research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­(pyridine-3-carbo­nitrile-κN1)nickel(II) benzene-1,4-di­carboxyl­ate tetra­hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Gauhati University, Guwahati-781014, Assam, India, and bBhattadev University, Bajali, Pathsala-781325, Assam, India
*Correspondence e-mail: monsumigogoi@gmail.com

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 6 October 2020; accepted 3 December 2020; online 1 January 2021)

A nickel(II) terephthalate complex, viz. [Ni(C6H4N2)2(H2O)4](O2CC6H4CO2)·4H2O, has been synthesized and studied by single-crystal X-ray diffraction. It crystallizes in the triclinic space group P[\overline{1}]. The crystal structure shows an approximately octa­hedral coordination environment of the complex with the [Ni(H2O)4(3-NCpy)2]2+ (3-NCpy is pyridine-3-carbo­nitrile) cation associated with four free water mol­ecules and hydrogen bonded to a terephthalate dianion [graph set R22(8)]. The supra­molecular structure of the compound is stabilized by a three-dimensional array of O—H⋯O and O—H⋯N hydrogen bonds, along with ππ stacked pyridine-3-carbo­nitrile rings and C—H⋯O inter­actions.

1. Chemical context

Multi-carboxyl­ate ligands with suitable spacers, especially benzene-multi­carboxyl­ate ligands, are frequent choices for coordination chemistry as they feature a broad range of coordination modes and can result in the formation of systems with variable complexity ranging from mol­ecular complexes to metal–organic frameworks of different dimensionality (Janiak & Vieth, 2010[Janiak, C. & Vieth, J. K. (2010). New J. Chem. 34, 2366-2388.]; Kim et al., 2001[Kim, J. C., Cho, J. & Lough, A. J. (2001). Inorg. Chim. Acta, 317, 252-258.]). Benzene-1,4-di­carboxyl­ate (terephthalate) ligands have received increased attention in the field of coordination chemistry, especially as building blocks for coordination polymers, mainly with porous networks with varied metal ions (Kim et al., 2003[Kim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun. 6, 5, 474-477.]). As a result of the presence of conjugation, the terephthalate anion can provide an electronic pathway for delocalization of electrons belonging to the d-orbitals of the metal ion, thus changing its magnetic properties. The most important factor that affects magnetic exchange pathways between two metal centres is the proper choice of bridging ligands since they influence the magnetic strength and behaviour of the mol­ecule (Massoud et al., 2006[Massoud, S. S., Mautner, F. A., Vicente, R. & Rodrigue, B. M. (2006). Inorg. Chim. Acta, 359, 3321-3329.]; Mukherjee et al., 2003[Mukherjee, P. S., Konar, S., Zangrando, E., Mallah, T., Ribas, J. & Chaudhuri, N. R. (2003). Inorg. Chem. 42, 2695-2703.]; Rogan et al., 2000[Rogan, J., Poleti, D., Karanovic, L., Bogdanovic, G., Bire, A. S. & Petrovic, D. M. (2000). Polyhedron, 19, 11, 1415-1421.]). Coordinated ligand systems containing electron-donor as well as acceptor sites also give rise to metallo­supra­molecular assemblies. Hence, pyridine-3-carbo­nitrile (3-NCpy) with the electron-withdrawing nitrile group as the acceptor along with the pyridyl nitro­gen atom as the donor stands as a suitable ligand in this regard. Despite the availability of two potentially coordinating sites, not many compounds having pyridine-3-carbo­nitrile as a bidentate bridging ligand are known (Heine et al., 2018[Heine, M., Fink, L. & Schmidt, M. U. (2018). CrystEngComm, 20, 7556-7566.]). The nitrile group may also be expected to take part in hydrogen bonding and ππ inter­actions. In this work, we describe our results on the synthesis and crystal structure of a pyridine-3-carbo­nitrile-based NiII–terephthalate complex, viz. [Ni(H2O)4(3-NCpy)2][O2CC6H4CO2]·4H2O.

[Scheme 1]

2. Structural commentary

The title compound, [Ni(H2O)4(3-NCpy)2][O2CC6H4CO2]·4H2O is a discrete coordination complex and it crystallizes in the triclinic system with space group P[\overline{1}]. An ORTEP view is shown in Fig. 1[link]. The compound consists of a complex dication, which is in association with four free water mol­ecules and an uncoordinated terephthalate dianion, where the asymmetric unit contains half of these qu­anti­ties. The Ni2+ centre is situated on an inversion centre and coordinates to two axial pyridine-3-carbo­nitrile ligands and four equatorial water mol­ecules forming the cationic complex [Ni(H2O)4(3-CNpy)2]2+. The bond angles in the cationic part suggest that the complex contains an Ni2+ ion in an approximately octa­hedral coordination environment [cis angles in the range of 88.66 (4)–91.33 (4)°]. The free terephthalate anion is also located on an inversion centre and has an angle of 14.54 (7)° between the planes of the aromatic ring and of the carboxyl­ate group. Furthermore, it does not coordinate to the Ni2+ ion and remains fully deprotonated for charge balance. It also acts as a secondary acceptor to the cationic complex unit. The Ni—O bond lengths are 2.0381 (11) and 2.0519 (9) Å and are in agreement with similar complexes reported (Xiao et al., 2003[Xiao, H.-P., Shi, Z., Zhu, L.-G., Xu, R.-R. & Pang, W.-Q. (2003). Acta Cryst. C59, m82-m83.]; Ma & Xu, 2010[Ma, J. Q. & Xu, S. Y. (2010). Z. Kristallogr. New Cryst. Struct. 225, 791-792.]; Ju et al., 2016[Ju, Z., Yan, W., Gao, X., Shi, Z., Wang, T. & Zheng, H. (2016). Cryst. Growth Des. 16, 2496-2503.]). The Ni—N bond length of 2.1481 (11) Å is slightly longer than those in the similar complexes reported by Zukerman-Schpector et al. (2000[Zukerman-Schpector, J., Trindade, A. C. & Dunstan, P. O. (2000). Acta Cryst. C56, 763-765.]) and Heine et al. (2018[Heine, M., Fink, L. & Schmidt, M. U. (2018). CrystEngComm, 20, 7556-7566.]).

[Figure 1]
Figure 1
ORTEP diagram of [Ni(H2O)4(3-NCpy)2][O2CC6H4CO2]·4H2O showing the atom-labelling scheme (ellipsoids drawn at the 50% probability level; unlabelled atoms generated by the symmetry operations 2 − x, 2 − y, −z for the cation and 1 − x, 1 − y, 1 − z for the anion).

3. Supra­molecular features

The supra­molecular structure of the title compound is consolidated by several O—H⋯O and O—H⋯N hydrogen bonds that involve all the possible hydrogen-bond acceptors and donors, which result in the formation of a three-dimensional hydrogen-bonded array in the crystal (Table 1[link], Figs. 2[link]–4[link][link]). The two-dimensional hydrogen-bonded layers featured in Fig. 2[link] are connected together via hydrogen bonds described by the R32(8) graph set depicted in Fig. 3[link]. The cationic complex and the terephthalate dianion are hydrogen bonded via the O1—H1B⋯O4 and O2—H2A⋯O3 inter­actions within the R22(8) graph set and form infinite chains (Fig. 3[link]). Neighbouring chains are inter­connected by O1—H1A⋯O5 and O5—H5B⋯N2 hydrogen bonds described by an R44(20) graph set, ππ inter­actions arising from stacking of the 3-NCpy rings [centroid–centroid distance of 3.727 (8) Å, with a slippage of 1.067 Å, Fig. 4[link]]. The cavity formed is filled by the four solvent water mol­ecules (O5, O6) inter­connecting two neighbouring terephthalate dianions by a cooperative O—H⋯O ring network with an R64(12) motif, forming infinite chains in a zigzag fashion along the a-axis direction (Fig. 3[link]). Finally, the three-dimensional network is further accomplished among others by the D22(7) O2—H2B⋯O6 hydrogen bonds and C2—H2⋯O3 and C5—H5⋯O3 inter­actions (Table 1[link], Fig. 2[link]). A comprehensive list of first and second level graph sets can be found in Table 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.84 (1) 1.80 (1) 2.6301 (14) 171 (2)
C5—H5⋯O3i 0.93 2.46 3.1832 (17) 135
O1—H1A⋯O5ii 0.83 (1) 1.94 (1) 2.7591 (17) 171 (2)
O2—H2B⋯O6iii 0.83 (1) 1.86 (1) 2.6710 (17) 168 (2)
O1—H1B⋯O4iv 0.84 (1) 1.87 (1) 2.7050 (14) 176 (2)
O6—H6A⋯O4v 0.82 (1) 2.01 (1) 2.8240 (17) 174 (2)
O6—H6B⋯O5vi 0.84 (1) 2.07 (1) 2.855 (2) 156 (2)
O5—H5A⋯O4v 0.83 (1) 1.95 (1) 2.7645 (17) 167 (2)
O5—H5B⋯N2vii 0.83 (1) 2.12 (1) 2.950 (2) 176 (2)
Symmetry codes: (i) x, y+1, z; (ii) [x+1, y+1, z-1]; (iii) [-x+1, -y+2, -z]; (iv) [-x+2, -y+1, -z]; (v) [x-1, y, z]; (vi) [-x, -y+1, -z+1]; (vii) [x, y-1, z].

Table 2
Graph-set descriptions

Graph set Level Period No. of Mol­ecules
D11(2) a 1   2
D22(7) <a>a 1   3
D11(2) b 1   2
C22(13) >b<b 1 2 3
D11(2) c 1   2
C22(13) >c<c 1 2 3
D11(2) d 1   2
D22(7) <d>d 1   3
D11(2) e 1   2
D22(10) >e<e 1   3
D11(2) f 1   2
D22(13) >f<f 1   3
D11(2) g 1   2
D22(10) >g<g 1   3
D22(2) h 1   2
C22(10) >a>f 2 2 3
R22(8) >b<c 2 2 2
R44(20) >a>f>a>f 2 2 4
a = H1A⋯O5, b = H1B⋯O4, c = H2A⋯O3, d = H2B⋯O6, e = H5A⋯O4, f = H5B⋯N2, g = H6A⋯O4 and h = H6B⋯O5.
[Figure 2]
Figure 2
Packing structure of the complex showing the hydrogen bonds and C—H⋯O and ππ inter­actions.
[Figure 3]
Figure 3
Hydrogen-bonding pattern associated with the R22(8), R32(8) and R64(12) graph sets.
[Figure 4]
Figure 4
Hydrogen-bonded pattern associated with the R44(20) graph set and ππ inter­actions between two 3-NCpy rings.

4. Database survey

A survey of the Cambridge Structural Database (CSD version 2020.2; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for NiII complexes involving an uncoordinated terephthalate dianion led us to a few results, some of which are as follows. In the complex [Ni(2,2′-bipy)(H2O)4](C8H4O4) (2,2′-bipy = 2,2′-bipyrid­yl) (CSD refcode: WUWZET) reported by Xiao et al. (2003[Xiao, H.-P., Shi, Z., Zhu, L.-G., Xu, R.-R. & Pang, W.-Q. (2003). Acta Cryst. C59, m82-m83.]), the terephthalate anion acts as a synthon to generate a supra­molecular network. The hydrogen bonds between the terephthalate anions and the [Ni(2,2′-bipy)(H2O)4]2+ cations produce a two-dimensional hydrogen-bonded architecture with double sheets. A similar compound, tetra­aqua­bis­(di­methyl­formamide)­nickel(II) tetra­chloro­terephthalate, (QAMDUF; Ma & Xu, 2010[Ma, J. Q. & Xu, S. Y. (2010). Z. Kristallogr. New Cryst. Struct. 225, 791-792.]) has a nearly ideal octa­hedral structure with the metal ion lying on an inversion center along with an uncomplexed and fully deprotonated terephthalate dianion. Another NiII–terephthalate complex (AJUPEC; Ju et al., 2016[Ju, Z., Yan, W., Gao, X., Shi, Z., Wang, T. & Zheng, H. (2016). Cryst. Growth Des. 16, 2496-2503.]) with 4,7-di(4-pyrid­yl)-2,1,3-benzo­thia­diazole as auxiliary ligand crystallizes in the monoclinic P21/c space group. The terephthalate dianion remains uncoordinated and the NiII ion sits in the centre of an octa­hedron constituted by two pyridyl N atoms in the apical positions and four water oxygen atoms constructing the equatorial plane. The independent cationic units are held together by ππ stacking inter­actions and O—H⋯O hydrogen bonding, generating a compact packing structure. A pyrazine-based NiII–terephthalate complex (AGIWOC; Groeneman & Atwood, 2000[Groeneman, R. H. & Atwood, J. L. (2000). Supramol. Chem. 11, 251-254.]) is a one-dimensional zigzag coordination polymer, where each nickel centre has two cis μ-pyrazine ligands along with four coordinated water mol­ecules, giving rise to a distorted octa­hedral coordination environment. A survey of NiII complexes involving pyridine-3-carbo­nitrile as ligand led us to some other related structures. Heine et al. (2018[Heine, M., Fink, L. & Schmidt, M. U. (2018). CrystEngComm, 20, 7556-7566.]) investigated the ability of pyridine-3-carbo­nitrile to act as a mono- or bidentate ligand in complexes of the type [MIIBr2(3-CNpy)x]n with MII = Mn, Fe, Co, Ni and x = 1, 2 and 4, (CSD refcodes XOSNUR, XOSPAZ, XOSPAZ02) and found that the pyridine-3-carbo­nitrile ligand acted as bridging ligand in complexes with a metal:ligand ratio of 1:1 and as a terminal ligand with ratios of 1:2 and 1:4. In an adduct of NiII acetyl­acetonate chelating with pyridine-3-carbo­nitrile (MASTUV; Zukerman-Schpector et al., 2000[Zukerman-Schpector, J., Trindade, A. C. & Dunstan, P. O. (2000). Acta Cryst. C56, 763-765.]), the NiII atom is situated on a centre of symmetry and is octa­hedrally bonded to two equatorial AcAc groups and two pyridine-3-carbo­nitrile groups, which are axially coordinated in a trans configuration.

5. Synthesis and crystallization

All reagents were purchased from E. Merck and used without further purification. A mixture of nickel(II) sulfate hepta­hydrate, NiSO4·7H2O (1.120 g, 4 mmol) and disodium terephthalate, Na2C8H4O4 (0.840 g, 4 mmol) was dissolved in 20 mL of water in a 100 mL round-bottomed flask. To this, 0.832 g (8 mmol) of pyridine-3-carbo­nitrile was added and the resulting reaction mixture was stirred mechanically for 2 h. A light-green precipitate was formed. It was filtered, washed with water under suction and dried in a vacuum desiccator over fused CaCl2. Green prism-shaped single crystals of the title compound suitable for X-ray diffraction studies were obtained from the undisturbed aqueous reaction solutions after 24 h, yield 73% (1.675 g). The compound is air stable and insoluble in common organic solvents. The crystals remained indefinitely stable against dehydration under ambient conditions. IR spectroscopic data (KBr disc, cm−1): νasym(OCO) 1568, νsym(OCO) 1365, ν(C=N) 1602, ν(CNpy) 2243, δasym(OCO) 810, δsym(OCO) 748. Decomposition point 270°C.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The non-hydrogen atoms were refined with anisotropic displacement parameters. C-bound hydrogen atoms were placed in idealized positions with C—H = 0.95–0.99 Å, and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C6H4N2)2(H2O)4](C8H4O4)·4H2O
Mr 575.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.5709 (17), 8.6760 (17), 9.2644 (19)
α, β, γ (°) 77.26 (3), 81.99 (3), 77.34 (3)
V3) 652.6 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.34 × 0.32 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2016[Sheldrick, G. M. (2016). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.752, 0.826
No. of measured, independent and observed [I > 2σ(I)] reflections 12067, 3762, 3635
Rint 0.026
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.074, 1.05
No. of reflections 3762
No. of parameters 194
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.40
Computer programs: APEX and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetraaquabis(pyridine-3-carbonitrile-κN1)nickel(II) benzene-1,4-dicarboxylate tetrahydrate top
Crystal data top
[Ni(C6H4N2)2(H2O)4](C8H4O4)·4H2OZ = 1
Mr = 575.17F(000) = 300
Triclinic, P1Dx = 1.463 Mg m3
a = 8.5709 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6760 (17) ÅCell parameters from 4157 reflections
c = 9.2644 (19) Åθ = 3.4–28.3°
α = 77.26 (3)°µ = 0.81 mm1
β = 81.99 (3)°T = 293 K
γ = 77.34 (3)°Prism, green
V = 652.6 (3) Å30.34 × 0.32 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
3762 independent reflections
Radiation source: fine-focus sealed tube3635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.333 pixels mm-1θmax = 30.0°, θmin = 2.3°
phi and ω scansh = 1112
Absorption correction: multi-scan
(SADABS; Sheldrick, 2016)
k = 1212
Tmin = 0.752, Tmax = 0.826l = 1212
12067 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.1177P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3762 reflectionsΔρmax = 0.33 e Å3
194 parametersΔρmin = 0.40 e Å3
14 restraintsExtinction correction: SHELXL2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.213 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.0000001.0000000.0000000.02537 (8)
O10.98267 (11)0.96951 (11)0.21023 (9)0.03464 (18)
H1A0.990 (2)1.0424 (15)0.2842 (15)0.052*
H1B1.025 (2)0.8825 (13)0.2376 (19)0.052*
O20.85605 (10)1.22212 (10)0.04411 (9)0.03425 (17)
H2A0.8004 (19)1.262 (2)0.0256 (14)0.051*
H2B0.894 (2)1.2951 (17)0.1021 (16)0.051*
O30.66032 (11)0.32360 (13)0.17543 (10)0.0441 (2)
O40.86703 (10)0.30492 (11)0.30301 (10)0.0407 (2)
O50.03827 (14)0.21002 (14)0.54999 (11)0.0508 (2)
H5A0.026 (2)0.237 (3)0.4851 (19)0.076*
H5B0.1233 (16)0.160 (3)0.514 (2)0.076*
O60.03774 (18)0.55747 (17)0.26293 (14)0.0633 (3)
H6A0.011 (3)0.484 (2)0.268 (3)0.095*
H6B0.006 (3)0.610 (3)0.328 (2)0.095*
N10.78988 (11)0.89668 (11)0.07505 (11)0.03167 (19)
N20.33024 (18)1.0277 (3)0.4103 (2)0.0778 (5)
C10.75634 (16)0.78588 (15)0.00979 (14)0.0390 (2)
H10.8327850.7441600.0604500.047*
C20.61331 (19)0.73082 (19)0.04213 (17)0.0493 (3)
H20.5943950.6543390.0061520.059*
C30.49961 (17)0.79021 (19)0.14618 (17)0.0483 (3)
H30.4017860.7563630.1686630.058*
C40.53433 (14)0.90164 (16)0.21666 (14)0.0394 (3)
C50.68038 (13)0.95226 (15)0.17811 (13)0.0350 (2)
H50.7025081.0276040.2259180.042*
C60.42063 (16)0.9712 (2)0.32545 (18)0.0533 (4)
C70.44154 (14)0.43845 (16)0.39715 (14)0.0383 (3)
H70.4018900.3971810.3283070.046*
C80.60607 (13)0.42491 (13)0.39660 (12)0.0322 (2)
C90.66387 (14)0.48662 (16)0.49989 (14)0.0388 (3)
H90.7739580.4777320.5001560.047*
C100.71845 (14)0.34553 (13)0.28278 (13)0.0334 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02417 (11)0.02844 (11)0.02502 (11)0.00512 (7)0.00326 (6)0.01197 (7)
O10.0414 (4)0.0360 (4)0.0276 (4)0.0048 (3)0.0005 (3)0.0138 (3)
O20.0352 (4)0.0318 (4)0.0329 (4)0.0020 (3)0.0064 (3)0.0108 (3)
O30.0389 (5)0.0569 (6)0.0407 (5)0.0020 (4)0.0028 (3)0.0297 (4)
O40.0332 (4)0.0468 (5)0.0435 (5)0.0005 (3)0.0029 (3)0.0242 (4)
O50.0513 (6)0.0591 (6)0.0366 (5)0.0033 (5)0.0014 (4)0.0071 (4)
O60.0782 (8)0.0595 (7)0.0548 (7)0.0331 (6)0.0061 (6)0.0049 (5)
N10.0283 (4)0.0326 (4)0.0354 (5)0.0073 (3)0.0000 (3)0.0097 (4)
N20.0392 (7)0.1149 (15)0.0757 (10)0.0070 (8)0.0116 (7)0.0295 (10)
C10.0431 (6)0.0373 (6)0.0400 (6)0.0124 (5)0.0033 (5)0.0110 (5)
C20.0564 (8)0.0489 (7)0.0515 (8)0.0271 (6)0.0113 (6)0.0084 (6)
C30.0382 (6)0.0576 (8)0.0513 (7)0.0239 (6)0.0087 (5)0.0017 (6)
C40.0263 (5)0.0468 (6)0.0406 (6)0.0077 (4)0.0013 (4)0.0004 (5)
C50.0281 (5)0.0376 (5)0.0397 (6)0.0077 (4)0.0019 (4)0.0105 (4)
C60.0286 (6)0.0724 (10)0.0542 (8)0.0096 (6)0.0030 (5)0.0075 (7)
C70.0347 (6)0.0467 (6)0.0391 (6)0.0053 (5)0.0019 (4)0.0262 (5)
C80.0324 (5)0.0323 (5)0.0323 (5)0.0020 (4)0.0044 (4)0.0162 (4)
C90.0297 (5)0.0487 (7)0.0414 (6)0.0035 (5)0.0031 (4)0.0245 (5)
C100.0348 (5)0.0312 (5)0.0341 (5)0.0033 (4)0.0071 (4)0.0160 (4)
Geometric parameters (Å, º) top
Ni1—O2i2.0381 (11)N1—C11.3409 (15)
Ni1—O22.0381 (11)N2—C61.136 (2)
Ni1—O1i2.0519 (9)C1—C21.3828 (19)
Ni1—O12.0519 (9)C1—H10.9300
Ni1—N1i2.1481 (11)C2—C31.372 (2)
Ni1—N12.1481 (11)C2—H20.9300
O1—H1A0.829 (9)C3—C41.381 (2)
O1—H1B0.839 (9)C3—H30.9300
O2—H2A0.838 (9)C4—C51.3909 (16)
O2—H2B0.828 (9)C4—C61.438 (2)
O3—C101.2396 (15)C5—H50.9300
O4—C101.2735 (15)C7—C9ii1.3873 (16)
O5—H5A0.830 (9)C7—C81.3885 (17)
O5—H5B0.830 (9)C7—H70.9300
O6—H6A0.822 (9)C8—C91.3864 (17)
O6—H6B0.837 (9)C8—C101.5035 (15)
N1—C51.3342 (15)C9—H90.9300
O2i—Ni1—O2180.00 (5)N1—C1—H1118.5
O2i—Ni1—O1i89.76 (5)C2—C1—H1118.5
O2—Ni1—O1i90.24 (5)C3—C2—C1119.30 (13)
O2i—Ni1—O190.24 (5)C3—C2—H2120.4
O2—Ni1—O189.76 (5)C1—C2—H2120.4
O1i—Ni1—O1180.0C2—C3—C4118.21 (12)
O2i—Ni1—N1i89.33 (4)C2—C3—H3120.9
O2—Ni1—N1i90.67 (4)C4—C3—H3120.9
O1i—Ni1—N1i88.66 (4)C3—C4—C5119.42 (12)
O1—Ni1—N1i91.33 (4)C3—C4—C6121.56 (12)
O2i—Ni1—N190.67 (4)C5—C4—C6118.98 (13)
O2—Ni1—N189.33 (4)N1—C5—C4122.40 (12)
O1i—Ni1—N191.33 (4)N1—C5—H5118.8
O1—Ni1—N188.67 (4)C4—C5—H5118.8
N1i—Ni1—N1180.0N2—C6—C4179.2 (2)
Ni1—O1—H1A122.0 (12)C9ii—C7—C8120.18 (11)
Ni1—O1—H1B121.0 (12)C9ii—C7—H7119.9
H1A—O1—H1B106.7 (15)C8—C7—H7119.9
Ni1—O2—H2A120.0 (12)C9—C8—C7119.43 (10)
Ni1—O2—H2B118.1 (12)C9—C8—C10121.09 (10)
H2A—O2—H2B107.6 (15)C7—C8—C10119.47 (10)
H5A—O5—H5B107.4 (17)C8—C9—C7ii120.39 (11)
H6A—O6—H6B107.9 (18)C8—C9—H9119.8
C5—N1—C1117.63 (10)C7ii—C9—H9119.8
C5—N1—Ni1120.87 (8)O3—C10—O4124.25 (10)
C1—N1—Ni1121.17 (8)O3—C10—C8117.83 (11)
N1—C1—C2123.01 (13)O4—C10—C8117.92 (10)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3iii0.84 (1)1.80 (1)2.6301 (14)171 (2)
C5—H5···O3iii0.932.463.1832 (17)135
O1—H1A···O5iv0.83 (1)1.94 (1)2.7591 (17)171 (2)
O2—H2B···O6v0.83 (1)1.86 (1)2.6710 (17)168 (2)
O1—H1B···O4vi0.84 (1)1.87 (1)2.7050 (14)176 (2)
O6—H6A···O4vii0.82 (1)2.01 (1)2.8240 (17)174 (2)
O6—H6B···O5viii0.84 (1)2.07 (1)2.855 (2)156 (2)
O5—H5A···O4vii0.83 (1)1.95 (1)2.7645 (17)167 (2)
O5—H5B···N2ix0.83 (1)2.12 (1)2.950 (2)176 (2)
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z1; (v) x+1, y+2, z; (vi) x+2, y+1, z; (vii) x1, y, z; (viii) x, y+1, z+1; (ix) x, y1, z.
Graph-set descriptions top
Graph setLevelPeriodNo. of Molecules
D11(2) a12
D22(7) <a>a13
D11(2) b12
C22(13) >b<b123
D11(2) c12
C22(13) >c<c123
D11(2) d12
D22(7) <d>d13
D11(2) e12
D22(10) >e<e13
D11(2) f12
D22(13) >f<f13
D11(2) g12
D22(10) >g<g13
D11(2) h12
C22(10) >a>f223
R22(8) >b<c222
R44(20) >a>f>a>f224
a = H1A···O5, b = H1B···O4, c = H2A···O3, d = H2B···O6, e = H5A···O4, f = H5B···N2, g = H6A···O4 and h = H6B···O5.
 

Acknowledgements

The authors thank USIC, Gauhati University, Guwahati for recording the X-ray crystallographic data for the crystals.

Funding information

Funding for this research was provided by: UGC, India .

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroeneman, R. H. & Atwood, J. L. (2000). Supramol. Chem. 11, 251–254.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeine, M., Fink, L. & Schmidt, M. U. (2018). CrystEngComm, 20, 7556–7566.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaniak, C. & Vieth, J. K. (2010). New J. Chem. 34, 2366–2388.  Web of Science CrossRef CAS Google Scholar
First citationJu, Z., Yan, W., Gao, X., Shi, Z., Wang, T. & Zheng, H. (2016). Cryst. Growth Des. 16, 2496–2503.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, J. C., Cho, J. & Lough, A. J. (2001). Inorg. Chim. Acta, 317, 252–258.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun. 6, 5, 474–477.  Google Scholar
First citationMa, J. Q. & Xu, S. Y. (2010). Z. Kristallogr. New Cryst. Struct. 225, 791–792.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMassoud, S. S., Mautner, F. A., Vicente, R. & Rodrigue, B. M. (2006). Inorg. Chim. Acta, 359, 3321–3329.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, P. S., Konar, S., Zangrando, E., Mallah, T., Ribas, J. & Chaudhuri, N. R. (2003). Inorg. Chem. 42, 2695–2703.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRogan, J., Poleti, D., Karanovic, L., Bogdanovic, G., Bire, A. S. & Petrovic, D. M. (2000). Polyhedron, 19, 11, 1415–1421.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2016). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H.-P., Shi, Z., Zhu, L.-G., Xu, R.-R. & Pang, W.-Q. (2003). Acta Cryst. C59, m82–m83.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Trindade, A. C. & Dunstan, P. O. (2000). Acta Cryst. C56, 763–765.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds