Download citation
Download citation
link to html
The design and construction of metal–organic polyhedra has received much attention by chemists due to the intriguing diversity of architectures and topologies that can be achieved. There are several crucial factors which should be considered for the construction of metal–organic polyhedra, such as the starting materials, reaction time and temperature, solvent and suitable organic ligands. Recently, polyoxometalates (POMs), serving as secondary building units to construct POM-based metal–organic polyhedra, have been the subject of much inter­est. The title compound, dodeca­kis­(di­methyl­ammonium) octa­kis­(μ-benzene-1,3,5-tri­carboxyl­ato)hexa-μ-chlorido-tetra­cosa-μ-oxido-triacontaoxidotriacontavanadium, (NH2Me2)12[(V5O9Cl)6(C9H3O6)8], was synthesized successfully by self-assembly of VOCl3 and benzene-1,3,5-tri­carb­oxy­lic acid under solvothermal conditions. The title polyhedron has an rdo topology when the {V5O9Cl} building unit and the benzene-1,3,5-tri­carboxyl­ate (BTC3−) ligand were simplified into 4-connected and 3-connected vertices. Inter­estingly, when the {V5O9Cl} building unit and the BTC3− ligand are considered as quadrangular and triangular faces, the structure displays rhombicubocta­hedral geometry with an outer diameter of 21.88 Å. The packing of the polyhedra produces a circular channel with a diameter of 8.2 Å. The title compound was characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy, thermogravimetric analysis and powder X-ray diffraction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618010689/jr3007sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618010689/jr3007Isup2.hkl
Contains datablock I

CCDC reference: 1830697

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dodecakis(dimethylammonium) octakis(µ-benzene-1,3,5-tricarboxylato)hexa-µ-chlorido-tetracosa-µ-oxido-triacontaoxidotriacontavanadium top
Crystal data top
(C2H8N)12[(V5O9Cl)6(C9H3O6)8]Mo Kα radiation, λ = 0.71073 Å
Mr = 4814.93Cell parameters from 19592 reflections
Cubic, Fm3mθ = 3.1–25.0°
a = 29.7184 (17) ŵ = 1.14 mm1
V = 26247 (5) Å3T = 296 K
Z = 4Block, green
F(000) = 95520.24 × 0.22 × 0.2 mm
Dx = 1.218 Mg m3
Data collection top
Bruker APEXII Quazar
diffractometer
1046 reflections with I > 2σ(I)
0.5° ω and 0.5° φ scansRint = 0.055
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.0°, θmin = 3.1°
Tmin = 0.768, Tmax = 0.796h = 3534
19592 measured reflectionsk = 3527
1201 independent reflectionsl = 3235
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0418P)2 + 74.8854P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1201 reflectionsΔρmax = 0.27 e Å3
55 parametersΔρmin = 0.30 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V20.73802 (2)0.5000000.41711 (2)0.01883 (17)
V10.68625 (3)0.5000000.5000000.0221 (2)
O40.78500 (5)0.54596 (5)0.40056 (5)0.0270 (4)
O20.70739 (6)0.54202 (4)0.45798 (4)0.0216 (4)
O30.70869 (7)0.5000000.37254 (7)0.0319 (5)
O10.63209 (14)0.5000000.5000000.0381 (11)
C10.79992 (9)0.58100 (6)0.41900 (6)0.0221 (6)
C30.85897 (7)0.64103 (7)0.41620 (10)0.0252 (6)
H30.8462000.6538000.4417550.030*
C20.83978 (9)0.60281 (7)0.39719 (7)0.0229 (6)
Cl10.79363 (5)0.5000000.5000000.0295 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V20.0137 (3)0.0215 (3)0.0212 (3)0.0000.00207 (18)0.000
V10.0111 (5)0.0276 (3)0.0276 (3)0.0000.0000.000
O40.0244 (7)0.0270 (8)0.0298 (8)0.0073 (6)0.0054 (6)0.0050 (6)
O20.0157 (10)0.0245 (6)0.0245 (6)0.0019 (5)0.0019 (5)0.0001 (8)
O30.0291 (11)0.0379 (13)0.0288 (12)0.0000.0099 (9)0.000
O10.014 (2)0.0503 (17)0.0503 (17)0.0000.0000.000
C10.0203 (14)0.0229 (9)0.0229 (9)0.0016 (8)0.0016 (8)0.0015 (12)
C30.0255 (9)0.0255 (9)0.0246 (15)0.0006 (12)0.0055 (9)0.0055 (9)
C20.0224 (15)0.0232 (9)0.0232 (9)0.0035 (8)0.0035 (8)0.0026 (12)
Cl10.0185 (7)0.0349 (5)0.0349 (5)0.0000.0000.000
Geometric parameters (Å, º) top
V2—V12.9043 (7)V1—O2i1.8747 (18)
V2—O42.0142 (14)V1—O2iii1.8747 (18)
V2—O4i2.0143 (14)V1—O11.610 (4)
V2—O21.9654 (9)V1—Cl13.1910 (17)
V2—O2i1.9654 (9)O4—C11.2575 (18)
V2—O31.585 (2)C1—C21.498 (4)
V2—Cl12.9664 (9)C3—C2v1.3908 (19)
V2—Cl1ii2.9664 (9)C3—C21.3908 (19)
V2—Cl1iii2.9664 (9)Cl1—Cl1iii0.000 (3)
V1—O2iv1.8747 (18)Cl1—Cl1ii0.000 (3)
V1—O21.8746 (18)
V1—V2—Cl1ii65.84 (3)O2i—V1—V2iv112.80 (5)
V1—V2—Cl165.84 (3)O2iv—V1—V2vii112.80 (5)
V1—V2—Cl1iii65.84 (3)O2iii—V1—V2vi112.80 (5)
O4i—V2—V1125.05 (4)O2—V1—V242.05 (3)
O4—V2—V1125.05 (4)O2i—V1—V242.05 (3)
O4—V2—O4i85.39 (8)O2—V1—V2vi42.05 (3)
O4—V2—Cl1iii79.43 (5)O2iii—V1—V2112.80 (5)
O4—V2—Cl1ii79.43 (5)O2i—V1—V2vii42.05 (3)
O4i—V2—Cl1iii79.43 (5)O2iii—V1—V2vii42.05 (3)
O4—V2—Cl179.43 (5)O2—V1—V2iv112.80 (5)
O4i—V2—Cl179.43 (5)O2iv—V1—V2112.80 (5)
O4i—V2—Cl1ii79.43 (5)O2i—V1—V2vi112.80 (5)
O2—V2—V139.70 (5)O2iv—V1—V2vi42.05 (3)
O2i—V2—V139.70 (5)O2—V1—O2iv83.55 (4)
O2—V2—O492.35 (6)O2i—V1—O2iii83.55 (4)
O2—V2—O4i154.52 (7)O2—V1—O2i83.55 (4)
O2i—V2—O4i92.35 (6)O2iv—V1—O2iii83.55 (4)
O2i—V2—O4154.52 (7)O2—V1—O2iii140.84 (12)
O2—V2—O2i78.91 (10)O2iv—V1—O2i140.84 (12)
O2i—V2—Cl175.22 (5)O2—V1—Cl170.42 (6)
O2—V2—Cl1iii75.22 (5)O2iii—V1—Cl170.42 (6)
O2—V2—Cl175.22 (5)O2i—V1—Cl170.42 (6)
O2i—V2—Cl1iii75.22 (5)O2iv—V1—Cl170.42 (6)
O2—V2—Cl1ii75.22 (5)O1—V1—V2vii121.984 (17)
O2i—V2—Cl1ii75.22 (5)O1—V1—V2vi121.984 (17)
O3—V2—V1114.67 (8)O1—V1—V2121.984 (17)
O3—V2—O4i100.20 (7)O1—V1—V2iv121.984 (17)
O3—V2—O4100.20 (7)O1—V1—O2iv109.58 (6)
O3—V2—O2105.17 (8)O1—V1—O2109.58 (6)
O3—V2—O2i105.17 (8)O1—V1—O2i109.58 (6)
O3—V2—Cl1ii179.49 (8)O1—V1—O2iii109.58 (6)
O3—V2—Cl1179.49 (8)O1—V1—Cl1180.0
O3—V2—Cl1iii179.49 (8)C1—O4—V2134.39 (15)
Cl1iii—V2—Cl10.0V2—O2—V2vi124.81 (9)
Cl1iii—V2—Cl1ii0.0V1—O2—V298.25 (6)
Cl1—V2—Cl1ii0.0V1—O2—V2vi98.25 (6)
V2vi—V1—V2vii116.03 (3)O4vi—C1—O4126.7 (3)
V2—V1—V2vi73.706 (16)O4—C1—C2116.65 (13)
V2iv—V1—V2vii73.706 (16)O4vi—C1—C2116.65 (13)
V2iv—V1—V2vi73.706 (16)C2v—C3—C2120.3 (3)
V2—V1—V2iv116.03 (3)C3viii—C2—C1120.13 (14)
V2—V1—V2vii73.706 (16)C3—C2—C1120.12 (14)
V2—V1—Cl158.016 (17)C3viii—C2—C3119.7 (3)
V2vii—V1—Cl158.016 (17)V2—Cl1—V156.14 (2)
V2iv—V1—Cl158.016 (17)Cl1ii—Cl1—V20 (10)
V2vi—V1—Cl158.016 (17)Cl1iii—Cl1—V20 (10)
O2iii—V1—V2iv42.05 (3)Cl1iii—Cl1—V10 (10)
O2iv—V1—V2iv42.05 (3)Cl1ii—Cl1—V10 (10)
O2—V1—V2vii112.80 (5)Cl1iii—Cl1—Cl1ii0 (10)
Symmetry codes: (i) x, y+1, z; (ii) x, z+1, y; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) z+1/2, x+3/2, y+1; (vi) x, z+1, y+1; (vii) x, z, y+1; (viii) y+3/2, z+1, x1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds