organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ortho­rhom­bic polymorph of (2E)-2-(2,3-di­hydro-1H-inden-1-yl­­idene)-2,3-di­hydro-1H-inden-1-one

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 3 August 2012; accepted 15 August 2012; online 23 August 2012)

The title compound, C18H14O, is polymorphic at 123 K. The ortho­rhom­bic form reported herein has two independent mol­ecules in the asymmetric unit, with mol­ecular volume 313.5 Å3. The previously reported triclinic (P-1) form [Raston & Scott (2000[Raston, C. L. & Scott, J. L. (2000). Green Chem. 2, 49-52.]). Green Chem., 2, 49–52] has mol­ecular volume 309.6 Å3 at the same temperature. All three mol­ecules deviate significantly and systematically from the putative Cs symmetry (δr.m.s. = 0.0265, 0.0256, 0.0497 Å). Comparison of the two molecules in the orthorhombic polymorph shows that 16 of the 19 equivalent pairs of framework atoms have a mirror-image pattern of deviations (above/below plane), suggesting that the two are quasi-enanti­omorphs. The pattern of deviations in the triclinic form is nearly the same (13 of 19 atom pairs) as the ortho­rhom­bic form.

Related literature

For the title compound co-crystallized with 2,4-di-tert-butyl­phenol, see: Turner et al. (2003[Turner, L. E., Thorn, M. G., Swartz, R. D., Chesnut, R. W., Fanwick, P. E. & Rothwell, I. P. (2003). Dalton Trans. pp. 4580-4589.]; CSD refcode IQAZAB). For the Cambridge Structural Database (CSD), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the determination of an absolute structure from Bijvoet pairs, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). For the synthesis of the title compound, see: Bell & Spanswick (1966[Bell, F. & Spanswick, J. (1966). J. Chem. Soc. C, pp. 1887-1888.]). For cis-trans isomerism in the title compound, see: Williams (1967[Williams, P. (1967). Chem. Commun. 14, 719-20.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14O

  • Mr = 246.29

  • Orthorhombic, P 21 21 21

  • a = 5.291 (2) Å

  • b = 17.809 (5) Å

  • c = 26.622 (9) Å

  • V = 2508.5 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 123 K

  • 0.35 × 0.12 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.973, Tmax = 0.996

  • 11743 measured reflections

  • 4236 independent reflections

  • 3145 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.110

  • S = 1.05

  • 4236 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1665 Bijvoet pairs

  • Flack parameter: 0 (2)

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: IDEAL (Gould et al., 1988[Gould, R. O., Moulden, N. & Taylor, P. (1988). IDEAL. Department of Chemistry, University of Edinburgh, Scotland.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Four pairs (Ia, Ib) of independent molecules of the title compound occupy an orthorhombic unit cell at 123 K. Thirteen non-H framework atoms of Ia, and sixteen atoms of Ib, deviate significantly from their mean planes: δmax = 0.053 (3) and δr.m.s. = 0.027 Å, δmax = 0.052 (3) and δr.m.s. = 0.026 Å respectively. A least-squares fit of chemically equivalent pairs of non-H atomic positions (IDEAL, Gould et al., 1988) shows an average mis-match δr.m.s. = 0.051 Å, and also reveals a mirror-image pattern of deviations (above/below plane) for sixteen of the nineteen pairs. This suggests that Ia and Ib are quasi-enantiomorphs. Indeed, a least-squares fit of the relative atomic coordinates of Ia to those of Ib inverted through the origin give an average mis-match δr.m.s. = 0.022 Å.

The triclinic form of I at 123 K has been reported (Raston & Scott, 2000; CCDC refcode LOLYUG; Allen, 2002). It is also significantly non-planar with δ/σ > 3 for sixteen framework atoms. The relative atomic positions match closely those of Ia (δr.m.s. = 0.051 Å) and Ib (δr.m.s. = 0.050 Å), and the pattern of deviations for thirteen non-H atoms is identical to equivalent atoms in Ia.

Related literature top

For the title compound co-crystallized with 2,4-di-tert-butylphenol, see: (Turner et al., 2003; CSD refcode IQAZAB). For the Cambridge Structural Database (CSD), see: Allen (2002). For the determination of an absolute structure from Bijvoet pairs, see: Hooft et al. (2008). For the synthesis of the title compound, see: Bell & Spanswick (1966). For cis-trans isomerism in the title compound, see: Williams (1967).

Experimental top

The synthesis is detailed by Bell & Spanswick (1966): benzyl cyanide (1.8 g.) was added to a solution of sodium (0.35 g) in ethanol (20 ml). Indan-1-one (2 g) was then added, and the mixture warmed on a steam-bath for 20 min. The product was cooled, diluted, and acidified with acetic acid. The sticky precipitate was crystallized from ethanol to yield yellow needles, m.p. 141–143°C.

Refinement top

The absolute configuration could not be determined by analysis of 1665 Bijvoet pairs (Flack (1983) x = 0(2), Hooft et al. (2008) y = 0.4 (12). All H atoms were placed in calculated positions, with C—H distances of 0.95–0.99 Å, Uiso = 1.2 of the attached carbon atom, and thereafter treated as riding.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: IDEAL (Gould et al., 1988) and WinGX (Farrugia, 1999).

Figures top
View of (I) (50% probability displacement ellipsoids)
(2E)-2-(2,3-dihydro-1H-inden-1-ylidene)-2,3-dihydro-1H- inden-1-one top
Crystal data top
C18H14ODx = 1.304 Mg m3
Mr = 246.29Melting point = 414–416 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2407 reflections
a = 5.291 (2) Åθ = 2.5–25°
b = 17.809 (5) ŵ = 0.08 mm1
c = 26.622 (9) ÅT = 123 K
V = 2508.5 (15) Å3Needle, yellow
Z = 80.35 × 0.12 × 0.05 mm
F(000) = 1040
Data collection top
Nonius KappaCCD
diffractometer
4236 independent reflections
Radiation source: sealed tube3145 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.074
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω and ϕ scansh = 66
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor 1997)
k = 2021
Tmin = 0.973, Tmax = 0.996l = 3131
11743 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0283P)2 + 1.1913P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.21 e Å3
4236 reflectionsΔρmin = 0.18 e Å3
344 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0049 (8)
0 constraintsAbsolute structure: Flack (1983), with 1665 Bijvoet pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (2)
Secondary atom site location: difference Fourier map
Crystal data top
C18H14OV = 2508.5 (15) Å3
Mr = 246.29Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 5.291 (2) ŵ = 0.08 mm1
b = 17.809 (5) ÅT = 123 K
c = 26.622 (9) Å0.35 × 0.12 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
4236 independent reflections
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor 1997)
3145 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.996Rint = 0.074
11743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.21 e Å3
S = 1.05Δρmin = 0.18 e Å3
4236 reflectionsAbsolute structure: Flack (1983), with 1665 Bijvoet pairs
344 parametersAbsolute structure parameter: 0 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3862 (6)0.10668 (16)0.32450 (12)0.0256 (7)
C20.5813 (5)0.05703 (16)0.30273 (11)0.0244 (7)
C30.7531 (6)0.01103 (17)0.32733 (12)0.0300 (8)
H30.75260.00720.36290.036*
C40.9248 (6)0.02910 (17)0.29896 (12)0.0309 (8)
H41.04560.06030.31510.037*
C50.9216 (6)0.02405 (17)0.24675 (13)0.0310 (8)
H51.03910.05260.22770.037*
C60.7499 (6)0.02196 (16)0.22196 (12)0.0269 (7)
H60.74880.02520.18630.032*
C70.5794 (6)0.06329 (16)0.25077 (11)0.0239 (8)
C80.3800 (5)0.11835 (16)0.23340 (11)0.0238 (7)
H8A0.25420.09340.21150.029*
H8B0.45740.16070.21480.029*
C90.2586 (5)0.14540 (16)0.28197 (11)0.0221 (7)
C100.0721 (5)0.19601 (16)0.28771 (11)0.0230 (7)
C110.0697 (5)0.23669 (15)0.24841 (11)0.0225 (7)
C120.0489 (6)0.23430 (16)0.19628 (11)0.0257 (7)
H120.07580.20380.18070.031*
C130.2134 (6)0.27720 (17)0.16749 (12)0.0296 (8)
H130.19980.27630.13190.036*
C140.3968 (6)0.32121 (17)0.18995 (13)0.0345 (9)
H140.50960.34940.16960.041*
C150.4178 (6)0.32469 (17)0.24150 (14)0.0331 (8)
H150.54280.35550.25670.04*
C160.2536 (6)0.28247 (16)0.27084 (11)0.0271 (8)
C170.2433 (6)0.27776 (17)0.32697 (12)0.0313 (8)
H17A0.40760.26090.34070.038*
H17B0.20050.32720.34170.038*
C180.0346 (6)0.21981 (18)0.33823 (11)0.0299 (8)
H18A0.09940.24250.35930.036*
H18B0.10570.1760.35620.036*
O10.3417 (4)0.11400 (12)0.36966 (8)0.0380 (6)
C190.0040 (5)0.05063 (16)0.07403 (12)0.0248 (7)
C200.1891 (5)0.09719 (15)0.04914 (11)0.0236 (7)
C210.3649 (6)0.14487 (17)0.07113 (12)0.0293 (8)
H210.36910.15170.10650.035*
C220.5337 (6)0.18215 (16)0.04030 (13)0.0343 (8)
H220.65480.21530.05450.041*
C230.5264 (6)0.17121 (17)0.01129 (13)0.0328 (8)
H230.64330.19730.0320.039*
C240.3526 (6)0.12311 (16)0.03339 (12)0.0301 (8)
H240.34980.11590.06870.036*
C250.1821 (6)0.08560 (16)0.00228 (11)0.0237 (8)
C260.0229 (5)0.03001 (16)0.01635 (11)0.0249 (7)
H26A0.15040.05350.03860.03*
H26B0.04940.01440.03350.03*
C270.1375 (5)0.00859 (15)0.03373 (11)0.0227 (7)
C280.3261 (5)0.04062 (16)0.04303 (11)0.0224 (7)
C290.4744 (6)0.08474 (16)0.00679 (11)0.0223 (7)
C300.4644 (6)0.08748 (16)0.04551 (11)0.0266 (7)
H300.34340.05850.06340.032*
C310.6341 (6)0.13329 (17)0.07129 (12)0.0307 (8)
H310.62960.13520.10690.037*
C320.8107 (6)0.17629 (16)0.04507 (13)0.0323 (8)
H320.92550.20720.06310.039*
C330.8205 (6)0.17441 (17)0.00674 (13)0.0309 (9)
H330.94060.2040.02440.037*
C340.6521 (6)0.12866 (16)0.03270 (11)0.0265 (8)
C350.6346 (6)0.11740 (17)0.08845 (11)0.0335 (8)
H35A0.58960.16490.10560.04*
H35B0.7970.09890.10220.04*
C360.4246 (6)0.05840 (17)0.09514 (11)0.0284 (8)
H36A0.49310.01260.11120.034*
H36B0.28730.07850.11650.034*
O20.0410 (4)0.04698 (12)0.11985 (8)0.0332 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0271 (18)0.0229 (17)0.027 (2)0.0017 (15)0.0014 (14)0.0003 (14)
C20.0230 (17)0.0179 (16)0.032 (2)0.0054 (15)0.0018 (14)0.0011 (14)
C30.0305 (18)0.0240 (18)0.035 (2)0.0015 (16)0.0022 (16)0.0078 (15)
C40.0235 (17)0.0214 (17)0.048 (2)0.0034 (16)0.0030 (16)0.0088 (15)
C50.0241 (18)0.0195 (17)0.049 (2)0.0000 (16)0.0031 (16)0.0010 (15)
C60.0246 (16)0.0242 (17)0.0318 (19)0.0042 (15)0.0016 (15)0.0020 (15)
C70.0224 (17)0.0158 (16)0.033 (2)0.0026 (15)0.0001 (15)0.0020 (14)
C80.0238 (16)0.0206 (16)0.0269 (17)0.0014 (14)0.0028 (13)0.0004 (13)
C90.0232 (16)0.0210 (17)0.0221 (18)0.0033 (15)0.0001 (14)0.0006 (13)
C100.0237 (16)0.0164 (16)0.0290 (19)0.0032 (14)0.0016 (14)0.0019 (13)
C110.0188 (17)0.0147 (15)0.034 (2)0.0014 (14)0.0013 (14)0.0006 (14)
C120.0248 (17)0.0223 (16)0.030 (2)0.0030 (15)0.0027 (14)0.0000 (14)
C130.0284 (19)0.0222 (17)0.038 (2)0.0068 (16)0.0041 (15)0.0059 (15)
C140.030 (2)0.0236 (18)0.050 (2)0.0043 (17)0.0148 (17)0.0068 (16)
C150.0239 (18)0.0188 (17)0.057 (3)0.0040 (15)0.0060 (17)0.0035 (16)
C160.0216 (16)0.0212 (17)0.039 (2)0.0073 (15)0.0018 (15)0.0019 (15)
C170.0240 (18)0.0239 (18)0.046 (2)0.0019 (15)0.0042 (16)0.0073 (15)
C180.0306 (18)0.0306 (18)0.0286 (19)0.0003 (16)0.0035 (14)0.0065 (14)
O10.0468 (15)0.0413 (14)0.0259 (14)0.0089 (12)0.0002 (11)0.0016 (11)
C190.0214 (17)0.0203 (17)0.033 (2)0.0077 (14)0.0001 (15)0.0031 (14)
C200.0206 (17)0.0151 (16)0.035 (2)0.0042 (14)0.0008 (14)0.0011 (14)
C210.0242 (17)0.0272 (18)0.037 (2)0.0025 (16)0.0068 (15)0.0077 (15)
C220.0290 (19)0.0192 (17)0.055 (2)0.0037 (15)0.0060 (17)0.0014 (16)
C230.0254 (19)0.0219 (18)0.051 (2)0.0032 (16)0.0032 (17)0.0083 (16)
C240.033 (2)0.0221 (17)0.035 (2)0.0000 (17)0.0015 (15)0.0077 (15)
C250.0198 (18)0.0173 (16)0.034 (2)0.0037 (14)0.0020 (13)0.0000 (14)
C260.0261 (17)0.0217 (16)0.0268 (18)0.0027 (15)0.0031 (14)0.0007 (14)
C270.0230 (17)0.0183 (16)0.0267 (19)0.0041 (15)0.0018 (13)0.0023 (13)
C280.0182 (16)0.0205 (16)0.0286 (18)0.0074 (15)0.0004 (13)0.0011 (14)
C290.0178 (17)0.0165 (16)0.033 (2)0.0044 (14)0.0011 (14)0.0009 (14)
C300.0228 (17)0.0242 (17)0.033 (2)0.0012 (15)0.0012 (14)0.0008 (14)
C310.0285 (18)0.0272 (18)0.036 (2)0.0068 (16)0.0029 (15)0.0061 (15)
C320.0263 (19)0.0189 (17)0.052 (2)0.0001 (15)0.0062 (16)0.0080 (15)
C330.029 (2)0.0200 (18)0.044 (2)0.0003 (16)0.0005 (16)0.0002 (15)
C340.0280 (18)0.0170 (16)0.035 (2)0.0039 (16)0.0004 (14)0.0005 (14)
C350.0361 (19)0.0253 (18)0.039 (2)0.0027 (17)0.0050 (16)0.0001 (15)
C360.0246 (18)0.0306 (19)0.0300 (19)0.0039 (15)0.0002 (15)0.0012 (14)
O20.0327 (13)0.0400 (14)0.0268 (14)0.0005 (11)0.0007 (10)0.0030 (10)
Geometric parameters (Å, º) top
C1—O11.232 (3)C19—O21.237 (3)
C1—C21.478 (4)C19—C201.473 (4)
C1—C91.488 (4)C19—C271.487 (4)
C2—C31.388 (4)C20—C251.385 (4)
C2—C71.388 (4)C20—C211.389 (4)
C3—C41.381 (4)C21—C221.383 (4)
C3—H30.95C21—H210.95
C4—C51.393 (4)C22—C231.388 (4)
C4—H40.95C22—H220.95
C5—C61.390 (4)C23—C241.388 (4)
C5—H50.95C23—H230.95
C6—C71.394 (4)C24—C251.395 (4)
C6—H60.95C24—H240.95
C7—C81.513 (4)C25—C261.516 (4)
C8—C91.522 (4)C26—C271.514 (4)
C8—H8A0.99C26—H26A0.99
C8—H8B0.99C26—H26B0.99
C9—C101.345 (4)C27—C281.351 (4)
C10—C111.477 (4)C28—C291.471 (4)
C10—C181.519 (4)C28—C361.515 (4)
C11—C121.393 (4)C29—C301.394 (4)
C11—C161.403 (4)C29—C341.404 (4)
C12—C131.389 (4)C30—C311.394 (4)
C12—H120.95C30—H300.95
C13—C141.383 (4)C31—C321.395 (4)
C13—H130.95C31—H310.95
C14—C151.378 (5)C32—C331.381 (4)
C14—H140.95C32—H320.95
C15—C161.389 (4)C33—C341.391 (4)
C15—H150.95C33—H330.95
C16—C171.498 (4)C34—C351.501 (4)
C17—C181.541 (4)C35—C361.540 (4)
C17—H17A0.99C35—H35A0.99
C17—H17B0.99C35—H35B0.99
C18—H18A0.99C36—H36A0.99
C18—H18B0.99C36—H36B0.99
O1—C1—C2125.4 (3)O2—C19—C20125.7 (3)
O1—C1—C9127.4 (3)O2—C19—C27127.6 (3)
C2—C1—C9107.2 (2)C20—C19—C27106.8 (3)
C3—C2—C7121.5 (3)C25—C20—C21121.7 (3)
C3—C2—C1128.7 (3)C25—C20—C19110.0 (3)
C7—C2—C1109.7 (3)C21—C20—C19128.2 (3)
C4—C3—C2118.6 (3)C22—C21—C20118.4 (3)
C4—C3—H3120.7C22—C21—H21120.8
C2—C3—H3120.7C20—C21—H21120.8
C3—C4—C5120.3 (3)C21—C22—C23120.2 (3)
C3—C4—H4119.9C21—C22—H22119.9
C5—C4—H4119.9C23—C22—H22119.9
C6—C5—C4121.3 (3)C22—C23—C24121.6 (3)
C6—C5—H5119.3C22—C23—H23119.2
C4—C5—H5119.3C24—C23—H23119.2
C5—C6—C7118.2 (3)C23—C24—C25118.2 (3)
C5—C6—H6120.9C23—C24—H24120.9
C7—C6—H6120.9C25—C24—H24120.9
C2—C7—C6120.1 (3)C20—C25—C24119.9 (3)
C2—C7—C8111.2 (3)C20—C25—C26111.1 (3)
C6—C7—C8128.7 (3)C24—C25—C26129.0 (3)
C7—C8—C9103.9 (2)C27—C26—C25103.5 (2)
C7—C8—H8A111C27—C26—H26A111.1
C9—C8—H8A111C25—C26—H26A111.1
C7—C8—H8B111C27—C26—H26B111.1
C9—C8—H8B111C25—C26—H26B111.1
H8A—C8—H8B109H26A—C26—H26B109
C10—C9—C1123.9 (3)C28—C27—C19123.0 (3)
C10—C9—C8128.2 (3)C28—C27—C26128.4 (3)
C1—C9—C8107.9 (2)C19—C27—C26108.6 (2)
C9—C10—C11128.4 (3)C27—C28—C29128.3 (3)
C9—C10—C18124.1 (3)C27—C28—C36123.9 (3)
C11—C10—C18107.6 (2)C29—C28—C36107.8 (2)
C12—C11—C16119.8 (3)C30—C29—C34119.8 (3)
C12—C11—C10130.6 (3)C30—C29—C28130.8 (3)
C16—C11—C10109.6 (3)C34—C29—C28109.4 (3)
C13—C12—C11118.9 (3)C31—C30—C29119.2 (3)
C13—C12—H12120.5C31—C30—H30120.4
C11—C12—H12120.5C29—C30—H30120.4
C14—C13—C12120.8 (3)C30—C31—C32120.4 (3)
C14—C13—H13119.6C30—C31—H31119.8
C12—C13—H13119.6C32—C31—H31119.8
C15—C14—C13120.8 (3)C33—C32—C31120.8 (3)
C15—C14—H14119.6C33—C32—H32119.6
C13—C14—H14119.6C31—C32—H32119.6
C14—C15—C16119.0 (3)C32—C33—C34119.1 (3)
C14—C15—H15120.5C32—C33—H33120.5
C16—C15—H15120.5C34—C33—H33120.5
C15—C16—C11120.6 (3)C33—C34—C29120.7 (3)
C15—C16—C17127.9 (3)C33—C34—C35127.5 (3)
C11—C16—C17111.5 (3)C29—C34—C35111.7 (3)
C16—C17—C18104.9 (2)C34—C35—C36104.5 (2)
C16—C17—H17A110.8C34—C35—H35A110.9
C18—C17—H17A110.8C36—C35—H35A110.9
C16—C17—H17B110.8C34—C35—H35B110.9
C18—C17—H17B110.8C36—C35—H35B110.9
H17A—C17—H17B108.8H35A—C35—H35B108.9
C10—C18—C17106.3 (2)C28—C36—C35106.6 (2)
C10—C18—H18A110.5C28—C36—H36A110.4
C17—C18—H18A110.5C35—C36—H36A110.4
C10—C18—H18B110.5C28—C36—H36B110.4
C17—C18—H18B110.5C35—C36—H36B110.4
H18A—C18—H18B108.7H36A—C36—H36B108.6
O1—C1—C2—C31.5 (5)O2—C19—C20—C25178.1 (3)
C9—C1—C2—C3178.2 (3)C27—C19—C20—C250.6 (3)
O1—C1—C2—C7179.7 (3)O2—C19—C20—C210.3 (5)
C9—C1—C2—C70.0 (3)C27—C19—C20—C21178.3 (3)
C7—C2—C3—C40.0 (5)C25—C20—C21—C221.0 (4)
C1—C2—C3—C4178.0 (3)C19—C20—C21—C22178.5 (3)
C2—C3—C4—C51.0 (5)C20—C21—C22—C230.5 (4)
C3—C4—C5—C61.0 (5)C21—C22—C23—C240.1 (5)
C4—C5—C6—C70.0 (4)C22—C23—C24—C250.2 (5)
C3—C2—C7—C61.0 (4)C21—C20—C25—C240.9 (4)
C1—C2—C7—C6179.4 (2)C19—C20—C25—C24178.8 (2)
C3—C2—C7—C8178.4 (3)C21—C20—C25—C26178.8 (3)
C1—C2—C7—C80.0 (3)C19—C20—C25—C260.8 (3)
C5—C6—C7—C21.0 (4)C23—C24—C25—C200.3 (4)
C5—C6—C7—C8178.3 (3)C23—C24—C25—C26179.3 (3)
C2—C7—C8—C90.0 (3)C20—C25—C26—C270.7 (3)
C6—C7—C8—C9179.3 (3)C24—C25—C26—C27178.9 (3)
O1—C1—C9—C100.7 (5)O2—C19—C27—C280.6 (5)
C2—C1—C9—C10179.0 (3)C20—C19—C27—C28179.2 (3)
O1—C1—C9—C8179.7 (3)O2—C19—C27—C26178.5 (3)
C2—C1—C9—C80.0 (3)C20—C19—C27—C260.1 (3)
C7—C8—C9—C10178.9 (3)C25—C26—C27—C28178.7 (3)
C7—C8—C9—C10.0 (3)C25—C26—C27—C190.4 (3)
C1—C9—C10—C11179.0 (3)C19—C27—C28—C29179.2 (3)
C8—C9—C10—C112.3 (5)C26—C27—C28—C291.9 (5)
C1—C9—C10—C180.6 (4)C19—C27—C28—C360.4 (4)
C8—C9—C10—C18179.4 (3)C26—C27—C28—C36179.4 (3)
C9—C10—C11—C120.5 (5)C27—C28—C29—C300.8 (5)
C18—C10—C11—C12179.0 (3)C36—C28—C29—C30178.1 (3)
C9—C10—C11—C16178.1 (3)C27—C28—C29—C34179.8 (3)
C18—C10—C11—C160.4 (3)C36—C28—C29—C340.9 (3)
C16—C11—C12—C130.5 (4)C34—C29—C30—C310.8 (4)
C10—C11—C12—C13178.0 (3)C28—C29—C30—C31178.1 (3)
C11—C12—C13—C140.5 (4)C29—C30—C31—C320.5 (4)
C12—C13—C14—C151.2 (5)C30—C31—C32—C330.1 (5)
C13—C14—C15—C160.8 (5)C31—C32—C33—C340.3 (5)
C14—C15—C16—C110.3 (5)C32—C33—C34—C290.1 (4)
C14—C15—C16—C17179.9 (3)C32—C33—C34—C35178.7 (3)
C12—C11—C16—C150.9 (4)C30—C29—C34—C330.7 (4)
C10—C11—C16—C15177.9 (3)C28—C29—C34—C33178.5 (3)
C12—C11—C16—C17179.4 (3)C30—C29—C34—C35179.5 (3)
C10—C11—C16—C171.8 (3)C28—C29—C34—C350.3 (3)
C15—C16—C17—C18177.2 (3)C33—C34—C35—C36177.3 (3)
C11—C16—C17—C182.4 (3)C29—C34—C35—C361.4 (3)
C9—C10—C18—C17179.7 (3)C27—C28—C36—C35179.3 (3)
C11—C10—C18—C171.0 (3)C29—C28—C36—C351.7 (3)
C16—C17—C18—C102.0 (3)C34—C35—C36—C281.8 (3)

Experimental details

Crystal data
Chemical formulaC18H14O
Mr246.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)5.291 (2), 17.809 (5), 26.622 (9)
V3)2508.5 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.12 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
HKL SCALEPACK (Otwinowski & Minor 1997)
Tmin, Tmax0.973, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
11743, 4236, 3145
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.110, 1.05
No. of reflections4236
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18
Absolute structureFlack (1983), with 1665 Bijvoet pairs
Absolute structure parameter0 (2)

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), IDEAL (Gould et al., 1988) and WinGX (Farrugia, 1999).

 

Footnotes

CAS 17563-12-1.

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents. We thank Dr Raj Dhar for providing the sample.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBell, F. & Spanswick, J. (1966). J. Chem. Soc. C, pp. 1887–1888.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGould, R. O., Moulden, N. & Taylor, P. (1988). IDEAL. Department of Chemistry, University of Edinburgh, Scotland.  Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRaston, C. L. & Scott, J. L. (2000). Green Chem. 2, 49–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, L. E., Thorn, M. G., Swartz, R. D., Chesnut, R. W., Fanwick, P. E. & Rothwell, I. P. (2003). Dalton Trans. pp. 4580–4589.  Web of Science CSD CrossRef Google Scholar
First citationWilliams, P. (1967). Chem. Commun. 14, 719–20.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds