44970 (15)1.11207 (13)0.0100 (4)
O90.43556 (19)0.64562 (15)1.06560 (13)0.0110 (4)
O100.62134 (18)0.51433 (15)1.04804 (13)0.0089 (4)
O110.70039 (19)0.70166 (16)1.00178 (13)0.0111 (4)
O120.7157 (2)0.75252 (17)0.83442 (14)0.0142 (4)
O130.5401 (2)0.84410 (16)0.89096 (14)0.0145 (4)
O140.49066 (19)0.68947 (16)0.74554 (13)0.0118 (4)
O150.3257 (2)0.79201 (17)0.72944 (14)0.0167 (4)
O160.1814 (2)0.4784 (2)0.52425 (16)0.0255 (6)
O170.3109 (2)0.48964 (16)0.44731 (14)0.0125 (4)
O180.3245 (2)0.49814 (16)0.27202 (14)0.0144 (4)
H18A0.3424370.5640390.2737320.022*
H18B0.3183420.4791050.2177560.022*
O190.2843 (2)0.29945 (16)0.33772 (14)0.0149 (4)
H19A0.2808020.2619580.2910420.022*
H19B0.2956040.2541660.3808210.022*
O200.0538 (2)0.38929 (17)0.36856 (14)0.0167 (4)
H20B0.0748640.4007610.4263070.025*
H20A0.0314230.3242680.3624220.025*
O210.10934 (19)0.59315 (16)0.30624 (14)0.0150 (4)
H21A0.1608710.6362830.3432650.022*
H21B0.0942210.6212230.2533060.022*
O220.0663 (2)0.3976 (2)0.19079 (14)0.0228 (5)
H22A0.0758820.3934820.1386640.034*
H22B0.0131570.4067240.1769770.034*
N10.4715 (2)0.6140 (2)0.56684 (17)0.0142 (5)
H1A0.4381030.6530760.5159850.017*
H1B0.5178680.5618630.5558640.017*
H1C0.5206780.6548340.6124830.017*
C10.3770 (3)0.7194 (2)0.70490 (19)0.0118 (6)
C20.2999 (3)0.6574 (2)0.6222 (2)0.0130 (6)
H2A0.2655380.7060820.5708300.016*
H2B0.2289730.6259300.6345500.016*
C30.3703 (3)0.5703 (2)0.5933 (2)0.0135 (6)
H30.4077830.5227340.6460510.016*
C40.2803 (3)0.5069 (2)0.5154 (2)0.0142 (6)
O230.0785 (2)0.80053 (18)0.64879 (16)0.0230 (5)
H23A0.0678890.8316960.5977140.035*
H23B0.1586730.7944310.6737060.035*
O240.1348 (2)0.4320 (2)0.67953 (17)0.0302 (6)
H24A0.1472260.4592410.7324240.045*
H24B0.0555310.4189650.6584240.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00948 (12)0.01172 (13)0.00803 (12)0.00113 (9)0.00235 (10)0.00058 (9)
Mo20.00973 (12)0.00873 (12)0.00733 (12)0.00071 (9)0.00239 (9)0.00025 (9)
Mo30.00923 (12)0.00781 (12)0.00543 (11)0.00052 (9)0.00261 (9)0.00046 (8)
Mo40.01140 (12)0.00829 (12)0.00699 (12)0.00114 (9)0.00331 (10)0.00023 (9)
Co10.0123 (2)0.01163 (19)0.00849 (18)0.00063 (15)0.00369 (16)0.00057 (15)
O10.0163 (11)0.0175 (11)0.0115 (10)0.0029 (9)0.0034 (9)0.0007 (9)
O20.0163 (11)0.0164 (11)0.0107 (10)0.0025 (9)0.0030 (9)0.0002 (9)
O30.0138 (10)0.0129 (10)0.0101 (9)0.0001 (8)0.0040 (8)0.0000 (8)
O40.0142 (10)0.0187 (11)0.0133 (10)0.0027 (9)0.0054 (9)0.0010 (9)
O50.0101 (10)0.0131 (10)0.0117 (10)0.0007 (8)0.0033 (8)0.0007 (8)
O60.0166 (11)0.0121 (10)0.0126 (10)0.0023 (8)0.0051 (9)0.0011 (8)
O70.0120 (10)0.0088 (10)0.0082 (9)0.0006 (8)0.0031 (8)0.0004 (7)
O80.0125 (10)0.0095 (9)0.0085 (9)0.0015 (8)0.0044 (8)0.0001 (8)
O90.0136 (10)0.0096 (10)0.0092 (9)0.0008 (8)0.0031 (8)0.0010 (8)
O100.0076 (9)0.0114 (9)0.0080 (9)0.0015 (8)0.0031 (8)0.0003 (8)
O110.0145 (10)0.0101 (9)0.0085 (9)0.0004 (8)0.0038 (8)0.0009 (8)
O120.0146 (10)0.0162 (10)0.0135 (10)0.0024 (8)0.0068 (9)0.0001 (9)
O130.0183 (11)0.0115 (10)0.0130 (10)0.0012 (8)0.0046 (9)0.0014 (8)
O140.0120 (10)0.0149 (10)0.0083 (9)0.0001 (8)0.0032 (8)0.0016 (8)
O150.0172 (11)0.0164 (11)0.0150 (10)0.0015 (9)0.0039 (9)0.0036 (9)
O160.0286 (14)0.0340 (14)0.0183 (12)0.0158 (11)0.0136 (11)0.0116 (10)
O170.0159 (11)0.0138 (10)0.0076 (9)0.0015 (8)0.0038 (8)0.0013 (8)
O180.0224 (12)0.0109 (10)0.0131 (10)0.0017 (9)0.0102 (9)0.0020 (8)
O190.0230 (12)0.0111 (10)0.0118 (10)0.0004 (9)0.0074 (9)0.0000 (8)
O200.0176 (11)0.0197 (11)0.0140 (10)0.0046 (9)0.0071 (9)0.0030 (9)
O210.0161 (11)0.0133 (10)0.0129 (10)0.0021 (9)0.0018 (9)0.0003 (8)
O220.0152 (11)0.0407 (15)0.0105 (10)0.0017 (11)0.0019 (9)0.0030 (10)
N10.0117 (12)0.0159 (13)0.0132 (12)0.0028 (10)0.0022 (10)0.0028 (10)
C10.0159 (14)0.0106 (13)0.0086 (13)0.0001 (11)0.0041 (11)0.0016 (11)
C20.0143 (14)0.0141 (14)0.0102 (13)0.0001 (11)0.0037 (11)0.0040 (11)
C30.0135 (14)0.0164 (15)0.0096 (13)0.0015 (11)0.0028 (11)0.0009 (11)
C40.0185 (15)0.0128 (14)0.0111 (13)0.0015 (12)0.0052 (12)0.0005 (11)
O230.0177 (12)0.0223 (12)0.0250 (12)0.0052 (10)0.0024 (10)0.0017 (10)
O240.0307 (15)0.0357 (15)0.0239 (13)0.0006 (12)0.0092 (12)0.0025 (11)
Geometric parameters (Å, º) top
Mo1—O11.712 (2)Co1—O212.125 (2)
Mo1—O41.725 (2)O14—C11.297 (4)
Mo1—O51.930 (2)O15—C11.236 (3)
Mo1—O111.967 (2)O16—C41.249 (4)
Mo1—O8i2.243 (2)O17—C41.264 (3)
Mo1—O102.249 (2)O18—H18A0.8700
Mo1—Mo23.2092 (9)O18—H18B0.8700
Mo2—O21.719 (2)O19—H19A0.8699
Mo2—O61.725 (2)O19—H19B0.8699
Mo2—O71.914 (2)O20—H20B0.8700
Mo2—O51.927 (2)O20—H20A0.8699
Mo2—O102.217 (2)O21—H21A0.8700
Mo2—O9i2.369 (2)O21—H21B0.8701
Mo3—O31.700 (2)O22—H22A0.8699
Mo3—O91.755 (2)O22—H22B0.8699
Mo3—O81.911 (2)N1—C31.480 (4)
Mo3—O101.9534 (19)N1—H1A0.9100
Mo3—O72.174 (2)N1—H1B0.9100
Mo3—O10i2.381 (2)N1—H1C0.9100
Mo4—O131.699 (2)C1—C21.521 (4)
Mo4—O121.730 (2)C2—C31.542 (4)
Mo4—O111.893 (2)C2—H2A0.9900
Mo4—O142.108 (2)C2—H2B0.9900
Mo4—O7i2.109 (2)C3—C41.534 (4)
Mo4—O8i2.319 (2)C3—H31.0000
Co1—O182.076 (2)O23—H23A0.8700
Co1—O202.087 (2)O23—H23B0.8700
Co1—O222.103 (2)O24—H24A0.8701
Co1—O192.104 (2)O24—H24B0.8701
Co1—O172.106 (2)
O1—Mo1—O4105.10 (10)O18—Co1—O2294.82 (9)
O1—Mo1—O599.53 (10)O20—Co1—O2286.24 (9)
O4—Mo1—O599.87 (9)O18—Co1—O1986.16 (8)
O1—Mo1—O1193.47 (10)O20—Co1—O1994.75 (9)
O4—Mo1—O11100.24 (10)O22—Co1—O1992.10 (9)
O5—Mo1—O11152.25 (9)O18—Co1—O1785.17 (9)
O1—Mo1—O8i160.31 (9)O20—Co1—O1793.76 (9)
O4—Mo1—O8i92.80 (9)O22—Co1—O17179.01 (9)
O5—Mo1—O8i85.10 (8)O19—Co1—O1788.89 (8)
O11—Mo1—O8i75.01 (8)O18—Co1—O2190.21 (8)
O1—Mo1—O1089.67 (9)O20—Co1—O2188.81 (9)
O4—Mo1—O10164.92 (9)O22—Co1—O2192.05 (9)
O5—Mo1—O1074.18 (8)O19—Co1—O21174.70 (8)
O11—Mo1—O1081.54 (8)O17—Co1—O2186.96 (8)
O8i—Mo1—O1073.07 (7)Mo2—O5—Mo1112.60 (10)
O1—Mo1—Mo284.86 (8)Mo2—O7—Mo4i147.24 (11)
O4—Mo1—Mo2133.20 (7)Mo2—O7—Mo3105.78 (9)
O5—Mo1—Mo233.67 (6)Mo4i—O7—Mo3106.97 (9)
O11—Mo1—Mo2125.12 (6)Mo3—O8—Mo1i112.34 (9)
O8i—Mo1—Mo288.83 (5)Mo3—O8—Mo4i108.53 (9)
O10—Mo1—Mo243.67 (5)Mo1i—O8—Mo4i91.17 (7)
O2—Mo2—O6105.08 (10)Mo3—O9—Mo2i113.30 (9)
O2—Mo2—O7100.33 (10)Mo3—O10—Mo2102.80 (8)
O6—Mo2—O7102.45 (9)Mo3—O10—Mo1152.87 (11)
O2—Mo2—O596.51 (10)Mo2—O10—Mo191.86 (7)
O6—Mo2—O5102.05 (10)Mo3—O10—Mo3i103.88 (9)
O7—Mo2—O5145.35 (9)Mo2—O10—Mo3i97.59 (8)
O2—Mo2—O1098.14 (9)Mo1—O10—Mo3i96.52 (7)
O6—Mo2—O10156.79 (9)Mo4—O11—Mo1115.22 (10)
O7—Mo2—O1072.81 (8)C1—O14—Mo4125.35 (18)
O5—Mo2—O1074.98 (8)C4—O17—Co1125.4 (2)
O2—Mo2—O9i168.42 (9)Co1—O18—H18A121.7
O6—Mo2—O9i86.15 (9)Co1—O18—H18B116.4
O7—Mo2—O9i79.59 (8)H18A—O18—H18B103.9
O5—Mo2—O9i78.02 (8)Co1—O19—H19A119.9
O10—Mo2—O9i70.67 (7)Co1—O19—H19B128.3
O2—Mo2—Mo187.22 (7)H19A—O19—H19B104.0
O6—Mo2—Mo1135.75 (7)Co1—O20—H20B111.6
O7—Mo2—Mo1117.17 (6)Co1—O20—H20A120.2
O5—Mo2—Mo133.72 (6)H20B—O20—H20A104.0
O10—Mo2—Mo144.47 (5)Co1—O21—H21A110.4
O9i—Mo2—Mo182.61 (5)Co1—O21—H21B113.8
O3—Mo3—O9104.29 (10)H21A—O21—H21B103.9
O3—Mo3—O8104.93 (9)Co1—O22—H22A131.5
O9—Mo3—O8102.64 (10)Co1—O22—H22B119.7
O3—Mo3—O10101.42 (9)H22A—O22—H22B104.1
O9—Mo3—O1098.52 (9)C3—N1—H1A109.2
O8—Mo3—O10140.63 (8)C3—N1—H1B110.3
O3—Mo3—O796.23 (9)H1A—N1—H1B109.4
O9—Mo3—O7159.08 (8)C3—N1—H1C109.0
O8—Mo3—O775.43 (8)H1A—N1—H1C109.4
O10—Mo3—O773.08 (8)H1B—N1—H1C109.5
O3—Mo3—O10i176.77 (8)O15—C1—O14125.3 (3)
O9—Mo3—O10i78.27 (8)O15—C1—C2117.8 (3)
O8—Mo3—O10i76.21 (8)O14—C1—C2116.8 (2)
O10—Mo3—O10i76.13 (9)C1—C2—C3115.2 (3)
O7—Mo3—O10i81.09 (7)C1—C2—H2A108.5
O13—Mo4—O12106.41 (11)C3—C2—H2A108.5
O13—Mo4—O1199.65 (10)C1—C2—H2B108.5
O12—Mo4—O11100.56 (10)C3—C2—H2B108.5
O13—Mo4—O14100.46 (9)H2A—C2—H2B107.5
O12—Mo4—O1484.81 (9)N1—C3—C4110.5 (2)
O11—Mo4—O14156.75 (9)N1—C3—C2110.8 (2)
O13—Mo4—O7i94.12 (9)C4—C3—C2110.3 (2)
O12—Mo4—O7i154.84 (9)N1—C3—H3108.4
O11—Mo4—O7i89.90 (8)C4—C3—H3108.4
O14—Mo4—O7i77.14 (8)C2—C3—H3108.4
O13—Mo4—O8i161.64 (9)O16—C4—O17125.5 (3)
O12—Mo4—O8i91.85 (9)O16—C4—C3116.8 (3)
O11—Mo4—O8i74.52 (8)O17—C4—C3117.7 (3)
O14—Mo4—O8i82.75 (8)H23A—O23—H23B104.0
O7i—Mo4—O8i68.80 (7)H24A—O24—H24B104.0
O18—Co1—O20178.58 (8)
O3—Mo3—O9—Mo2i178.68 (9)Mo4—O14—C1—C2160.46 (19)
O8—Mo3—O9—Mo2i69.44 (11)O15—C1—C2—C3178.1 (3)
O10—Mo3—O9—Mo2i77.15 (11)O14—C1—C2—C33.9 (4)
O7—Mo3—O9—Mo2i12.8 (3)C1—C2—C3—N162.8 (3)
O10i—Mo3—O9—Mo2i3.34 (8)C1—C2—C3—C4174.5 (2)
O13—Mo4—O11—Mo1179.55 (11)Co1—O17—C4—O1616.1 (4)
O12—Mo4—O11—Mo171.59 (12)Co1—O17—C4—C3162.47 (19)
O14—Mo4—O11—Mo130.0 (3)N1—C3—C4—O16170.0 (3)
O7i—Mo4—O11—Mo185.39 (11)C2—C3—C4—O1647.1 (4)
O8i—Mo4—O11—Mo117.40 (9)N1—C3—C4—O178.7 (4)
Mo4—O14—C1—O1517.4 (4)C2—C3—C4—O17131.5 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18A···O15ii0.871.962.781 (3)156
O18—H18B···O8iii0.871.902.745 (3)163
O19—H19A···O12iv0.872.002.800 (3)151
O19—H19B···O11v0.871.962.779 (3)157
O20—H20B···O160.871.892.641 (3)144
O20—H20A···O23vi0.872.012.838 (3)158
O21—H21A···O6vii0.871.902.772 (3)178
O21—H21B···O23ii0.871.892.749 (3)171
O22—H22A···O4iv0.871.942.809 (3)173
O22—H22B···O2viii0.872.293.104 (3)155
O22—H22B···O5viii0.872.603.258 (3)134
N1—H1A···O6vii0.912.112.912 (3)147
N1—H1B···O17iv0.912.102.913 (3)149
N1—H1C···O140.912.292.919 (3)126
N1—H1C···O19iv0.912.182.902 (3)136
C2—H2A···O6vii0.992.343.134 (4)136
C3—H3···O3i1.002.333.240 (4)150
O23—H23A···O4ix0.872.323.024 (3)138
O23—H23B···O150.871.812.679 (3)175
O24—H24A···O1i0.872.202.892 (3)137
O24—H24A···O2i0.872.282.992 (3)140
O24—H24B···O21vi0.872.162.914 (3)144
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z1/2; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+3/2; (vi) x, y+1, z+1; (vii) x+1, y+1/2, z+3/2; (viii) x1, y, z1; (ix) x1, y+3/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds