organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Thio­phen-2-yl)-2-[4-(tri­fluoro­meth­yl)phen­yl]-2,3-di­hydro-1,5-benzo­thia­zepine

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, and cPost Graduate Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 20 January 2014; accepted 4 February 2014; online 8 February 2014)

In the title compound, C20H14F3NS2, the seven-membered thia­zepine ring adopts a slightly distorted twist–boat conformation. The mean plane of the five-membered thio­phene ring fused to the thia­zepine ring is twisted by 32.3 (3) and 55.6 (4)° from the benzene and phenyl rings, respectively. In the crystal, inversion dimers linked by pairs of weak C—H⋯N inter­actions are observed.

Related literature

For the biological activity of 1, 4-thia­zepines, see: Skiles et al. (1986[Skiles, V. X., Suh, J. T., Williams, B. E., Menard, P. R., Barton, J. N., Love, B., Jones, H., Neiss, E. S., Schwab, A. & Mann, W. S. (1986). J. Med. Chem. 29, 784-796.]); Zeng & Alper (2010[Zeng, F. & Alper, H. (2010). Org. Lett. 12, 5567-5569.]). For a related structure, see: Manjula et al. (2013[Manjula, M., Manjunath, B. C., Renuka, N., Ajay Kumar, K. & Lokanath, N. K. (2013). Acta Cryst. E69, o1608.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Bramer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14F3NS2

  • Mr = 389.46

  • Orthorhombic, P 21 21 21

  • a = 9.847 (2) Å

  • b = 10.492 (3) Å

  • c = 17.819 (4) Å

  • V = 1841.0 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.92 mm−1

  • T = 296 K

  • 0.20 × 0.19 × 0.18 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.593, Tmax = 0.622

  • 12103 measured reflections

  • 3028 independent reflections

  • 2547 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.239

  • S = 1.03

  • 3028 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.51 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1270 Friedel pairs

  • Absolute structure parameter: 0.0 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯N12i 0.93 2.52 3.262 (7) 137
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: Mercury.

Supporting information


Comment top

1,4-Thiazepine is a privileged structure because of its presence in a number of pharmacologically important compounds. 1, 4-thiazepine moieties represent an important class of heterocyclic compounds with diverse potential and pharmacological activities. They are used as a calcium channel blockers, HIV-1 integrase and reverse transcriptase inhibitors, antitumor, antiplatelet and antidepressant agents (Zeng et al., 2010). Compounds containing the 1, 4-thiazepine moiety are important targets in synthetic and medicinal chemistry because this fragment is a key motif in a wide number of natural and synthetic biologically active agents (Skiles et al., 1986).

In the title compound, (I), the thiazepine ring adopts a slightly distorted twist-boat conformation. The mean plane of the five-membered thiophene ring fused to the thiazepine ring is twisted by 32.3 (3)° and 55.6 (4)° from the mean planes of the two benzene rings. In the crystal, the molecules are linked by weak C–H···N intermolecular interactions. The seven membered thiazepine ring adopts a twist boat conformation with the pairs of atoms N12/C11 and S9/C10 being oppositely oriented with respect to the C6/C7/C8 mean plane. The torsion angles around C6—C7 and C7—C8 are very close to the value of 52° reported for the corresponding torsion angle in the ideal twist boat conformation of cycloheptane. The bond lengths between C6—N12 is 1.29 (3)Å and C11—N12 is 1.39 (3)Å which is slightly less than the standard C—N value. The bond length between C8—S9 is 1.83 (9)Å and S9—C10 is 1.76 (3) Å. The sp2 and sp3 hybridization states of C10 and C8, respectively, account for the difference in the S—C bond lengths in (I). The bond lengths and angles do not show large deviations and are comparable with those reported for a similar structure (Manjula et al., 2013).

Related literature top

For the biological activity of 1, 4-thiazepines, see: Skiles et al. (1986); Zeng & Alper (2010). For a related structure, see: Manjula et al. (2013). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of (Z)-1-(thiophen-2-yl)-3-(4-(trifluoromethyl) phenyl)prop-2-en-1- one (3 mmol, 1 g) and 2-aminithiophenol (3 mmol, 0.4 g) with 3–4 drops of conc. HCl in methanol (10 ml) was heated with stirring at 433 K for 4 h. The reaction was monitored by thin-layer chromatography (hexane/ethyl acetate). After the completion of the reaction, the mixture was extracted in chloroform (30 ml), washed successively with dilute hydrochloric acid and water. The solvent was evaporated to dryness. The solid obtained was crystallized from 95° ethyl alcohol to get pale yellow needles of 4-(thiophen-2-yl)-2-(4- (trifluoromethyl) phenyl)-2,3-dihydrobenzo [b] [1,4] thiazepine in 80° yield.

Refinement top

All hydrogen atoms were located geometrically with C—H = 0.93–0.97) Å and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(aromatic C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of molecule, viewed along the a axis. Dotted lines represent weak C—H···N intermolecular interactions.
4-(Thiophen-2-yl)-2-[4-(trifluoromethyl)phenyl]-2,3-dihydro-1,5-benzothiazepine top
Crystal data top
C20H14F3NS2F(000) = 800
Mr = 389.46Dx = 1.405 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 12103 reflections
a = 9.847 (2) Åθ = 4.9–64.8°
b = 10.492 (3) ŵ = 2.92 mm1
c = 17.819 (4) ÅT = 296 K
V = 1841.0 (8) Å3Needle, light yellow
Z = 40.20 × 0.19 × 0.18 mm
Data collection top
Bruker X8 Proteum
diffractometer
3028 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2547 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.056
Detector resolution: 10.7 pixels mm-1θmax = 64.8°, θmin = 4.9°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2013
k = 812
Tmin = 0.593, Tmax = 0.622l = 2020
12103 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.085 w = 1/[σ2(Fo2) + (0.1979P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.239(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.94 e Å3
3028 reflectionsΔρmin = 0.51 e Å3
237 parametersExtinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
0 restraintsExtinction coefficient: 0.017 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1270 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.0 (3)
Crystal data top
C20H14F3NS2V = 1841.0 (8) Å3
Mr = 389.46Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.847 (2) ŵ = 2.92 mm1
b = 10.492 (3) ÅT = 296 K
c = 17.819 (4) Å0.20 × 0.19 × 0.18 mm
Data collection top
Bruker X8 Proteum
diffractometer
3028 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013
2547 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.622Rint = 0.056
12103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.085H-atom parameters constrained
wR(F2) = 0.239Δρmax = 0.94 e Å3
S = 1.03Δρmin = 0.51 e Å3
3028 reflectionsAbsolute structure: Flack (1983), 1270 Friedel pairs
237 parametersAbsolute structure parameter: 0.0 (3)
0 restraints
Special details top

Experimental. m.p. 405 K, 1H NMR (CDCl3): δ 2.0 (d, 2H, C3—H), 3.80 (t, 1H, C2—H), 7.24 (dd, 2H, Ar—H), 7.58 (dd, 2H, Ar—H), 7.18 (t, 1H, C4—H 5 m ring), 7.46 (d, 1H, C3—H 5 m ring), 7.72 (d, 1H, C5—H 5 m ring), 7.32–7.46 (m, 4H, Ar—H). Anal. Calcd. for C20H14F3NS2: C 62.14, H 3.56, N 3.58°; Found C 61.68, H 3.62, N 3.60°. Mass FAB+ (NBA): 390 (M + 1, 100°).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.3240 (2)0.99443 (19)0.41340 (10)0.0841 (7)
S90.00510 (15)0.88544 (12)0.20297 (9)0.0608 (5)
F240.2469 (9)0.4640 (10)0.1093 (6)0.257 (6)
F250.0847 (19)0.5559 (8)0.1388 (4)0.289 (10)
F260.0674 (7)0.3951 (6)0.0787 (3)0.139 (3)
N120.1053 (5)0.8288 (4)0.3632 (3)0.0550 (16)
C20.4905 (8)1.0319 (9)0.4023 (6)0.104 (4)
C30.5488 (8)0.9699 (9)0.3449 (7)0.101 (4)
C40.4592 (6)0.8887 (6)0.3089 (4)0.0650 (19)
C50.3308 (5)0.8882 (5)0.3403 (3)0.0533 (17)
C60.2105 (5)0.8181 (5)0.3202 (3)0.0500 (16)
C70.2105 (5)0.7370 (5)0.2509 (3)0.0477 (16)
C80.1595 (5)0.8108 (4)0.1818 (3)0.0510 (16)
C100.0758 (6)0.7848 (5)0.2719 (3)0.0523 (16)
C110.0168 (5)0.7715 (5)0.3428 (3)0.0517 (14)
C130.2004 (6)0.7269 (6)0.2580 (4)0.0680 (19)
C140.2705 (6)0.6610 (6)0.3132 (5)0.071 (2)
C150.2116 (7)0.6511 (6)0.3834 (5)0.073 (2)
C160.0877 (7)0.7058 (6)0.3996 (4)0.0653 (19)
C170.1511 (5)0.7293 (4)0.1124 (3)0.0447 (12)
C180.2330 (6)0.7568 (5)0.0509 (3)0.0503 (16)
C190.2279 (6)0.6822 (5)0.0137 (3)0.0557 (17)
C200.1419 (5)0.5784 (5)0.0162 (3)0.0493 (16)
C210.0616 (6)0.5477 (5)0.0452 (3)0.0580 (17)
C220.0667 (6)0.6223 (5)0.1088 (3)0.0580 (17)
C230.1334 (7)0.4983 (7)0.0842 (3)0.071 (2)
H20.536401.089500.432800.1250*
H30.639200.980200.331000.1210*
H40.483100.839400.267600.0780*
H7A0.152800.663400.259100.0570*
H7B0.301900.706600.241500.0570*
H80.224700.879400.171800.0610*
H130.237800.732600.210200.0820*
H140.354700.624400.303300.0850*
H150.256900.606200.420800.0880*
H160.051200.699500.447600.0790*
H180.292000.825900.053000.0600*
H190.281900.702300.054900.0660*
H210.004500.477200.043400.0700*
H220.013200.601200.149900.0700*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0843 (11)0.0942 (13)0.0738 (11)0.0174 (9)0.0048 (8)0.0297 (9)
S90.0687 (9)0.0503 (7)0.0634 (9)0.0168 (6)0.0018 (7)0.0040 (5)
F240.190 (8)0.307 (12)0.275 (12)0.134 (8)0.144 (8)0.238 (11)
F250.64 (3)0.152 (6)0.076 (4)0.034 (12)0.127 (9)0.021 (4)
F260.200 (7)0.123 (4)0.093 (4)0.086 (4)0.037 (4)0.050 (3)
N120.063 (3)0.050 (2)0.052 (3)0.002 (2)0.010 (2)0.0088 (18)
C20.073 (4)0.106 (6)0.133 (8)0.017 (4)0.026 (5)0.019 (6)
C30.067 (4)0.104 (6)0.132 (8)0.018 (4)0.003 (5)0.001 (6)
C40.051 (3)0.070 (3)0.074 (4)0.003 (2)0.011 (3)0.004 (3)
C50.053 (3)0.050 (3)0.057 (3)0.004 (2)0.001 (2)0.003 (2)
C60.054 (3)0.046 (2)0.050 (3)0.008 (2)0.005 (2)0.002 (2)
C70.055 (3)0.042 (2)0.046 (3)0.004 (2)0.004 (2)0.005 (2)
C80.064 (3)0.045 (2)0.044 (3)0.004 (2)0.001 (2)0.0035 (19)
C100.057 (3)0.040 (2)0.060 (3)0.008 (2)0.000 (2)0.005 (2)
C110.050 (2)0.050 (2)0.055 (3)0.002 (2)0.012 (2)0.010 (2)
C130.049 (3)0.067 (3)0.088 (4)0.005 (3)0.008 (3)0.008 (3)
C140.054 (3)0.064 (3)0.095 (5)0.010 (3)0.002 (3)0.002 (3)
C150.063 (3)0.067 (4)0.089 (5)0.005 (3)0.017 (4)0.003 (3)
C160.075 (4)0.064 (3)0.057 (3)0.007 (3)0.018 (3)0.001 (3)
C170.052 (2)0.039 (2)0.043 (2)0.0020 (19)0.0043 (19)0.0005 (19)
C180.057 (3)0.045 (2)0.049 (3)0.007 (2)0.004 (2)0.005 (2)
C190.061 (3)0.057 (3)0.049 (3)0.014 (2)0.008 (2)0.000 (2)
C200.053 (3)0.049 (2)0.046 (3)0.004 (2)0.005 (2)0.000 (2)
C210.066 (3)0.055 (3)0.053 (3)0.009 (2)0.010 (3)0.003 (2)
C220.067 (3)0.053 (3)0.054 (3)0.016 (2)0.014 (2)0.005 (2)
C230.087 (4)0.080 (4)0.047 (3)0.026 (4)0.018 (3)0.012 (3)
Geometric parameters (Å, º) top
S1—C21.698 (8)C17—C181.391 (8)
S1—C51.716 (6)C17—C221.398 (7)
S9—C81.839 (5)C18—C191.393 (8)
S9—C101.763 (6)C19—C201.380 (8)
F24—C231.256 (11)C20—C211.388 (8)
F25—C231.242 (12)C20—C231.477 (8)
F26—C231.267 (10)C21—C221.378 (8)
N12—C61.293 (7)C2—H20.9300
N12—C111.393 (7)C3—H30.9300
C2—C31.341 (15)C4—H40.9300
C3—C41.384 (12)C7—H7A0.9700
C4—C51.383 (8)C7—H7B0.9700
C5—C61.440 (7)C8—H80.9800
C6—C71.500 (8)C13—H130.9300
C7—C81.539 (7)C14—H140.9300
C8—C171.506 (7)C15—H150.9300
C10—C111.398 (8)C16—H160.9300
C10—C131.391 (8)C18—H180.9300
C11—C161.410 (9)C19—H190.9300
C13—C141.386 (10)C21—H210.9300
C14—C151.383 (12)C22—H220.9300
C15—C161.379 (10)
C2—S1—C591.4 (4)F24—C23—F25101.8 (10)
C8—S9—C10103.6 (2)F24—C23—F26103.8 (8)
C6—N12—C11120.0 (5)F24—C23—C20113.9 (7)
S1—C2—C3113.0 (7)F25—C23—F26106.2 (8)
C2—C3—C4112.3 (7)F25—C23—C20112.8 (7)
C3—C4—C5113.4 (7)F26—C23—C20116.9 (5)
S1—C5—C4109.9 (4)S1—C2—H2123.00
S1—C5—C6119.3 (4)C3—C2—H2124.00
C4—C5—C6130.8 (5)C2—C3—H3124.00
N12—C6—C5117.9 (5)C4—C3—H3124.00
N12—C6—C7122.5 (5)C3—C4—H4123.00
C5—C6—C7119.7 (4)C5—C4—H4123.00
C6—C7—C8111.9 (4)C6—C7—H7A109.00
S9—C8—C7109.7 (4)C6—C7—H7B109.00
S9—C8—C17111.2 (3)C8—C7—H7A109.00
C7—C8—C17112.9 (4)C8—C7—H7B109.00
S9—C10—C11121.7 (4)H7A—C7—H7B108.00
S9—C10—C13119.1 (5)S9—C8—H8108.00
C11—C10—C13118.9 (5)C7—C8—H8108.00
N12—C11—C10123.5 (5)C17—C8—H8108.00
N12—C11—C16116.8 (5)C10—C13—H13119.00
C10—C11—C16119.5 (5)C14—C13—H13119.00
C10—C13—C14122.0 (6)C13—C14—H14121.00
C13—C14—C15118.1 (6)C15—C14—H14121.00
C14—C15—C16122.0 (7)C14—C15—H15119.00
C11—C16—C15119.4 (7)C16—C15—H15119.00
C8—C17—C18119.8 (4)C11—C16—H16120.00
C8—C17—C22121.8 (5)C15—C16—H16120.00
C18—C17—C22118.4 (5)C17—C18—H18119.00
C17—C18—C19120.9 (5)C19—C18—H18120.00
C18—C19—C20119.5 (5)C18—C19—H19120.00
C19—C20—C21120.5 (5)C20—C19—H19120.00
C19—C20—C23120.7 (5)C20—C21—H21120.00
C21—C20—C23118.8 (5)C22—C21—H21120.00
C20—C21—C22119.7 (5)C17—C22—H22119.00
C17—C22—C21121.0 (5)C21—C22—H22119.00
C5—S1—C2—C31.5 (8)S9—C10—C11—C16170.3 (4)
C2—S1—C5—C41.9 (5)C13—C10—C11—N12177.9 (5)
C2—S1—C5—C6179.5 (5)S9—C10—C13—C14171.0 (5)
C10—S9—C8—C727.7 (4)C11—C10—C13—C142.8 (9)
C10—S9—C8—C1797.9 (4)C13—C10—C11—C163.3 (8)
C8—S9—C10—C1165.2 (5)S9—C10—C11—N124.3 (8)
C8—S9—C10—C13121.2 (5)N12—C11—C16—C15177.7 (5)
C6—N12—C11—C16135.8 (6)C10—C11—C16—C152.7 (9)
C11—N12—C6—C5174.6 (5)C10—C13—C14—C151.5 (10)
C11—N12—C6—C74.9 (8)C13—C14—C15—C160.8 (10)
C6—N12—C11—C1049.5 (7)C14—C15—C16—C111.5 (10)
S1—C2—C3—C40.7 (11)C8—C17—C18—C19179.5 (5)
C2—C3—C4—C50.7 (11)C22—C17—C18—C192.1 (8)
C3—C4—C5—S11.8 (8)C8—C17—C22—C21179.1 (5)
C3—C4—C5—C6179.8 (7)C18—C17—C22—C211.8 (8)
S1—C5—C6—N126.9 (7)C17—C18—C19—C201.0 (8)
C4—C5—C6—N12174.9 (6)C18—C19—C20—C210.4 (8)
C4—C5—C6—C75.6 (9)C18—C19—C20—C23179.4 (5)
S1—C5—C6—C7172.7 (4)C19—C20—C21—C220.7 (8)
N12—C6—C7—C887.7 (6)C23—C20—C21—C22179.1 (5)
C5—C6—C7—C891.8 (6)C19—C20—C23—F2449.1 (9)
C6—C7—C8—C17176.8 (4)C19—C20—C23—F2566.2 (11)
C6—C7—C8—S952.1 (5)C19—C20—C23—F26170.3 (6)
C7—C8—C17—C18116.1 (5)C21—C20—C23—F24131.0 (8)
S9—C8—C17—C18120.0 (5)C21—C20—C23—F25113.6 (11)
S9—C8—C17—C2262.8 (5)C21—C20—C23—F269.9 (9)
C7—C8—C17—C2261.1 (6)C20—C21—C22—C170.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···N12i0.932.523.262 (7)137
Symmetry code: (i) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···N12i0.93002.52003.262 (7)137.00
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the IOE and the University of Mysore for providing the single-crystal X-ray diffractometer facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Bramer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManjula, M., Manjunath, B. C., Renuka, N., Ajay Kumar, K. & Lokanath, N. K. (2013). Acta Cryst. E69, o1608.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkiles, V. X., Suh, J. T., Williams, B. E., Menard, P. R., Barton, J. N., Love, B., Jones, H., Neiss, E. S., Schwab, A. & Mann, W. S. (1986). J. Med. Chem. 29, 784–796.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZeng, F. & Alper, H. (2010). Org. Lett. 12, 5567–5569.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds