organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1491-o1492

1,1′,4,5-Tetra­hydro­tri­spiro­[1,3,2-di­aza­phosphole-2,2′-[1,3,5,2,4,6]tri­aza­triphosphinine-4′,6′′-dibenzo[d,f][1,3,2]dioxaphosphepine-6′,6′′′-dibenzo[d,f][1,3,2]dioxaphosphepine] acetone monosolvate

aUnited States Department of Agriculture Cotton Chemistry and Utilization, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: michael.easson@ars.usda.gov

(Received 14 August 2013; accepted 23 August 2013; online 31 August 2013)

The title compound, C26H22N5O4P3·C3H6O, has been achieved in a two-step synthesis that does not require chromatography. This mol­ecule contains a seven-membered spiro­cyclic ring at two P-atom positions and a five-membered ring containing new P—N bonds at the other P-atom position. Endocyclic torsion angles about the central biphenyl C—C bonds are −41.5 (3) and −44.4 (3)°, and P—N bonds of the central P3N3 ring are within the range 1.5665 (17)–1.6171 (17) Å, while the P—O distances are in the range 1.5940 (14)–1.6041 (14) Å. One N—H group makes an inter­molecular N—H⋯N hydrogen bond, forming centrosymmetric dimers, while the other N—H group makes an N—H⋯O hydrogen bond to the acetone solvent mol­ecule. The crystal was a two-component non-merohedral twin with ratio 0.811/0.189.

Related literature

For phosphazene-based flame retardants, see: Bakos et al. (1982[Bakos, D., Kosik, M., Antos, K., Karolyova, M. & Vyskocil, I. (1982). Fire Mater. 6, 10-11.]); Drews & Barker (1985[Drews, M. J. & Barker, R. H. (1985). Cellulose Chemistry and its applications, edited by T. P Nevell & S. H. Zeronian, pp. 423-454. John Wiley & Sons, Inc.]). For related structures, bond angles and lengths, see: Allcock (1972[Allcock, H. R. (1972). In Phosphorus-Nitrogen Compounds. New York: Academic Press, Inc.]); Ciftci et al. (2013[Ciftci, G. Y., Ecik, E. T., Yildirim, T., Bilgin, K., Senkuytu, E., Yuksel, F., Uludag, Y. & Kilic, A. (2013). Tetrahedron, 69, 1454-1461.]). For the geometry of phosphazene rings, see: Olthof (1969[Olthof, R. (1969). Acta Cryst. B25, 2040-2045.]); Barclay et al. (2002[Barclay, T. M., Hicks, R. G., Ichimura, A. S. & Patenaude, G. W. (2002). Can. J. Chem. 80, 1501-1506.]). For the synthesis, see: Allen (1991[Allen, C. W. (1991). Chem. Rev. 91, 119-135.]); Carriedo et al. (1996[Carriedo, G. A., Fernandez-Catuxo, L., Alonso, F. J. G., Gomez-Elipe, P. & Gonzalez, P. A. (1996). Macromolecules, 29, 5320-5325.]). For related structures, see: Chandrasekhar et al. (2007[Chandrasekhar, V., Thilagar, P., Krishnan, V., Bickley, J. F. & Steiner, A. (2007). Cryst. Growth Des. 7, 668-675.]; 2011[Chandrasekhar, V., Pandey, M. D., Das, B., Mahanti, B., Gopal, K. & Azhakar, R. (2011). Tetrahedron, 67, 6917-6926.]; 2012[Chandrasekhar, V., Senapati, T., Dey, A., Das, S., Kalisz, M. & Clérac, R. (2012). Inorg. Chem. 51, 2031-2038.]); Harmjanz et al. (2004[Harmjanz, M., Piglosiewicz, I. M., Scott, B. L. & Burns, C. J. (2004). Inorg. Chem. 43, 642-650.]). For graph-set analysis, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For ring asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, New York: New York: John Wiley, pp. 271-383.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22N5O4P3·C3H6O

  • Mr = 619.47

  • Monoclinic, P 21 /c

  • a = 9.4901 (9) Å

  • b = 22.9466 (19) Å

  • c = 13.1776 (13) Å

  • β = 97.978 (6)°

  • V = 2841.9 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.34 mm−1

  • T = 100 K

  • 0.19 × 0.12 × 0.03 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2004[Sheldrick, G. (2004). TWINABS. University of Göttingen, Germany.]) Tmin = 0.664, Tmax = 0.933

  • 33208 measured reflections

  • 5065 independent reflections

  • 4276 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.08

  • 5065 reflections

  • 387 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O5 0.82 (3) 2.22 (3) 2.991 (2) 158 (2)
N5—H5N⋯N3i 0.83 (3) 2.53 (3) 3.285 (2) 151 (2)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The non-halogenated title compound contains two key elements phosphorus and nitrogen, which are incorporated into the backbone moiety of the molecule to achieve flame retardant properties (Bakos et al., 1982). Studies have shown that an increase in the number of phosphorus (P), nitrogen (N), or P—N bonds leads to improved flame retardancy (Drews & Barker, 1985). The substitution of two biphenol groups and ethylenediamine onto phosphazene was achieved through nucleophilic substitution in high yield. This compound was applied to cotton fabric and has shown promising preliminary results as a potential flame retardant.

The proposed efficacy and novelty of this flame retardant is based on the design of phosphorus (P3) surrounded by four nitrogen (N2, N3, N4, N5) atoms, thereby increasing the number of P—N bonds in the molecule. Incorporation of the 2,2'-biphenol moiety at P1 and P2 promotes a seven membered spirocyclic structure with endocyclic torsion angles about the central biphenol C—C bonds being nearly equal, -44.4 (3)° for C1/C6/C7/C12 and -41.5 (3)° for C13/C18/C19/C24. Both seven-membered rings have twist conformations with the P atom on the local twofold axis; however the deviation from C2 local symmetry is substantial for both. The asymmetry parameter (Duax et al., 1976) is 14.83 (13)° for the ring containing P1 and 18.44 (14)° for that containing P2.

The utilization of ethylenediamine at the P3 position forms a five-membered ring with new P—N bonds, which lies roughly perpendicular (dihedral angle 81.42 (4)°) to the phosphazene ring. The conformation of the 5-membered ring is closest to an envelope with C25 at the flap position. C25 lies 0.554 (2) Å out of the plane of the other four atoms, and the Cs asymmetry parameter is 3.44 (17)°. The N—P—N bonds have angles of 94.47 (9)° to 113.64 (9)°, which is lower than typical angles of ~118° (Allcock, 1972). The narrowing of the angle may be due to van der Waals repulsions from the four N atoms surrounding P3 (Allcock, 1972). It has been reported that N—P—N bonds with two bulky phenyl groups on P have a narrowed angle of 115° due to mutual repulsions form the bulky phenyl group (Allcock, 1972). The phosphazene ring itself is slightly nonplanar, having a boat distortion, with P2 lying 0.1982 (4) Å and N3 lying 0.161 (2) Å on the same side of the plane defined by P1, P3, N1, and N2. The phosphazene ring has P—N bond lengths ranging from 1.5665 (17) to 1.6171 (17) Å. These values are typical for phosphazene rings (Barclay et al. 2002; Olthof, 1969). This molecule has similar bond angles and bond lengths, when substituted with the same or comparable spiro molecules, as found in the literature (Allcock, 1972, Ciftci et al., 2013). Overall, the molecule has approximate C2 symmetry, as seen in Fig. 1.

Both NH groups donate intermolecular hydrogen bonds, as shown in Fig. 2. The N5—H···N3 (at 2 - x, 1 - y, 1 - z) bond leads to centrosymmetric hydrogen-bonded dimers, with graph set R22(8) (Etter, 1990), while N4 donates a hydrogen bond to acetone O. The acetone molecule forms two C—H···O hydrogen bonds with the phosphazene molecule, one as a donor and the other as an acceptor (Table 1).

Related literature top

For phosphazene-based flame retardants, see: Bakos et al. (1982); Drews & Barker, (1985). For related structures, bond angles and lengths, see: Allcock (1972); Ciftci et al. (2013). For the geometry of phosphazene rings, see: Olthof (1969); Barclay et al. (2002). For the synthesis, see: Allen (1991); Carriedo et al. (1996). For related structures, see: Chandrasekhar et al. (2007; 2011; 2012); Harmjanz et al. (2004). For graph-set analysis, see: Etter (1990). For ring asymmetry parameters, see: Duax et al. (1976).

Experimental top

All reagent grade chemicals were purchased from Sigma Aldrich and were used without further purification. ESI Mass Spectra were recorded on an Agilent Technologies 6520 Accurate Mass Q-TOF LC/MS. NMR spectra were recorded using a Varian 400MHZ spectrometer. 1H and 13C are given in δ relative to TMS and 31P is given δ relative to external 85% aqueous H3PO4.

2,2-Dichloro-4,4,6,6-bis[spiro(2,2'-dioxy-1'1"-biphenyl)] Cyclotriphosphazene (1) was synthesized as previously reported in the literature (Allen, 1991; Carriedo et al. 1996).

A 3-neck round bottom flask was equipped with an argon inlet, an addition funnel, and a stopper. (1) was allowed to stir in CH2C12 until completely dissolved. A solution of ethylenediamine in CH2C12 was added drop-wise to the round bottom flask at 0°C and allowed to warm to room temperature. The reaction was allowed to stir for 24 h. Thin Layer Chromatography (TLC) was used to follow the reaction using Hexanes/ CH2C12 (50:50) and DCM/MeOH (90:10). Purification was achieved by gently extracting the organic layer with warm distilled water. The organic layer was dried by anhydrous sodium sulfate and concentrated. The product (2) obtained was a white solid with a yield of 84%. The compound was tested by ESI-MS and 1H, 13C, 31P –NMR using Acetone-d6. Crystals of (2) were grown in an NMR tube from acetone.

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95 - 0.99 Å and thereafter treated as riding, with a torsional parameter refined for each methyl group. Coordinates of the NH hydrogen atoms were refined isotropically. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atomic numbering scheme and 50% ellipsoids. The solvent molecule is not shown.
[Figure 2] Fig. 2. Hydrogen bonding, illustrating the centrosymmetic dimer about 1, 1/2, 1/2 and the two acetone acceptors. H atoms on C are not shown.
1,1',4,5-Tetrahydrotrispiro[1,3,2-diazaphosphole-2,2'-[1,3,5,2,4,6]triazatriphosphinine-4',6''-dibenzo[d,f][1,3,2]dioxaphosphepine-6',6'''-dibenzo[d,f][1,3,2]dioxaphosphepine] acetone monosolvate top
Crystal data top
C26H22N5O4P3·C3H6OF(000) = 1288
Mr = 619.47Dx = 1.448 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3314 reflections
a = 9.4901 (9) Åθ = 3.9–67.8°
b = 22.9466 (19) ŵ = 2.34 mm1
c = 13.1776 (13) ÅT = 100 K
β = 97.978 (6)°Plate, colorless
V = 2841.9 (5) Å30.19 × 0.12 × 0.03 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
5065 independent reflections
Radiation source: IµS microfocus4276 reflections with I > 2σ(I)
QUAZAR multilayer optics monochromatorRint = 0.051
ϕ and ω scansθmax = 68.7°, θmin = 3.9°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2004)
h = 1111
Tmin = 0.664, Tmax = 0.933k = 027
33208 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.7869P]
where P = (Fo2 + 2Fc2)/3
5065 reflections(Δ/σ)max = 0.001
387 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C26H22N5O4P3·C3H6OV = 2841.9 (5) Å3
Mr = 619.47Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.4901 (9) ŵ = 2.34 mm1
b = 22.9466 (19) ÅT = 100 K
c = 13.1776 (13) Å0.19 × 0.12 × 0.03 mm
β = 97.978 (6)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
5065 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2004)
4276 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.933Rint = 0.051
33208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.40 e Å3
5065 reflectionsΔρmin = 0.39 e Å3
387 parameters
Special details top

Experimental. The sample was a multiple crystal ("twin") with two components. The second domain was rotated from first domain by 2.6 degrees about reciprocal axis -0.141 1.000 0.976 and real axis -0.085 0.341 1.000

The twin law to convert hkl from first to this domain (SHELXL TWIN matrix): 1.002 - 0.016 0.017, 0.096 0.999 0.015, -0.032 - 0.001 0.996

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections, using a TWIN4 hkl file prepared by TWINABS (Sheldrick, 2004).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.86867 (5)0.57153 (2)0.27605 (4)0.01501 (13)
P20.70274 (5)0.47853 (2)0.30698 (4)0.01500 (13)
P30.79507 (5)0.55177 (2)0.47261 (4)0.01498 (13)
O11.02561 (15)0.56625 (6)0.24629 (11)0.0169 (3)
O20.80895 (14)0.62781 (6)0.21219 (11)0.0171 (3)
O30.77860 (14)0.41639 (6)0.30107 (11)0.0165 (3)
O40.54174 (14)0.46339 (6)0.26346 (11)0.0174 (3)
N10.77084 (18)0.51945 (7)0.22950 (13)0.0173 (4)
N20.69897 (18)0.49976 (7)0.41955 (13)0.0178 (4)
N30.89141 (18)0.58162 (7)0.39485 (13)0.0172 (4)
N40.70206 (19)0.59910 (8)0.52986 (14)0.0190 (4)
H4N0.659 (3)0.6247 (11)0.4945 (19)0.023*
N50.89724 (19)0.53234 (8)0.57900 (13)0.0182 (4)
H5N0.921 (3)0.4976 (11)0.5831 (19)0.022*
C11.0620 (2)0.58150 (9)0.14985 (16)0.0175 (4)
C21.1120 (2)0.53795 (9)0.09149 (16)0.0195 (4)
H21.11200.49850.11340.023*
C31.1619 (2)0.55245 (9)0.00081 (17)0.0231 (5)
H31.19620.52280.03990.028*
C41.1620 (2)0.61020 (10)0.03067 (16)0.0233 (5)
H41.19730.62010.09250.028*
C51.1105 (2)0.65351 (9)0.02810 (16)0.0205 (4)
H51.10960.69280.00540.025*
C61.0600 (2)0.64004 (9)0.12034 (15)0.0170 (4)
C71.0101 (2)0.68643 (8)0.18533 (15)0.0174 (4)
C81.0836 (2)0.73950 (9)0.20275 (16)0.0203 (4)
H81.16790.74600.17300.024*
C91.0346 (2)0.78235 (9)0.26264 (16)0.0225 (5)
H91.08540.81800.27350.027*
C100.9119 (2)0.77390 (9)0.30718 (16)0.0218 (4)
H100.87940.80350.34860.026*
C110.8369 (2)0.72215 (9)0.29101 (16)0.0205 (4)
H110.75230.71590.32060.025*
C120.8877 (2)0.67975 (8)0.23097 (16)0.0175 (4)
C130.7274 (2)0.37086 (8)0.35739 (16)0.0170 (4)
C140.8068 (2)0.35465 (9)0.44930 (16)0.0207 (4)
H140.89130.37510.47520.025*
C150.7602 (3)0.30792 (9)0.50272 (17)0.0265 (5)
H150.81240.29640.56630.032*
C160.6377 (2)0.27796 (9)0.46347 (18)0.0265 (5)
H160.60680.24580.50000.032*
C170.5602 (2)0.29493 (9)0.37092 (18)0.0234 (5)
H170.47650.27410.34460.028*
C180.6038 (2)0.34235 (8)0.31581 (16)0.0182 (4)
C190.5226 (2)0.36114 (9)0.21647 (16)0.0182 (4)
C200.4629 (2)0.32016 (9)0.14425 (18)0.0246 (5)
H200.47620.27980.15860.029*
C210.3846 (2)0.33719 (11)0.05215 (19)0.0296 (5)
H210.34400.30860.00470.036*
C220.3657 (2)0.39597 (11)0.02949 (18)0.0291 (5)
H220.31300.40770.03380.035*
C230.4239 (2)0.43759 (10)0.09950 (17)0.0237 (5)
H230.41150.47790.08450.028*
C240.5001 (2)0.41980 (9)0.19118 (16)0.0178 (4)
C250.7808 (2)0.61684 (9)0.62821 (16)0.0233 (5)
H25A0.71560.63170.67480.028*
H25B0.85140.64750.61880.028*
C260.8542 (2)0.56094 (9)0.67000 (16)0.0213 (4)
H26A0.93820.56980.72110.026*
H26B0.78800.53600.70240.026*
O50.53486 (16)0.66469 (7)0.35745 (12)0.0258 (3)
C270.4623 (2)0.62727 (9)0.30959 (17)0.0220 (5)
C280.3829 (2)0.58239 (9)0.36180 (18)0.0255 (5)
H28A0.41190.58460.43600.038*
H28B0.40450.54350.33730.038*
H28C0.28050.58970.34620.038*
C290.4499 (3)0.62433 (11)0.19530 (18)0.0307 (5)
H29A0.49220.65940.16950.046*
H29B0.34930.62190.16610.046*
H29C0.50020.58980.17540.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0158 (3)0.0150 (2)0.0145 (3)0.00015 (19)0.00280 (19)0.00056 (18)
P20.0159 (3)0.0140 (2)0.0153 (3)0.00058 (19)0.00309 (19)0.00092 (18)
P30.0156 (3)0.0156 (2)0.0139 (3)0.00053 (19)0.00267 (19)0.00072 (18)
O10.0168 (7)0.0184 (7)0.0161 (7)0.0007 (5)0.0041 (6)0.0038 (5)
O20.0156 (7)0.0159 (7)0.0194 (7)0.0013 (5)0.0007 (6)0.0012 (5)
O30.0165 (7)0.0152 (6)0.0183 (7)0.0007 (5)0.0041 (5)0.0009 (5)
O40.0157 (7)0.0159 (6)0.0206 (8)0.0000 (5)0.0024 (6)0.0040 (6)
N10.0196 (9)0.0177 (8)0.0151 (9)0.0020 (7)0.0042 (7)0.0015 (6)
N20.0195 (9)0.0173 (8)0.0173 (9)0.0020 (7)0.0051 (7)0.0005 (7)
N30.0181 (9)0.0174 (8)0.0158 (9)0.0023 (7)0.0016 (7)0.0005 (7)
N40.0203 (9)0.0193 (8)0.0176 (9)0.0041 (7)0.0030 (7)0.0017 (7)
N50.0204 (9)0.0187 (8)0.0154 (9)0.0028 (7)0.0019 (7)0.0007 (7)
C10.0141 (10)0.0234 (10)0.0151 (10)0.0017 (8)0.0029 (8)0.0003 (8)
C20.0189 (10)0.0177 (9)0.0215 (11)0.0003 (8)0.0013 (8)0.0007 (8)
C30.0216 (11)0.0263 (11)0.0212 (11)0.0020 (9)0.0025 (9)0.0039 (9)
C40.0239 (11)0.0307 (11)0.0160 (11)0.0022 (9)0.0051 (9)0.0007 (9)
C50.0215 (11)0.0203 (10)0.0198 (11)0.0004 (8)0.0031 (8)0.0031 (8)
C60.0151 (10)0.0193 (10)0.0167 (10)0.0017 (8)0.0025 (8)0.0015 (8)
C70.0191 (10)0.0181 (9)0.0148 (10)0.0008 (8)0.0016 (8)0.0033 (8)
C80.0225 (11)0.0207 (10)0.0184 (11)0.0024 (8)0.0054 (8)0.0034 (8)
C90.0307 (12)0.0159 (9)0.0209 (11)0.0046 (9)0.0031 (9)0.0009 (8)
C100.0286 (11)0.0171 (10)0.0201 (11)0.0019 (9)0.0051 (9)0.0019 (8)
C110.0199 (10)0.0204 (10)0.0212 (11)0.0029 (8)0.0036 (8)0.0038 (8)
C120.0198 (10)0.0132 (9)0.0186 (10)0.0013 (8)0.0004 (8)0.0023 (7)
C130.0207 (10)0.0139 (9)0.0182 (10)0.0005 (8)0.0091 (8)0.0011 (8)
C140.0228 (11)0.0184 (9)0.0213 (11)0.0052 (8)0.0044 (9)0.0030 (8)
C150.0379 (13)0.0220 (10)0.0208 (11)0.0116 (10)0.0087 (10)0.0028 (9)
C160.0331 (13)0.0194 (10)0.0308 (13)0.0044 (9)0.0181 (10)0.0044 (9)
C170.0236 (11)0.0172 (10)0.0316 (13)0.0004 (8)0.0113 (9)0.0014 (9)
C180.0185 (10)0.0152 (9)0.0227 (11)0.0021 (8)0.0092 (8)0.0027 (8)
C190.0148 (10)0.0212 (10)0.0202 (11)0.0021 (8)0.0073 (8)0.0031 (8)
C200.0216 (11)0.0228 (11)0.0307 (13)0.0033 (9)0.0086 (9)0.0087 (9)
C210.0229 (11)0.0378 (13)0.0276 (13)0.0032 (10)0.0015 (9)0.0167 (10)
C220.0231 (12)0.0412 (13)0.0218 (12)0.0024 (10)0.0015 (9)0.0063 (10)
C230.0209 (11)0.0257 (11)0.0241 (12)0.0025 (9)0.0019 (9)0.0006 (9)
C240.0138 (10)0.0202 (10)0.0196 (11)0.0008 (8)0.0038 (8)0.0046 (8)
C250.0234 (11)0.0275 (11)0.0188 (11)0.0003 (9)0.0023 (9)0.0057 (9)
C260.0213 (11)0.0268 (10)0.0159 (11)0.0005 (9)0.0029 (8)0.0013 (8)
O50.0236 (8)0.0247 (8)0.0291 (9)0.0022 (6)0.0034 (7)0.0016 (6)
C270.0162 (10)0.0234 (10)0.0268 (12)0.0065 (9)0.0039 (9)0.0008 (9)
C280.0210 (11)0.0245 (11)0.0319 (13)0.0012 (9)0.0069 (9)0.0014 (9)
C290.0257 (12)0.0403 (13)0.0255 (13)0.0010 (10)0.0017 (10)0.0027 (10)
Geometric parameters (Å, º) top
P1—N31.5675 (17)C10—H100.9500
P1—N11.5837 (17)C11—C121.382 (3)
P1—O11.5965 (14)C11—H110.9500
P1—O21.6016 (14)C13—C141.385 (3)
P2—N21.5665 (17)C13—C181.388 (3)
P2—N11.5890 (17)C14—C151.388 (3)
P2—O41.5940 (14)C14—H140.9500
P2—O31.6041 (14)C15—C161.387 (3)
P3—N21.6024 (17)C15—H150.9500
P3—N31.6171 (17)C16—C171.390 (3)
P3—N41.6471 (17)C16—H160.9500
P3—N51.6514 (18)C17—C181.402 (3)
O1—C11.407 (2)C17—H170.9500
O2—C121.410 (2)C18—C191.488 (3)
O3—C131.407 (2)C19—C241.396 (3)
O4—C241.400 (2)C19—C201.401 (3)
N4—C251.461 (3)C20—C211.388 (3)
N4—H4N0.82 (3)C20—H200.9500
N5—C261.473 (3)C21—C221.388 (4)
N5—H5N0.83 (3)C21—H210.9500
C1—C21.384 (3)C22—C231.388 (3)
C1—C61.398 (3)C22—H220.9500
C2—C31.386 (3)C23—C241.381 (3)
C2—H20.9500C23—H230.9500
C3—C41.389 (3)C25—C261.526 (3)
C3—H30.9500C25—H25A0.9900
C4—C51.390 (3)C25—H25B0.9900
C4—H40.9500C26—H26A0.9900
C5—C61.402 (3)C26—H26B0.9900
C5—H50.9500O5—C271.220 (3)
C6—C71.484 (3)C27—C291.496 (3)
C7—C121.389 (3)C27—C281.498 (3)
C7—C81.406 (3)C28—H28A0.9800
C8—C91.381 (3)C28—H28B0.9800
C8—H80.9500C28—H28C0.9800
C9—C101.388 (3)C29—H29A0.9800
C9—H90.9500C29—H29B0.9800
C10—C111.386 (3)C29—H29C0.9800
N3—P1—N1119.36 (9)C11—C12—O2118.47 (18)
N3—P1—O1104.64 (8)C7—C12—O2118.17 (17)
N1—P1—O1111.37 (8)C14—C13—C18123.09 (19)
N3—P1—O2113.28 (8)C14—C13—O3118.37 (18)
N1—P1—O2105.03 (8)C18—C13—O3118.46 (18)
O1—P1—O2101.90 (7)C13—C14—C15118.6 (2)
N2—P2—N1119.30 (9)C13—C14—H14120.7
N2—P2—O4105.18 (8)C15—C14—H14120.7
N1—P2—O4110.65 (8)C16—C15—C14120.2 (2)
N2—P2—O3113.07 (9)C16—C15—H15119.9
N1—P2—O3105.59 (8)C14—C15—H15119.9
O4—P2—O3101.71 (7)C15—C16—C17120.2 (2)
N2—P3—N3112.12 (9)C15—C16—H16119.9
N2—P3—N4112.47 (9)C17—C16—H16119.9
N3—P3—N4113.39 (9)C16—C17—C18120.9 (2)
N2—P3—N5113.64 (9)C16—C17—H17119.6
N3—P3—N5109.59 (9)C18—C17—H17119.6
N4—P3—N594.47 (9)C13—C18—C17117.1 (2)
C1—O1—P1123.88 (13)C13—C18—C19121.14 (18)
C12—O2—P1116.68 (12)C17—C18—C19121.76 (19)
C13—O3—P2116.39 (12)C24—C19—C20116.8 (2)
C24—O4—P2124.52 (12)C24—C19—C18122.21 (18)
P1—N1—P2117.77 (11)C20—C19—C18120.98 (19)
P2—N2—P3123.95 (11)C21—C20—C19121.5 (2)
P1—N3—P3123.96 (11)C21—C20—H20119.3
C25—N4—P3110.45 (14)C19—C20—H20119.3
C25—N4—H4N117.0 (17)C22—C21—C20119.9 (2)
P3—N4—H4N117.8 (18)C22—C21—H21120.0
C26—N5—P3111.99 (14)C20—C21—H21120.0
C26—N5—H5N118.6 (17)C21—C22—C23119.9 (2)
P3—N5—H5N115.9 (17)C21—C22—H22120.1
C2—C1—C6122.12 (19)C23—C22—H22120.1
C2—C1—O1117.93 (18)C24—C23—C22119.3 (2)
C6—C1—O1119.65 (18)C24—C23—H23120.3
C1—C2—C3119.36 (19)C22—C23—H23120.3
C1—C2—H2120.3C23—C24—C19122.56 (19)
C3—C2—H2120.3C23—C24—O4116.64 (18)
C2—C3—C4120.1 (2)C19—C24—O4120.46 (18)
C2—C3—H3120.0N4—C25—C26103.74 (17)
C4—C3—H3120.0N4—C25—H25A111.0
C3—C4—C5120.1 (2)C26—C25—H25A111.0
C3—C4—H4120.0N4—C25—H25B111.0
C5—C4—H4120.0C26—C25—H25B111.0
C4—C5—C6120.97 (19)H25A—C25—H25B109.0
C4—C5—H5119.5N5—C26—C25104.18 (17)
C6—C5—H5119.5N5—C26—H26A110.9
C1—C6—C5117.38 (19)C25—C26—H26A110.9
C1—C6—C7121.47 (18)N5—C26—H26B110.9
C5—C6—C7121.13 (18)C25—C26—H26B110.9
C12—C7—C8116.76 (18)H26A—C26—H26B108.9
C12—C7—C6121.56 (18)O5—C27—C29120.8 (2)
C8—C7—C6121.68 (18)O5—C27—C28122.0 (2)
C9—C8—C7120.7 (2)C29—C27—C28117.21 (19)
C9—C8—H8119.6C27—C28—H28A109.5
C7—C8—H8119.6C27—C28—H28B109.5
C8—C9—C10120.73 (19)H28A—C28—H28B109.5
C8—C9—H9119.6C27—C28—H28C109.5
C10—C9—H9119.6H28A—C28—H28C109.5
C11—C10—C9119.85 (19)H28B—C28—H28C109.5
C11—C10—H10120.1C27—C29—H29A109.5
C9—C10—H10120.1C27—C29—H29B109.5
C12—C11—C10118.6 (2)H29A—C29—H29B109.5
C12—C11—H11120.7C27—C29—H29C109.5
C10—C11—H11120.7H29A—C29—H29C109.5
C11—C12—C7123.33 (18)H29B—C29—H29C109.5
N3—P1—O1—C1151.76 (15)C5—C6—C7—C12137.4 (2)
N1—P1—O1—C177.97 (16)C1—C6—C7—C8136.4 (2)
O2—P1—O1—C133.56 (16)C5—C6—C7—C841.9 (3)
N3—P1—O2—C1254.75 (16)C12—C7—C8—C90.0 (3)
N1—P1—O2—C12173.32 (14)C6—C7—C8—C9179.33 (19)
O1—P1—O2—C1257.08 (15)C7—C8—C9—C100.2 (3)
N2—P2—O3—C1352.84 (16)C8—C9—C10—C110.4 (3)
N1—P2—O3—C13175.00 (13)C9—C10—C11—C120.5 (3)
O4—P2—O3—C1359.42 (15)C10—C11—C12—C70.3 (3)
N2—P2—O4—C24148.34 (15)C10—C11—C12—O2178.18 (18)
N1—P2—O4—C2481.56 (17)C8—C7—C12—C110.1 (3)
O3—P2—O4—C2430.24 (17)C6—C7—C12—C11179.23 (19)
N3—P1—N1—P21.48 (16)C8—C7—C12—O2177.90 (17)
O1—P1—N1—P2120.63 (11)C6—C7—C12—O21.4 (3)
O2—P1—N1—P2129.84 (11)P1—O2—C12—C11103.17 (18)
N2—P2—N1—P116.39 (16)P1—O2—C12—C778.9 (2)
O4—P2—N1—P1138.55 (10)P2—O3—C13—C14103.07 (18)
O3—P2—N1—P1112.16 (11)P2—O3—C13—C1880.20 (19)
N1—P2—N2—P317.32 (17)C18—C13—C14—C150.4 (3)
O4—P2—N2—P3142.15 (12)O3—C13—C14—C15176.97 (17)
O3—P2—N2—P3107.71 (12)C13—C14—C15—C160.8 (3)
N3—P3—N2—P22.48 (16)C14—C15—C16—C170.6 (3)
N4—P3—N2—P2131.67 (12)C15—C16—C17—C180.1 (3)
N5—P3—N2—P2122.48 (13)C14—C13—C18—C170.3 (3)
N1—P1—N3—P314.21 (17)O3—C13—C18—C17176.31 (17)
O1—P1—N3—P3139.60 (11)C14—C13—C18—C19179.62 (18)
O2—P1—N3—P3110.26 (12)O3—C13—C18—C193.0 (3)
N2—P3—N3—P113.44 (16)C16—C17—C18—C130.5 (3)
N4—P3—N3—P1115.26 (13)C16—C17—C18—C19179.83 (19)
N5—P3—N3—P1140.61 (12)C13—C18—C19—C2441.5 (3)
N2—P3—N4—C25138.76 (14)C17—C18—C19—C24139.2 (2)
N3—P3—N4—C2592.72 (16)C13—C18—C19—C20139.6 (2)
N5—P3—N4—C2520.88 (16)C17—C18—C19—C2039.7 (3)
N2—P3—N5—C26112.97 (15)C24—C19—C20—C210.2 (3)
N3—P3—N5—C26120.73 (15)C18—C19—C20—C21178.7 (2)
N4—P3—N5—C263.95 (16)C19—C20—C21—C220.8 (3)
P1—O1—C1—C2117.03 (18)C20—C21—C22—C230.7 (4)
P1—O1—C1—C669.1 (2)C21—C22—C23—C240.1 (3)
C6—C1—C2—C30.1 (3)C22—C23—C24—C190.7 (3)
O1—C1—C2—C3173.67 (18)C22—C23—C24—O4172.71 (19)
C1—C2—C3—C40.2 (3)C20—C19—C24—C230.5 (3)
C2—C3—C4—C50.7 (3)C18—C19—C24—C23179.51 (19)
C3—C4—C5—C61.0 (3)C20—C19—C24—O4172.62 (18)
C2—C1—C6—C50.2 (3)C18—C19—C24—O46.3 (3)
O1—C1—C6—C5173.83 (17)P2—O4—C24—C23118.86 (18)
C2—C1—C6—C7178.11 (19)P2—O4—C24—C1967.6 (2)
O1—C1—C6—C74.5 (3)P3—N4—C25—C2637.8 (2)
C4—C5—C6—C10.7 (3)P3—N5—C26—C2525.7 (2)
C4—C5—C6—C7177.58 (19)N4—C25—C26—N538.3 (2)
C1—C6—C7—C1244.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O50.82 (3)2.22 (3)2.991 (2)158 (2)
N5—H5N···N3i0.83 (3)2.53 (3)3.285 (2)151 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O50.82 (3)2.22 (3)2.991 (2)158 (2)
N5—H5N···N3i0.83 (3)2.53 (3)3.285 (2)151 (2)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

We would like to thank Dr Casey Grimm for the MS analysis. Upgrade of the diffractometer was made possible by grant No. LEQSF(2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents.

References

First citationAllcock, H. R. (1972). In Phosphorus-Nitrogen Compounds. New York: Academic Press, Inc.  Google Scholar
First citationAllen, C. W. (1991). Chem. Rev. 91, 119–135.  CrossRef CAS Web of Science Google Scholar
First citationBakos, D., Kosik, M., Antos, K., Karolyova, M. & Vyskocil, I. (1982). Fire Mater. 6, 10–11.  CAS Google Scholar
First citationBarclay, T. M., Hicks, R. G., Ichimura, A. S. & Patenaude, G. W. (2002). Can. J. Chem. 80, 1501–1506.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarriedo, G. A., Fernandez-Catuxo, L., Alonso, F. J. G., Gomez-Elipe, P. & Gonzalez, P. A. (1996). Macromolecules, 29, 5320–5325.  CrossRef CAS Web of Science Google Scholar
First citationChandrasekhar, V., Pandey, M. D., Das, B., Mahanti, B., Gopal, K. & Azhakar, R. (2011). Tetrahedron, 67, 6917–6926.  Web of Science CSD CrossRef CAS Google Scholar
First citationChandrasekhar, V., Senapati, T., Dey, A., Das, S., Kalisz, M. & Clérac, R. (2012). Inorg. Chem. 51, 2031–2038.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChandrasekhar, V., Thilagar, P., Krishnan, V., Bickley, J. F. & Steiner, A. (2007). Cryst. Growth Des. 7, 668–675.  Web of Science CSD CrossRef CAS Google Scholar
First citationCiftci, G. Y., Ecik, E. T., Yildirim, T., Bilgin, K., Senkuytu, E., Yuksel, F., Uludag, Y. & Kilic, A. (2013). Tetrahedron, 69, 1454–1461.  CAS Google Scholar
First citationDrews, M. J. & Barker, R. H. (1985). Cellulose Chemistry and its applications, edited by T. P Nevell & S. H. Zeronian, pp. 423–454. John Wiley & Sons, Inc.  Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, New York: New York: John Wiley, pp. 271–383.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarmjanz, M., Piglosiewicz, I. M., Scott, B. L. & Burns, C. J. (2004). Inorg. Chem. 43, 642–650.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOlthof, R. (1969). Acta Cryst. B25, 2040–2045.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. (2004). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1491-o1492
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds