Download citation
Download citation
link to html
Boronic esters are useful building blocks for crystal engineering and the generation of supra­molecular architectures, including macrocycles, cages and polymers (one-, two- and three-dimensional), with potential utility in diverse fields such as separation, storage and luminescent materials. The novel dinuclear cyano­phenyl­boronic ester described herein, namely 4,4′-(2,4,8,10-tetra­oxa-3,9-dibora­spiro­[5.5]undecane-3,9-di­yl)dibenzo­nitrile, C19H16B2N2O4, was prepared by condensation of 4-cyano­phenyl­boronic acid and penta­erythritol and fully characterized by elemental analysis, IR and NMR (1H and 11B) spectroscopy, single-crystal X-ray diffraction analysis and TG-DSC (thermogravimetry–differential scanning calorimetry) studies. In addition, the photophysical properties were examined in solution and in the solid state by UV–Vis and fluorescence spectroscopies. Density functional theory (DFT) calculations with ethanol as solvent reproduced reasonably well the HOMO (highest occupied mol­ecular orbital) and LUMO (lowest unoccupied mol­ecular orbital) of the title compound. Hirshfeld surface and fingerprint plot analyses are presented to illustrate the supra­molecular connectivity in the solid state.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618003583/jx3008sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618003583/jx3008Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618003583/jx3008Isup3.cml
Supplementary material

CCDC reference: 1826831

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and WinGX (Farrugia, 2012).

4,4'-(2,4,8,10-Tetraoxa-3,9-diboraspiro[5.5]undecane-3,9-diyl)dibenzonitrile top
Crystal data top
C19H16B2N2O4F(000) = 744
Mr = 357.96Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.2967 (14) ÅCell parameters from 4270 reflections
b = 11.5113 (9) Åθ = 3.4–28.9°
c = 11.0913 (9) ŵ = 0.09 mm1
β = 105.465 (10)°T = 100 K
V = 1759.3 (3) Å3Prism, translucent colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an EosS2 detector
3090 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2578 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 8.0769 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω scansh = 1613
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1313
Tmin = 0.774, Tmax = 1.000l = 1313
12023 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0175P)2 + 3.8888P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
3090 reflectionsΔρmax = 0.24 e Å3
244 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36175 (16)0.80679 (19)0.3824 (2)0.0272 (5)
O20.29169 (17)0.86853 (19)0.54550 (19)0.0291 (5)
O30.22597 (16)0.46461 (19)0.40200 (19)0.0266 (5)
O40.14720 (16)0.61144 (19)0.25664 (18)0.0246 (5)
N10.4527 (2)1.4595 (3)0.3386 (3)0.0364 (7)
N20.0250 (2)0.0775 (3)0.1535 (3)0.0356 (7)
C10.3451 (2)0.6870 (3)0.4053 (3)0.0260 (7)
H1A0.40210.65560.46450.031*
H1B0.33510.64370.32780.031*
C20.2568 (2)0.6713 (3)0.4570 (3)0.0251 (7)
C30.2677 (3)0.7515 (3)0.5694 (3)0.0299 (8)
H3A0.20740.75160.59380.036*
H3B0.31810.72100.63900.036*
C40.2526 (3)0.5463 (3)0.5028 (3)0.0311 (8)
H4A0.31570.52520.55670.037*
H4B0.20600.54210.55210.037*
C50.1637 (2)0.6960 (3)0.3563 (3)0.0264 (7)
H5A0.10940.69510.39330.032*
H5B0.16730.77290.32210.032*
C60.3632 (2)1.0192 (3)0.4320 (3)0.0244 (7)
C70.4124 (2)1.0445 (3)0.3409 (3)0.0271 (7)
H70.42980.98400.29570.033*
C80.4354 (2)1.1573 (3)0.3172 (3)0.0279 (8)
H80.46821.17220.25690.033*
C90.4093 (2)1.2486 (3)0.3841 (3)0.0262 (7)
C100.3619 (2)1.2252 (3)0.4771 (3)0.0262 (7)
H100.34531.28570.52300.031*
C110.3403 (2)1.1126 (3)0.5000 (3)0.0253 (7)
H110.30951.09790.56240.030*
C120.1460 (2)0.4041 (3)0.1807 (3)0.0232 (7)
C130.1059 (2)0.4327 (3)0.0552 (3)0.0257 (7)
H130.10600.50990.03050.031*
C140.0661 (2)0.3489 (3)0.0336 (3)0.0275 (8)
H140.03880.36990.11660.033*
C150.0673 (2)0.2326 (3)0.0031 (3)0.0252 (7)
C160.1116 (2)0.2009 (3)0.1267 (3)0.0275 (7)
H160.11470.12330.15070.033*
C170.1509 (2)0.2868 (3)0.2131 (3)0.0261 (7)
H170.18140.26550.29500.031*
C180.4321 (2)1.3666 (3)0.3583 (3)0.0277 (8)
C190.0174 (2)0.1461 (3)0.0853 (3)0.0276 (7)
B10.3384 (3)0.8912 (4)0.4552 (3)0.0261 (8)
B20.1751 (3)0.4993 (3)0.2851 (3)0.0237 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0334 (13)0.0254 (12)0.0256 (11)0.0028 (10)0.0128 (10)0.0021 (10)
O20.0457 (14)0.0244 (13)0.0210 (11)0.0021 (11)0.0154 (10)0.0014 (10)
O30.0369 (13)0.0212 (12)0.0212 (11)0.0030 (10)0.0068 (10)0.0004 (9)
O40.0310 (12)0.0224 (12)0.0198 (11)0.0008 (10)0.0057 (9)0.0013 (9)
N10.0455 (19)0.0331 (19)0.0368 (17)0.0012 (15)0.0216 (15)0.0046 (14)
N20.0455 (19)0.0316 (17)0.0311 (16)0.0095 (15)0.0127 (14)0.0046 (14)
C10.0308 (18)0.0241 (18)0.0220 (16)0.0026 (14)0.0051 (14)0.0038 (13)
C20.0337 (18)0.0240 (18)0.0176 (15)0.0016 (14)0.0068 (13)0.0004 (13)
C30.048 (2)0.0254 (18)0.0174 (15)0.0007 (16)0.0110 (15)0.0017 (14)
C40.050 (2)0.0276 (19)0.0155 (15)0.0035 (16)0.0078 (15)0.0009 (14)
C50.0330 (18)0.0259 (18)0.0230 (16)0.0019 (14)0.0122 (14)0.0037 (14)
C60.0226 (16)0.0300 (19)0.0197 (15)0.0012 (14)0.0040 (13)0.0008 (13)
C70.0321 (18)0.0288 (19)0.0213 (16)0.0027 (15)0.0086 (14)0.0038 (14)
C80.0274 (17)0.038 (2)0.0193 (16)0.0013 (15)0.0085 (13)0.0010 (14)
C90.0243 (17)0.0317 (19)0.0207 (15)0.0009 (14)0.0027 (13)0.0018 (14)
C100.0288 (18)0.0284 (19)0.0220 (16)0.0033 (14)0.0081 (14)0.0024 (14)
C110.0259 (17)0.0308 (19)0.0202 (15)0.0011 (14)0.0078 (13)0.0008 (14)
C120.0240 (16)0.0242 (18)0.0234 (16)0.0010 (13)0.0099 (13)0.0009 (13)
C130.0302 (18)0.0216 (17)0.0269 (17)0.0023 (14)0.0103 (14)0.0004 (14)
C140.0288 (18)0.035 (2)0.0202 (16)0.0024 (15)0.0086 (13)0.0019 (14)
C150.0255 (17)0.0281 (19)0.0238 (16)0.0003 (14)0.0100 (13)0.0061 (14)
C160.0339 (18)0.0220 (17)0.0296 (17)0.0010 (15)0.0136 (15)0.0013 (14)
C170.0274 (17)0.0306 (19)0.0215 (16)0.0003 (14)0.0084 (13)0.0001 (14)
C180.0287 (18)0.032 (2)0.0234 (17)0.0045 (15)0.0093 (14)0.0007 (15)
C190.0334 (19)0.0253 (18)0.0274 (17)0.0002 (15)0.0135 (15)0.0011 (15)
B10.0255 (19)0.035 (2)0.0162 (17)0.0021 (17)0.0030 (14)0.0037 (16)
B20.0228 (19)0.027 (2)0.0232 (18)0.0052 (15)0.0098 (15)0.0013 (16)
Geometric parameters (Å, º) top
B1—O11.360 (4)C5—H5B0.9700
B1—O21.369 (4)C6—C71.406 (4)
B2—O31.366 (4)C6—C111.402 (4)
B2—O41.364 (4)C7—H70.9300
B1—C61.553 (5)C7—C81.382 (5)
B2—C121.567 (5)C8—H80.9300
O1—C11.433 (4)C8—C91.394 (5)
O2—C31.433 (4)C9—C101.403 (4)
O3—C41.433 (4)C9—C181.442 (5)
O4—C51.445 (4)C10—H100.9300
N1—C181.146 (4)C10—C111.372 (5)
N2—C191.149 (4)C11—H110.9300
C1—H1A0.9700C12—C131.396 (4)
C1—H1B0.9700C12—C171.395 (5)
C1—C21.531 (4)C13—H130.9300
C2—C31.525 (4)C13—C141.388 (5)
C2—C41.533 (5)C14—H140.9300
C2—C51.519 (4)C14—C151.399 (5)
C3—H3A0.9700C15—C161.396 (4)
C3—H3B0.9700C15—C191.446 (5)
C4—H4A0.9700C16—H160.9300
C4—H4B0.9700C16—C171.387 (5)
C5—H5A0.9700C17—H170.9300
B1—O1—C1120.2 (3)C8—C7—H7119.3
B1—O2—C3120.1 (3)C7—C8—H8120.1
B2—O3—C4120.9 (3)C7—C8—C9119.8 (3)
B2—O4—C5118.9 (2)C9—C8—H8120.1
O1—C1—H1A109.2C8—C9—C10119.8 (3)
O1—C1—H1B109.2C8—C9—C18119.8 (3)
O1—C1—C2111.9 (3)C10—C9—C18120.4 (3)
H1A—C1—H1B107.9C9—C10—H10120.2
C2—C1—H1A109.2C11—C10—C9119.7 (3)
C2—C1—H1B109.2C11—C10—H10120.2
C1—C2—C4110.1 (3)C6—C11—H11119.1
C3—C2—C1108.7 (3)C10—C11—C6121.9 (3)
C3—C2—C4107.6 (2)C10—C11—H11119.1
C5—C2—C1110.5 (2)C13—C12—B2122.0 (3)
C5—C2—C3111.5 (3)C17—C12—C13117.7 (3)
C5—C2—C4108.4 (3)C17—C12—B2120.1 (3)
O2—C3—C2113.3 (2)C12—C13—H13119.1
O2—C3—H3A108.9C14—C13—C12121.7 (3)
O2—C3—H3B108.9C14—C13—H13119.1
C2—C3—H3A108.9C13—C14—H14120.4
C2—C3—H3B108.9C13—C14—C15119.2 (3)
H3A—C3—H3B107.7C15—C14—H14120.4
O3—C4—C2112.5 (2)C14—C15—C19119.8 (3)
O3—C4—H4A109.1C16—C15—C14120.2 (3)
O3—C4—H4B109.1C16—C15—C19119.9 (3)
C2—C4—H4A109.1C15—C16—H16120.5
C2—C4—H4B109.1C17—C16—C15119.1 (3)
H4A—C4—H4B107.8C17—C16—H16120.5
O4—C5—C2111.6 (3)C12—C17—H17119.0
O4—C5—H5A109.3C16—C17—C12121.9 (3)
O4—C5—H5B109.3C16—C17—H17119.0
C2—C5—H5A109.3N1—C18—C9178.3 (4)
C2—C5—H5B109.3N2—C19—C15177.5 (3)
H5A—C5—H5B108.0O1—B1—O2122.9 (3)
C7—C6—B1119.7 (3)O1—B1—C6118.4 (3)
C11—C6—C7117.5 (3)O2—B1—C6118.6 (3)
C11—C6—B1122.8 (3)O3—B2—C12117.8 (3)
C6—C7—H7119.3O4—B2—O3123.0 (3)
C8—C7—C6121.4 (3)O4—B2—C12119.1 (3)
O1—C1—C2—C351.9 (3)C8—C9—C10—C111.1 (5)
O1—C1—C2—C4169.5 (2)C9—C10—C11—C60.7 (5)
O1—C1—C2—C570.7 (3)C11—C6—C7—C81.4 (5)
C1—O1—B1—O25.4 (5)C11—C6—B1—O1178.5 (3)
C1—O1—B1—C6176.4 (3)C11—C6—B1—O20.3 (5)
C1—C2—C3—O249.2 (4)C12—C13—C14—C151.0 (5)
C1—C2—C4—O371.7 (3)C13—C12—C17—C164.4 (5)
C1—C2—C5—O466.0 (3)C13—C12—B2—O3171.1 (3)
C3—O2—B1—O11.9 (5)C13—C12—B2—O410.3 (5)
C3—O2—B1—C6179.9 (3)C13—C14—C15—C162.5 (5)
C3—C2—C4—O3170.0 (3)C13—C14—C15—C19173.7 (3)
C3—C2—C5—O4173.0 (2)C14—C15—C16—C172.4 (5)
C4—O3—B2—O40.3 (5)C15—C16—C17—C121.1 (5)
C4—O3—B2—C12178.2 (3)C17—C12—C13—C144.4 (5)
C4—C2—C3—O2168.4 (3)C17—C12—B2—O315.2 (4)
C4—C2—C5—O454.8 (3)C17—C12—B2—O4163.4 (3)
C5—O4—B2—O36.0 (4)C18—C9—C10—C11179.7 (3)
C5—O4—B2—C12172.4 (3)C19—C15—C16—C17173.7 (3)
C5—C2—C3—O272.9 (4)B1—O1—C1—C231.6 (4)
C5—C2—C4—O349.4 (4)B1—O2—C3—C225.4 (4)
C6—C7—C8—C90.3 (5)B1—C6—C7—C8179.7 (3)
C7—C6—C11—C101.8 (5)B1—C6—C11—C10179.3 (3)
C7—C6—B1—O12.6 (5)B2—O3—C4—C223.4 (4)
C7—C6—B1—O2179.1 (3)B2—O4—C5—C234.5 (4)
C7—C8—C9—C101.6 (5)B2—C12—C13—C14169.5 (3)
C7—C8—C9—C18179.2 (3)B2—C12—C17—C16169.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N1i0.972.693.222 (5)115
C3—H3A···O4ii0.972.713.417 (5)130
C3—H3B···O1ii0.972.623.438 (4)141
C7—H7···N1iii0.932.543.269 (5)135
C14—H14···O4iv0.932.713.407 (3)133
C16—H16···N2v0.932.653.477 (5)149
C1—H1A···C18vi0.972.663.598 (4)164
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1, z; (v) x, y, z; (vi) x+1, y+2, z+1.
Electronic excited states calculated by time-dependent density functional theory (TD-DFT) at the M06/cc-pVTZ level of calculation top
Λ (nm)Oscillator StrengthTransition (CI coefficient)
2580.0217HOMO-2LUMO+1 (0.77) HOMO LUMO+3 (0.21)
2570.0206HOMO-3LUMO (0.77) HOMO-1LUMO+2 (0.21)
2420.7968HOMOLUMO+1 (0.47) HOMO-1LUMO (0.43)
2400.1920HOMO-1LUMO (0.45) HOMOLUMO+1 (0.41)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds