organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3-(2-Benz­yl­oxy-6-hy­dr­oxy-4-methyl­phen­yl)-5-[3,5-bis­­(tri­fluoro­meth­yl)phen­yl]-4,5-di­hydro-1H-pyrazol-1-yl]propane-1-one

aDepartment of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388 120, India, and bP. G. Center in Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat 383 215, India
*Correspondence e-mail: u_h_patel@yahoo.com

(Received 24 February 2013; accepted 30 April 2013; online 4 May 2013)

In the title compound, C28H24F6N2O3, the mean plane of the central pyrazoline ring forms dihedral angles of 2.08 (9) and 69.02 (16)° with the 2-benz­yloxy-6-hy­droxy-4-methyl­phenyl and 3,5-bis­(tri­fluoro­meth­yl)phenyl rings, respectively. The dihedral angle between the mean planes of the pyrazoline and 3,5-bis­(tri­fluoro­meth­yl)phenyl rings is 68.97 (9)°. An intra­molecular O—H⋯N hydrogen bond is observed, which forms an S(6) graph-set motif. In the crystal, pairs of weak C—H⋯F halogen inter­actions link the mol­ecules into inversion dimers while molecular chains along [100] are formed by C—H⋯O contacts.

Related literature

For pharmacalogical and anti­cancer properties of pyrazoline derivatives, see: Smith et al. (2001[Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-109.]). For graph-set motifs, see: Bernstein et al., (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Patel et al. (2007[Patel, U. H., Patel, P. D. & Thakker, N. (2007). Acta Cryst. C63, o337-o339.], 2012[Patel, U. H., Gandhi, S. A., Barot, V. M. & Patel, M. C. (2012). Acta Cryst. E68, o2926-o2927.]).

[Scheme 1]

Experimental

Crystal data
  • C28H24F6N2O3

  • Mr = 550.49

  • Monoclinic, P 21 /n

  • a = 4.8822 (2) Å

  • b = 23.4752 (9) Å

  • c = 22.4311 (9) Å

  • β = 91.494 (2)°

  • V = 2569.97 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 273 K

  • 0.54 × 0.34 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.988

  • 19610 measured reflections

  • 4514 independent reflections

  • 2491 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.246

  • S = 1.00

  • 4514 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16⋯N2 0.82 1.84 2.568 (3) 147
C31—H31⋯O9i 0.93 2.67 3.490 (4) 148
C21—H21⋯F37ii 0.93 2.72 3.488 (6) 140
C29—H29⋯F33iii 0.93 2.64 3.490 (5) 152
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.] ); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.] ); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazoline derivatives, prominent nitrogen containing heterocyclic compounds, play an important role in medicinal chemistry. These derivatives are found to possess antidepressant, antioxidant, anti- inflammatory (Smith et al., 2001), anticonvulsant, antimicrobial, antiviral, monoamine oxidase (MAO-A and MAO-B) inhibitor, and anticancer activity. Our on-going research is focused on the synthesis and crystal structures of related pyrazoline derivatives of these types of heterocyclic compounds (Patel et al. 2007, Patel et al. 2012). We report here the synthesis and crystal structure of the title compound, C28H24N2O3F6, (I).

In (I), propionaldehyde, 3-benzyloxy-5-methyl-phenol and 1,3-bis-trifluro methyl benzene are bonded to N1, C3 and C5 of the pyrazoline ring, respectively. The dihedral angles between the mean planes of the pyrazoline ring and the 3-benzyloxy-5-methyl-phenol (C10—C15) and 1,3-bis-trifluro methyl benzene rings (C26—C31) are 2.03 (15)° and 69.02 (16)° respectively. An intra-molecular O16—H16···N2 hydrogen bond (Fig.1) forms an S1,1(6) graph set motif configuration (Bernstein et al., 1995). The mean plane of the propionaldehyde group (C6—C8/O9) is inclined by 12.56 (13)° to the meam plane of the pyrazoline ring. Weak C—H···F Halogen intermolecular interactions are observed that form inversion dimers (Fig. 2).

Related literature top

For pharmacalogical and anticancer properties of pyrazoline derivatives, see: Smith et al. (2001). For graph-set motifs, see: Bernstein et al., (1995). For related structures, see: Patel et al. (2007, 2012).

Experimental top

1-[2-benzyloxy-6-hydroxy-4-methyl phenyl]-3-(3, 5-bis (trifluoromethyl) phenyl)prop-2-en-1-one (5 g m, 0.01 mole), hydrazine hydrate (0.70 g m, 0.014 mole) and butanoic acid (20 ml) were heated to 115–120 °C for 4 h. The resulting solution was concentrated and allowed to cool and then poured into ice. The resulting solid was filtered, washed with water, dried and rystallized from methanol as pale yellow needles.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93Å, 0.98Å (CH) or 0.96Å (CH3) and O—H lengths of 0.82Å. The isotropic displacement parameters for these atoms were set to 1.19 to 1.20 (CH, CH2), 1.50 (CH3) or 1.49 (OH) times Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2008 ); cell refinement: SAINT (Bruker, 2008 ); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound,showing the atom labeling scheme with 50% probability displacement ellipsoids. The dashed line represents an O—H···N intramolecular hydrogen bond which forms an S1,1(6) graph set motif.
[Figure 2] Fig. 2. Molecular packing diagram the title compound. Dashed lines indicate weak C—H···F halogen intermolecular interactions which are displayed as inversion dimers. H atoms not involved with these weak intermolecular interactions have been deleted for clarity.
1-[3-(2-Benzyloxy-6-hydroxy-4-methylphenyl)-5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-1H-pyrazol-1-yl]propane-1-one top
Crystal data top
C28H24F6N2O3Z = 4
Mr = 550.49F(000) = 1136
Monoclinic, P21/nDx = 1.423 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 4.8822 (2) Åθ = 2.9–27.7°
b = 23.4752 (9) ŵ = 0.12 mm1
c = 22.4311 (9) ÅT = 273 K
β = 91.494 (2)°Needle, white
V = 2569.97 (18) Å30.54 × 0.34 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4514 independent reflections
Radiation source: sealed X-ray tube2491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
CCD scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 55
Tmin = 0.951, Tmax = 0.988k = 2727
19610 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.246H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1524P)2]
where P = (Fo2 + 2Fc2)/3
4514 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C28H24F6N2O3V = 2569.97 (18) Å3
Mr = 550.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8822 (2) ŵ = 0.12 mm1
b = 23.4752 (9) ÅT = 273 K
c = 22.4311 (9) Å0.54 × 0.34 × 0.10 mm
β = 91.494 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4514 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2491 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.988Rint = 0.075
19610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.246H-atom parameters constrained
S = 1.00Δρmax = 0.56 e Å3
4514 reflectionsΔρmin = 0.41 e Å3
352 parameters
Special details top

Experimental. IR (cm-1): 2929 (C—H str. (asym) alkyl), 1458 (C—H def (asym)alkyl), 1387(C—H def (sym) alkyl), 3072 (C—H str.arom.), 1593. (C=Cstr. arom.), 1128 (C—H i.p.def arom.), 847 (C—H o.o.p.def.arom.), 1272 (C—O—C (sym) ether), 1066 (C—O—C (asym) ether), 3380(OHstr. phenol). 1659 (N—CO&not; CH2CH3), 1379 (N-COCH2CH3 def., pyrazoline), 1588 (C=N str., pyrazoline), 2863 (C—H ring (str.), pyrazoline), 682 (C—H def. of CH2, pyrazoline), 1197 (C—N str., pyrazoline), 1117 (C—F str.).

1H NMR (CDCl3) δp.p.m.: 0.96 (trip, 3H, J=7.3 &7.2 Hz), 1.70 (Qur, 2H),2.31(s,3H), 3.36 (dd, 1H, J=15.3 & 3.5 Hz), 3.83 (dd, 1H, J=11.7 & 7.2 Hz), 5.02 (s, 2H), 5.32 (trip, 1H, J= 3.1 & 8.08 Hz), 6.33 (S, 1H), 6.52 (S,1H), 7.16–7.23(m, 8H), 11.24 (s, 1H).

13C NMR (CDCl3) δp.p.m.: 21.98(C-1, CH3), 70.91 (C-2,CH2 C6 H5), 159.37(C-3,Pyrazoline), 46.49 (C-4,Pyrazoline), 57.92 (C-5, Pyrazoline), 170.03(C-6,CO CH2 CH3), 36.15 (C-7,CO CH2 CH3), 13.83 (C-8, CO CH2 CH3), 124.44(C-9, CF3), 124.44 (C-10, CF3).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1214 (5)0.55900 (10)0.66924 (11)0.0539 (7)
N20.3088 (5)0.58603 (11)0.63303 (10)0.0543 (7)
C30.3815 (6)0.63423 (12)0.65664 (13)0.0496 (8)
C40.2432 (7)0.64580 (13)0.71404 (14)0.0579 (8)
H4A0.1350.68040.71150.069*
H4B0.37570.64920.74680.069*
C50.0589 (6)0.59313 (13)0.72178 (13)0.0515 (8)
H50.13380.60480.71950.062*
C60.0355 (7)0.51471 (13)0.64937 (14)0.0543 (8)
C70.0403 (7)0.48937 (15)0.59035 (15)0.0658 (9)
H7A0.22810.4760.59330.079*
H7B0.03150.5190.56020.079*
C80.1418 (8)0.44063 (16)0.57049 (18)0.0830 (12)
H8A0.08270.42650.53270.124*
H8B0.32770.45370.56650.124*
H8C0.13070.41060.59950.124*
O90.2171 (5)0.49645 (10)0.68000 (10)0.0699 (7)
C100.5820 (6)0.67000 (13)0.62685 (13)0.0532 (8)
C110.6938 (7)0.65374 (13)0.57238 (14)0.0571 (8)
C120.8825 (7)0.68729 (15)0.54402 (15)0.0654 (9)
H120.94990.67550.50760.079*
C130.9730 (7)0.73805 (15)0.56867 (17)0.0640 (9)
C140.8683 (7)0.75504 (14)0.62281 (16)0.0657 (10)
H140.92780.78890.64020.079*
C150.6766 (7)0.72210 (14)0.65103 (15)0.0605 (9)
O160.6203 (5)0.60455 (10)0.54461 (10)0.0770 (8)
H160.50780.58770.56460.115*
C171.1739 (8)0.77503 (17)0.53729 (18)0.0844 (12)
H17A1.21230.80830.56090.127*
H17B1.09760.78630.49920.127*
H17C1.34040.75420.53170.127*
O180.5648 (6)0.73696 (10)0.70381 (11)0.0824 (8)
C190.6523 (9)0.78764 (16)0.73329 (19)0.0842 (12)
H19A0.63850.81970.70610.101*
H19B0.8420.78390.74670.101*
C200.4748 (8)0.79714 (18)0.78508 (18)0.0758 (11)
C210.3242 (9)0.8464 (2)0.7888 (2)0.0907 (13)
H210.34010.87330.75860.109*
C220.1532 (11)0.8579 (3)0.8341 (3)0.1063 (15)
H220.05720.89210.83520.128*
C230.1262 (10)0.8189 (3)0.8770 (3)0.1106 (17)
H230.00650.82620.90770.133*
C240.2689 (13)0.7684 (3)0.8775 (2)0.1151 (17)
H240.25020.7420.9080.138*
C250.4458 (10)0.7582 (2)0.8295 (2)0.0996 (14)
H250.54380.72420.82830.12*
C260.1172 (6)0.56381 (12)0.78105 (13)0.0485 (8)
C270.0104 (7)0.58758 (14)0.83107 (14)0.0611 (9)
H270.10310.61920.8270.073*
C280.0657 (8)0.56612 (15)0.88733 (15)0.0690 (10)
C290.2329 (8)0.51930 (16)0.89386 (15)0.0690 (10)
H290.27230.50440.93150.083*
C300.3422 (7)0.49453 (13)0.84349 (15)0.0603 (9)
C310.2878 (6)0.51677 (13)0.78742 (14)0.0546 (8)
H310.3650.50030.75410.065*
C320.0504 (12)0.5936 (2)0.94053 (18)0.0946 (14)
C360.5136 (10)0.44223 (17)0.8505 (2)0.0807 (12)
F370.3614 (6)0.39586 (11)0.85326 (17)0.1375 (12)
F380.6768 (7)0.43269 (13)0.80719 (16)0.1480 (14)
F390.6615 (8)0.44101 (13)0.89967 (16)0.1546 (14)
F330.1600 (12)0.56096 (17)0.97657 (17)0.219 (3)
F340.1149 (8)0.6254 (3)0.9680 (2)0.235 (3)
F350.2551 (10)0.6284 (2)0.92844 (15)0.190 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0651 (17)0.0526 (16)0.0442 (15)0.0098 (13)0.0082 (12)0.0046 (12)
N20.0614 (16)0.0565 (17)0.0448 (15)0.0068 (13)0.0004 (12)0.0073 (12)
C30.0554 (18)0.0452 (18)0.0480 (18)0.0006 (14)0.0038 (14)0.0049 (14)
C40.071 (2)0.0496 (18)0.054 (2)0.0050 (15)0.0087 (16)0.0039 (15)
C50.0540 (18)0.0507 (18)0.0499 (18)0.0048 (14)0.0050 (14)0.0034 (14)
C60.0599 (19)0.0476 (18)0.055 (2)0.0019 (15)0.0010 (16)0.0059 (15)
C70.074 (2)0.064 (2)0.059 (2)0.0114 (17)0.0156 (17)0.0002 (16)
C80.091 (3)0.076 (3)0.083 (3)0.017 (2)0.015 (2)0.023 (2)
O90.0737 (15)0.0703 (16)0.0666 (16)0.0161 (12)0.0206 (12)0.0007 (12)
C100.0591 (19)0.0504 (18)0.0498 (19)0.0019 (15)0.0004 (15)0.0066 (14)
C110.067 (2)0.0492 (18)0.055 (2)0.0003 (16)0.0012 (16)0.0047 (16)
C120.073 (2)0.065 (2)0.059 (2)0.0020 (18)0.0139 (17)0.0091 (17)
C130.062 (2)0.059 (2)0.071 (2)0.0037 (17)0.0012 (17)0.0181 (18)
C140.080 (2)0.0501 (19)0.067 (2)0.0122 (17)0.0000 (19)0.0046 (16)
C150.066 (2)0.059 (2)0.056 (2)0.0091 (16)0.0026 (16)0.0033 (16)
O160.0990 (19)0.0673 (16)0.0659 (16)0.0194 (13)0.0254 (13)0.0101 (12)
C170.084 (3)0.077 (3)0.093 (3)0.017 (2)0.012 (2)0.022 (2)
O180.108 (2)0.0729 (17)0.0669 (17)0.0386 (14)0.0217 (14)0.0174 (13)
C190.094 (3)0.067 (2)0.092 (3)0.022 (2)0.011 (2)0.020 (2)
C200.082 (3)0.070 (3)0.075 (3)0.015 (2)0.001 (2)0.019 (2)
C210.095 (3)0.089 (3)0.089 (3)0.005 (3)0.003 (2)0.026 (2)
C220.112 (4)0.104 (4)0.103 (4)0.005 (3)0.006 (3)0.019 (3)
C230.100 (4)0.123 (5)0.109 (4)0.007 (3)0.007 (3)0.048 (4)
C240.147 (5)0.117 (4)0.081 (4)0.023 (4)0.004 (3)0.006 (3)
C250.112 (4)0.094 (3)0.093 (4)0.004 (3)0.000 (3)0.011 (3)
C260.0526 (18)0.0464 (17)0.0467 (18)0.0022 (13)0.0056 (14)0.0002 (13)
C270.072 (2)0.0548 (19)0.057 (2)0.0073 (16)0.0118 (17)0.0005 (16)
C280.095 (3)0.063 (2)0.050 (2)0.003 (2)0.0152 (18)0.0002 (17)
C290.090 (3)0.069 (2)0.048 (2)0.011 (2)0.0017 (18)0.0079 (17)
C300.071 (2)0.0503 (19)0.060 (2)0.0009 (16)0.0009 (17)0.0112 (16)
C310.0609 (19)0.0533 (19)0.0497 (19)0.0025 (15)0.0049 (15)0.0012 (15)
C320.141 (4)0.098 (3)0.046 (2)0.014 (3)0.010 (3)0.008 (2)
C360.099 (3)0.065 (3)0.078 (3)0.011 (2)0.009 (3)0.018 (2)
F370.136 (2)0.0594 (16)0.216 (3)0.0071 (15)0.006 (2)0.0306 (18)
F380.167 (3)0.128 (2)0.152 (3)0.088 (2)0.065 (2)0.053 (2)
F390.187 (3)0.125 (2)0.148 (3)0.057 (2)0.078 (2)0.0105 (19)
F330.400 (7)0.148 (3)0.119 (3)0.008 (4)0.160 (4)0.001 (2)
F340.156 (3)0.362 (7)0.188 (4)0.068 (4)0.061 (3)0.206 (5)
F350.242 (4)0.229 (4)0.102 (2)0.119 (4)0.033 (3)0.038 (2)
Geometric parameters (Å, º) top
N1—C61.360 (4)C17—H17C0.96
N1—N21.392 (3)O18—C191.421 (4)
N1—C51.464 (4)C19—C201.484 (5)
N2—C31.295 (4)C19—H19A0.97
C3—C101.464 (4)C19—H19B0.97
C3—C41.495 (4)C20—C251.362 (6)
C4—C51.541 (4)C20—C211.374 (6)
C4—H4A0.97C21—C221.359 (6)
C4—H4B0.97C21—H210.93
C5—C261.517 (4)C22—C231.338 (7)
C5—H50.98C22—H220.93
C6—O91.214 (4)C23—C241.376 (8)
C6—C71.506 (5)C23—H230.93
C7—C81.509 (5)C24—C251.418 (7)
C7—H7A0.97C24—H240.93
C7—H7B0.97C25—H250.93
C8—H8A0.96C26—C271.368 (4)
C8—H8B0.96C26—C311.388 (4)
C8—H8C0.96C27—C281.379 (5)
C10—C111.404 (4)C27—H270.93
C10—C151.411 (4)C28—C291.374 (5)
C11—O161.356 (4)C28—C321.482 (5)
C11—C121.380 (5)C29—C301.390 (5)
C12—C131.381 (5)C29—H290.93
C12—H120.93C30—C311.381 (4)
C13—C141.389 (5)C30—C361.492 (5)
C13—C171.499 (5)C31—H310.93
C14—C151.380 (5)C32—F331.244 (6)
C14—H140.93C32—F341.251 (6)
C15—O181.362 (4)C32—F351.315 (6)
O16—H160.82C36—F381.291 (5)
C17—H17A0.96C36—F391.303 (5)
C17—H17B0.96C36—F371.320 (5)
C6—N1—N2122.0 (3)H17A—C17—H17C109.5
C6—N1—C5123.7 (3)H17B—C17—H17C109.5
N2—N1—C5112.0 (2)C15—O18—C19119.7 (3)
C3—N2—N1109.7 (2)O18—C19—C20108.4 (3)
N2—C3—C10119.6 (3)O18—C19—H19A110
N2—C3—C4112.7 (3)C20—C19—H19A110
C10—C3—C4127.7 (3)O18—C19—H19B110
C3—C4—C5103.3 (2)C20—C19—H19B110
C3—C4—H4A111.1H19A—C19—H19B108.4
C5—C4—H4A111.1C25—C20—C21117.1 (4)
C3—C4—H4B111.1C25—C20—C19123.0 (4)
C5—C4—H4B111.1C21—C20—C19119.9 (4)
H4A—C4—H4B109.1C22—C21—C20123.5 (5)
N1—C5—C26114.8 (2)C22—C21—H21118.2
N1—C5—C4102.3 (2)C20—C21—H21118.2
C26—C5—C4111.5 (2)C23—C22—C21118.5 (5)
N1—C5—H5109.3C23—C22—H22120.8
C26—C5—H5109.3C21—C22—H22120.8
C4—C5—H5109.3C22—C23—C24122.4 (5)
O9—C6—N1119.9 (3)C22—C23—H23118.8
O9—C6—C7123.9 (3)C24—C23—H23118.8
N1—C6—C7116.2 (3)C23—C24—C25117.3 (5)
C6—C7—C8113.8 (3)C23—C24—H24121.4
C6—C7—H7A108.8C25—C24—H24121.4
C8—C7—H7A108.8C20—C25—C24121.2 (5)
C6—C7—H7B108.8C20—C25—H25119.4
C8—C7—H7B108.8C24—C25—H25119.4
H7A—C7—H7B107.7C27—C26—C31118.7 (3)
C7—C8—H8A109.5C27—C26—C5117.8 (3)
C7—C8—H8B109.5C31—C26—C5123.3 (3)
H8A—C8—H8B109.5C26—C27—C28122.1 (3)
C7—C8—H8C109.5C26—C27—H27118.9
H8A—C8—H8C109.5C28—C27—H27118.9
H8B—C8—H8C109.5C29—C28—C27119.4 (3)
C11—C10—C15116.1 (3)C29—C28—C32120.0 (3)
C11—C10—C3121.4 (3)C27—C28—C32120.6 (4)
C15—C10—C3122.5 (3)C28—C29—C30119.2 (3)
O16—C11—C12116.5 (3)C28—C29—H29120.4
O16—C11—C10121.8 (3)C30—C29—H29120.4
C12—C11—C10121.7 (3)C31—C30—C29120.9 (3)
C11—C12—C13121.2 (3)C31—C30—C36120.1 (3)
C11—C12—H12119.4C29—C30—C36119.0 (3)
C13—C12—H12119.4C30—C31—C26119.7 (3)
C12—C13—C14118.5 (3)C30—C31—H31120.2
C12—C13—C17121.2 (4)C26—C31—H31120.2
C14—C13—C17120.3 (3)F33—C32—F34109.3 (5)
C15—C14—C13120.6 (3)F33—C32—F35100.3 (5)
C15—C14—H14119.7F34—C32—F35101.9 (5)
C13—C14—H14119.7F33—C32—C28115.8 (4)
O18—C15—C14123.2 (3)F34—C32—C28113.7 (5)
O18—C15—C10114.9 (3)F35—C32—C28114.2 (4)
C14—C15—C10121.9 (3)F38—C36—F39107.1 (4)
C11—O16—H16109.5F38—C36—F37104.6 (4)
C13—C17—H17A109.5F39—C36—F37104.0 (3)
C13—C17—H17B109.5F38—C36—C30114.8 (3)
H17A—C17—H17B109.5F39—C36—C30113.8 (4)
C13—C17—H17C109.5F37—C36—C30111.6 (4)
N1—C6—C7—C8179.7 (3)C15—O18—C19—C20173.2 (3)
C14—C15—O18—C192.2 (5)O18—C19—C20—C21120.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···N20.821.842.568 (3)147
C31—H31···O9i0.932.673.490 (4)148
C21—H21···F37ii0.932.723.488 (6)140
C29—H29···F33iii0.932.643.490 (5)152
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC28H24F6N2O3
Mr550.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)4.8822 (2), 23.4752 (9), 22.4311 (9)
β (°) 91.494 (2)
V3)2569.97 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.54 × 0.34 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.951, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
19610, 4514, 2491
Rint0.075
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.246, 1.00
No. of reflections4514
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.41

Computer programs: APEX2 (Bruker, 2008 ), SAINT (Bruker, 2008 ), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···N20.821.8402.568 (3)147
C31—H31···O9i0.932.6703.490 (4)148
C21—H21···F37ii0.932.7243.488 (6)140
C29—H29···F33iii0.932.6393.490 (5)152
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z+2.
 

Acknowledgements

We are thankful to the DST (New Delhi) FIST facility for providing the single-crystal diffractometer at the Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat. SG is also thankful to UGC, New Delhi, for the financial support (RFSMS) to carry out this research.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPatel, U. H., Gandhi, S. A., Barot, V. M. & Patel, M. C. (2012). Acta Cryst. E68, o2926–o2927.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatel, U. H., Patel, P. D. & Thakker, N. (2007). Acta Cryst. C63, o337–o339.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–109.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds