metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m141-m142

Bis{μ-2-[(di­methyl­amino)­meth­yl]benzene­tellurolato}bis­­[chlorido­palladium(II)] di­chloro­methane hemisolvate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and bDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 22 December 2011; accepted 3 January 2012; online 11 January 2012)

The asymmetric unit of the title compound, [Pd2(C9H12NTe)2Cl2]·0.5CH2Cl2, contains two half-mol­ecules, each lying on a twofold rotation axis; each mol­ecule is chiral and of the same enanti­omer. This is only possible as the mol­ecule has a hinged cis arrangement about the Pd2+ coordination spheres. For this hinged dimeric structure, the angles between the two coordination planes in each mol­ecule are 21.59 (4) and 22.10 (4)°. This hinged cis arrangement also allows the two mol­ecules to form pairs linked by secondary inter­actions between the Pd and Te atoms of an adjoining mol­ecule, leading to a tetra­meric overall structure. C—H⋯Cl inter­actions consolidate the crystal packing.

Related literature

For related structures of bridged dimers of palladium mediated by Se, see: Brown & Corrigan (2004[Brown, M. J. & Corrigan, J. F. (2004). J. Organomet. Chem. 689, 2872-2879.]); Chakraborty et al. (2011[Chakraborty, T., Srivastava, K., Singh, H. B. & Butcher, R. J. (2011). J. Organomet. Chem. 696, 2782-2788.]); Dey et al. (2006[Dey, S., Jain, V. K., Varghese, B., Schurr, T., Niemeyer, M., Kaim, W. & Butcher, R. J. (2006). Inorg. Chim. Acta, 359, 1449-1457.]); Ford et al. (2004[Ford, S., Morley, C. P. & Di Viara, M. (2004). Inorg. Chem. 43, 7101-7110.]); Kaur et al. (2009[Kaur, R., Menon, S. C., Panda, S., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, 28, 2363-2371.]); Morley et al. (2006[Morley, C. P., Webster, C. A. & Di Vaira, M. (2006). J. Organomet. Chem. 691, 4244-4249.]); Nakata et al. (2009[Nakata, N., Uchiumi, R., Yoshino, T., Ikeda, T., Kamon, H. & Ishii, A. (2009). Organometallics, 28, 1981-1984.]); Oilunkaniemi et al. (1999[Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (1999). J. Organomet. Chem. 587, 200-206.], 2001[Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2001). J. Organomet. Chem. 623, 168-175.]). For Se/Te-bridged Pd dimeric structures which exhibit either a hinged or cis arrangement of ligands about the bridging plane, see: Kaur et al. (2009[Kaur, R., Menon, S. C., Panda, S., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, 28, 2363-2371.]); Oilunkaniemi et al. (2000[Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2000). J. Organomet. Chem. 595, 232-240.]); Chakravorty et al. (2012[Chakravorty, T., Singh, H. B. & Butcher, R. J. (2012). Acta Cryst. E68, m113-m114.]). For the synthesis of the title compound, see: Chakraborty et al. (2011)[Chakraborty, T., Srivastava, K., Singh, H. B. & Butcher, R. J. (2011). J. Organomet. Chem. 696, 2782-2788.].

[Scheme 1]

Experimental

Crystal data
  • [Pd2(C9H12NTe)2Cl2]·0.5CH2Cl2

  • Mr = 1699.51

  • Orthorhombic, P 21 21 2

  • a = 14.035 (2) Å

  • b = 14.842 (2) Å

  • c = 12.3188 (16) Å

  • V = 2566.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.95 mm−1

  • T = 100 K

  • 0.32 × 0.26 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.615, Tmax = 0.746

  • 36521 measured reflections

  • 5506 independent reflections

  • 5148 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.06

  • 5506 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 2.12 e Å−3

  • Δρmin = −0.90 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2355 Friedel pairs

  • Flack parameter: 0.06 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1S—H1SA⋯Cl1B 0.96 2.87 3.827 (9) 173
C5A—H5AA⋯Cl1Ai 0.95 2.91 3.778 (9) 152
C7A—H7AA⋯Cl1Ai 0.99 2.73 3.681 (9) 162
C9A—H9AC⋯Cl1A 0.98 2.70 3.313 (10) 121
C7B—H7BA⋯Cl1Bii 0.99 2.77 3.746 (10) 169
C7B—H7BB⋯Cl1Sii 0.99 2.75 3.514 (10) 135
C9B—H9BB⋯Cl1B 0.98 2.67 3.300 (11) 123
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of transition metal complexes with both organoselenato and organotellurato ligands is a rapidly growing area due to the ability of the resulting complexes to find applications in materials science (Morley et al., 2006; Ford et al., 2004), and investigations of oxidation additive to low valent transition metal centers. In addition to this, organotellurium compounds have been used in catalytic carbon-carbon formation. Bridged dimers of palladium mediated by Se (Nakata et al., 2009; Chakraborty et al., 2011; Oilunkaniemi et al., 1999; Oilunkaniemi et al., 2001; Brown & Corrigan, 2004; Dey et al., 2006,) or Te (Oilunkaniemi et al., 2000; Kaur et al., 2009; Dey et al., 2006; Chakravorty et al., 2012) have been previously reported. Such dimers involving two square planar coordination spheres can adopt either a coplanar or hinged arrangement. The arrangement of the donor ligands with respect to the bridging plane can be cis or trans. In the case of a hinged cis arrangement the possibility of chirality exists. While the majority of previously determined Se/Te bridged Pd dimeric structures are both coplanar and trans, there have been a small number which exhibit either a hinged or cis arrangement of ligands about the bridging plane (Kaur et al., 2009; Oilunkaniemi et al., 2000, Chakravorty et al., 2012). Of these, only that by Chakravorty et al., 2012, which is the Se analog of the title complex, has resulted in a chiral complex.

The title compound, bis[µ-2-tellurolatobenzyldimethylaminochloropalladium(II)], hemi(dichloromethane) solvate, C18H24Cl2N2Pd2Te2 0.5(CHCl2), crystallizes in the chiral orthorhombic space group, P21212. The asymmetric unit contains 2 half molecules, each lying on a 2-fold axis and each molecule is chiral and of the same enantiomer. This is only possible as the molecule has a hinged cis arrangement about the Pd coordination spheres. For this hinged dimeric structure the angles between the two coordination planes in each molecule are 21.59 (4) and 22.10 (4)° respectively. This hinged cis arrangement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Te of an adjoining molecule leading to a tetrameric overall structure. This hinged cis arrangement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Te of an adjoining molecule (Fig. 2) leading to a tetrameric overall structure. Apart from this the Pd—Te, Pd—Cl and Pd—N bond lengths are in the normal ranges.

A previous polymorph of the title compound has been previously published (Kaur et al., 2009). While this crystallized in the non-centrosymmetric space group, P-421c, it did not result in an enantiomerically pure compound as the symmetry of the space group generated the other enantiomer. Thus this is the first example of a chiral dimeric tellurium bridged palladium compound to be structurally characterized. In both instances, however, the asymmetric unit is chiral. We believe that it is the desire of the dimers to associate which then requries the molecule to adopt the cis hinged structure which has lead to this inherent chirality.

Related literature top

For related structures of bridged dimers of palladium mediated by Se, see: Brown & Corrigan (2004); Chakraborty et al. (2011); Dey et al. (2006); Ford et al. (2004); Kaur et al. (2009); Morley et al. (2006); Nakata et al. (2009); Oilunkaniemi et al. (1999, 2001). For Se/Te-bridged Pd dimeric structures which exhibit either a hinged or cis arrangement of ligands about the bridging plane, see: Kaur et al. (2009); Oilunkaniemi et al. (2000); Chakravorty et al. (2012). For the synthesis of the title compound, see: Chakraborty et al. (2011).

Experimental top

The ligand and complex were prepared using previously reported methods (Chakraborty et al., 2011). The reaction time for the synthesis of the tellurolate complex was 2 h and it was crystallized from chloroform/hexane as reported earlier. However, when the reaction was run for 30 min following the reported procedure and crystallized from dichloromethane/hexane (2:1) at ambient temperature the complex crystallized in a different space group which is chiral.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 - 0.97 Å [Uiso(H) = 1.2Ueq(CH, CH2) [Uiso(H) = 1.5Ueq(CH3)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of one of the two molecules of the asymmetric unit showing the hinged cis arrangement of the two Pd coordination planes. The two halves of the molecule are related by 1 - x, 1 - y, z.
[Figure 2] Fig. 2. Shows the association of two dimeric units into a tetramer via matching and complementary secondary interactions between the Pd and Te of adjoining units. These interactions are shown by dashed lines.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed along the b axis. Te—Pd and C—H···Cl secondary interactions shown by dashed lines.
Bis{µ-2-[(dimethylamino)methyl]benzenetellurolato}bis[chloridopalladium(II)] dichloromethane hemisolvate top
Crystal data top
[Pd2(C9H12NTe)2Cl2]·0.5CH2Cl2F(000) = 1588
Mr = 1699.51Dx = 2.200 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 9437 reflections
a = 14.035 (2) Åθ = 2.7–26.9°
b = 14.842 (2) ŵ = 3.95 mm1
c = 12.3188 (16) ÅT = 100 K
V = 2566.0 (6) Å3Prism, yellow-orange
Z = 20.32 × 0.26 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5506 independent reflections
Radiation source: fine-focus sealed tube5148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.615, Tmax = 0.746k = 1818
36521 measured reflectionsl = 1511
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0501P)2 + 22.7234P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5506 reflectionsΔρmax = 2.12 e Å3
254 parametersΔρmin = 0.90 e Å3
0 restraintsAbsolute structure: Flack (1983), 2355 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (4)
Crystal data top
[Pd2(C9H12NTe)2Cl2]·0.5CH2Cl2V = 2566.0 (6) Å3
Mr = 1699.51Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 14.035 (2) ŵ = 3.95 mm1
b = 14.842 (2) ÅT = 100 K
c = 12.3188 (16) Å0.32 × 0.26 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5506 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5148 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.746Rint = 0.050
36521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0501P)2 + 22.7234P]
where P = (Fo2 + 2Fc2)/3
S = 1.06Δρmax = 2.12 e Å3
5506 reflectionsΔρmin = 0.90 e Å3
254 parametersAbsolute structure: Flack (1983), 2355 Friedel pairs
0 restraintsAbsolute structure parameter: 0.06 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd1A0.54346 (4)0.37839 (4)0.59921 (5)0.01520 (13)
Te1A0.61163 (3)0.53491 (4)0.62387 (4)0.01511 (12)
Cl1A0.45795 (17)0.24470 (15)0.5665 (2)0.0284 (5)
N1A0.6857 (5)0.3197 (5)0.5763 (6)0.0184 (15)
C1A0.6689 (6)0.5129 (6)0.4639 (6)0.0177 (18)
C2A0.6399 (6)0.5658 (6)0.3784 (7)0.0206 (17)
H2AA0.59370.61200.38760.025*
C3A0.6813 (7)0.5486 (6)0.2777 (7)0.025 (2)
H3AA0.66110.58220.21630.030*
C4A0.7500 (7)0.4848 (6)0.2654 (8)0.028 (2)
H4AA0.77860.47560.19640.034*
C5A0.7784 (6)0.4330 (6)0.3537 (7)0.0226 (18)
H5AA0.82670.38860.34560.027*
C6A0.7354 (6)0.4470 (6)0.4537 (6)0.0169 (17)
C7A0.7615 (6)0.3882 (7)0.5500 (7)0.0237 (19)
H7AA0.82190.35650.53410.028*
H7AB0.77210.42700.61420.028*
C8A0.7109 (7)0.2750 (7)0.6799 (8)0.032 (2)
H8AA0.77690.25360.67640.047*
H8AB0.66810.22380.69210.047*
H8AC0.70440.31810.73970.047*
C9A0.6846 (7)0.2495 (7)0.4917 (8)0.027 (2)
H9AA0.74830.22300.48500.040*
H9AB0.66600.27630.42220.040*
H9AC0.63890.20240.51160.040*
Pd1B0.37084 (4)0.45871 (4)0.90101 (5)0.01594 (14)
Te1B0.53688 (4)0.39525 (3)0.87669 (4)0.01555 (12)
Cl1B0.22964 (17)0.54079 (18)0.9375 (2)0.0370 (6)
N1B0.3072 (5)0.3220 (5)0.9235 (6)0.0207 (15)
C1B0.5141 (6)0.3441 (6)1.0358 (6)0.0175 (17)
C2B0.5672 (6)0.3731 (6)1.1223 (7)0.0244 (19)
H2BA0.61440.41821.11270.029*
C3B0.5510 (7)0.3351 (7)1.2270 (7)0.026 (2)
H3BA0.58450.35681.28870.032*
C4B0.4853 (6)0.2656 (6)1.2371 (7)0.025 (2)
H4BA0.47750.23661.30520.030*
C5B0.4308 (7)0.2378 (7)1.1491 (8)0.030 (2)
H5BA0.38500.19131.15830.035*
C6B0.4430 (6)0.2783 (6)1.0454 (7)0.0217 (18)
C7B0.3803 (7)0.2521 (6)0.9532 (7)0.025 (2)
H7BA0.34710.19540.97210.030*
H7BB0.42060.24000.88890.030*
C8B0.2650 (8)0.2964 (7)0.8194 (7)0.029 (2)
H8BA0.23820.23560.82500.043*
H8BB0.31420.29750.76300.043*
H8BC0.21430.33910.80070.043*
C9B0.2331 (7)0.3257 (7)1.0054 (7)0.025 (2)
H9BA0.20280.26651.01190.038*
H9BB0.18530.37050.98440.038*
H9BC0.26120.34271.07530.038*
Cl1S0.0241 (2)0.5950 (2)1.1834 (4)0.0643 (10)
C1S0.00000.50001.0976 (13)0.044 (4)
H1SA0.05420.51111.05210.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd1A0.0164 (3)0.0155 (3)0.0137 (3)0.0010 (2)0.0010 (2)0.0024 (2)
Te1A0.0151 (2)0.0183 (2)0.0119 (2)0.00024 (19)0.00035 (18)0.0012 (2)
Cl1A0.0258 (10)0.0191 (10)0.0401 (12)0.0044 (9)0.0013 (10)0.0009 (9)
N1A0.019 (3)0.023 (4)0.013 (3)0.007 (3)0.000 (3)0.001 (3)
C1A0.018 (4)0.026 (5)0.009 (3)0.007 (3)0.001 (3)0.001 (3)
C2A0.023 (4)0.017 (4)0.021 (4)0.004 (3)0.007 (4)0.005 (3)
C3A0.041 (5)0.014 (4)0.020 (4)0.008 (4)0.000 (4)0.007 (3)
C4A0.033 (5)0.031 (5)0.021 (4)0.006 (4)0.010 (4)0.001 (4)
C5A0.026 (4)0.023 (4)0.019 (4)0.005 (4)0.002 (4)0.004 (3)
C6A0.017 (4)0.022 (5)0.012 (4)0.001 (3)0.000 (3)0.003 (3)
C7A0.020 (4)0.031 (5)0.020 (4)0.011 (4)0.002 (3)0.001 (4)
C8A0.033 (5)0.035 (6)0.027 (5)0.016 (4)0.007 (4)0.014 (4)
C9A0.032 (5)0.020 (4)0.028 (5)0.008 (4)0.007 (4)0.009 (4)
Pd1B0.0185 (3)0.0145 (3)0.0147 (3)0.0018 (2)0.0007 (2)0.0024 (2)
Te1B0.0207 (2)0.0142 (2)0.0117 (2)0.0004 (2)0.0012 (2)0.00052 (19)
Cl1B0.0274 (11)0.0253 (12)0.0584 (16)0.0041 (10)0.0144 (11)0.0036 (12)
N1B0.029 (4)0.017 (4)0.016 (3)0.003 (3)0.004 (3)0.001 (3)
C1B0.016 (4)0.028 (4)0.009 (3)0.002 (3)0.003 (3)0.005 (3)
C2B0.021 (4)0.035 (5)0.017 (4)0.006 (4)0.000 (3)0.020 (4)
C3B0.022 (4)0.042 (5)0.015 (4)0.001 (4)0.001 (4)0.005 (4)
C4B0.025 (5)0.034 (5)0.015 (4)0.008 (4)0.006 (3)0.013 (4)
C5B0.030 (5)0.031 (5)0.027 (5)0.002 (4)0.005 (4)0.012 (4)
C6B0.024 (5)0.021 (4)0.020 (4)0.006 (4)0.004 (3)0.002 (3)
C7B0.036 (5)0.023 (5)0.018 (4)0.004 (4)0.011 (4)0.003 (4)
C8B0.042 (6)0.027 (5)0.018 (4)0.023 (4)0.002 (4)0.004 (4)
C9B0.028 (5)0.028 (5)0.019 (4)0.002 (4)0.007 (4)0.002 (4)
Cl1S0.0516 (19)0.0396 (15)0.102 (3)0.0078 (15)0.0240 (18)0.0024 (18)
C1S0.034 (7)0.062 (10)0.034 (8)0.002 (7)0.0000.000
Geometric parameters (Å, º) top
Pd1A—N1A2.196 (7)Pd1B—Te1B2.5313 (8)
Pd1A—Cl1A2.354 (2)Pd1B—Te1Bi2.5427 (8)
Pd1A—Te1A2.5305 (8)Pd1B—Te1Ai3.4241 (9)
Pd1A—Te1Ai2.5467 (8)Te1B—C1B2.126 (8)
Pd1A—Te1B3.4286 (9)Te1B—Pd1Bi2.5427 (8)
Te1A—C1A2.154 (8)N1B—C9B1.449 (11)
Te1A—Pd1Ai2.5467 (8)N1B—C8B1.462 (11)
N1A—C9A1.474 (12)N1B—C7B1.504 (12)
N1A—C8A1.480 (11)C1B—C2B1.370 (12)
N1A—C7A1.508 (12)C1B—C6B1.402 (13)
C1A—C6A1.357 (13)C2B—C3B1.426 (11)
C1A—C2A1.375 (12)C2B—H2BA0.9500
C2A—C3A1.393 (12)C3B—C4B1.389 (13)
C2A—H2AA0.9500C3B—H3BA0.9500
C3A—C4A1.360 (13)C4B—C5B1.389 (14)
C3A—H3AA0.9500C4B—H4BA0.9500
C4A—C5A1.390 (13)C5B—C6B1.422 (12)
C4A—H4AA0.9500C5B—H5BA0.9500
C5A—C6A1.388 (11)C6B—C7B1.488 (13)
C5A—H5AA0.9500C7B—H7BA0.9900
C6A—C7A1.517 (12)C7B—H7BB0.9900
C7A—H7AA0.9900C8B—H8BA0.9800
C7A—H7AB0.9900C8B—H8BB0.9800
C8A—H8AA0.9800C8B—H8BC0.9800
C8A—H8AB0.9800C9B—H9BA0.9800
C8A—H8AC0.9800C9B—H9BB0.9800
C9A—H9AA0.9800C9B—H9BC0.9800
C9A—H9AB0.9800Cl1S—C1S1.794 (10)
C9A—H9AC0.9800C1S—Cl1Sii1.794 (10)
Pd1B—N1B2.235 (7)C1S—H1SA0.9600
Pd1B—Cl1B2.369 (2)
N1A—Pd1A—Cl1A96.1 (2)N1B—Pd1B—Te1Bi172.9 (2)
N1A—Pd1A—Te1A92.1 (2)Cl1B—Pd1B—Te1Bi90.58 (7)
Cl1A—Pd1A—Te1A170.82 (7)Te1B—Pd1B—Te1Bi80.46 (3)
N1A—Pd1A—Te1Ai173.0 (2)N1B—Pd1B—Te1Ai100.24 (19)
Cl1A—Pd1A—Te1Ai90.61 (6)Cl1B—Pd1B—Te1Ai103.60 (7)
Te1A—Pd1A—Te1Ai81.08 (2)Te1B—Pd1B—Te1Ai79.99 (2)
N1A—Pd1A—Te1B100.45 (18)Te1Bi—Pd1B—Te1Ai79.77 (2)
Cl1A—Pd1A—Te1B102.63 (6)C1B—Te1B—Pd1B83.4 (2)
Te1A—Pd1A—Te1B79.84 (2)C1B—Te1B—Pd1Bi105.8 (2)
Te1Ai—Pd1A—Te1B79.70 (2)Pd1B—Te1B—Pd1Bi97.92 (3)
C1A—Te1A—Pd1A83.8 (2)C1B—Te1B—Pd1A153.8 (2)
C1A—Te1A—Pd1Ai106.7 (2)Pd1B—Te1B—Pd1A99.78 (2)
Pd1A—Te1A—Pd1Ai97.26 (3)Pd1Bi—Te1B—Pd1A99.55 (2)
C9A—N1A—C8A107.2 (7)C9B—N1B—C8B109.2 (8)
C9A—N1A—C7A109.4 (7)C9B—N1B—C7B110.3 (7)
C8A—N1A—C7A108.6 (7)C8B—N1B—C7B108.1 (7)
C9A—N1A—Pd1A111.2 (6)C9B—N1B—Pd1B109.8 (6)
C8A—N1A—Pd1A106.5 (5)C8B—N1B—Pd1B106.8 (5)
C7A—N1A—Pd1A113.7 (5)C7B—N1B—Pd1B112.5 (6)
C6A—C1A—C2A123.0 (8)C2B—C1B—C6B122.7 (8)
C6A—C1A—Te1A116.8 (6)C2B—C1B—Te1B121.6 (6)
C2A—C1A—Te1A120.2 (6)C6B—C1B—Te1B115.7 (6)
C1A—C2A—C3A116.9 (8)C1B—C2B—C3B119.5 (8)
C1A—C2A—H2AA121.5C1B—C2B—H2BA120.2
C3A—C2A—H2AA121.5C3B—C2B—H2BA120.2
C4A—C3A—C2A121.5 (9)C4B—C3B—C2B118.7 (9)
C4A—C3A—H3AA119.2C4B—C3B—H3BA120.6
C2A—C3A—H3AA119.2C2B—C3B—H3BA120.6
C3A—C4A—C5A120.1 (9)C5B—C4B—C3B121.1 (8)
C3A—C4A—H4AA120.0C5B—C4B—H4BA119.4
C5A—C4A—H4AA120.0C3B—C4B—H4BA119.4
C6A—C5A—C4A119.1 (8)C4B—C5B—C6B120.6 (9)
C6A—C5A—H5AA120.5C4B—C5B—H5BA119.7
C4A—C5A—H5AA120.5C6B—C5B—H5BA119.7
C1A—C6A—C5A119.3 (8)C1B—C6B—C5B117.2 (8)
C1A—C6A—C7A120.5 (7)C1B—C6B—C7B122.5 (8)
C5A—C6A—C7A120.1 (8)C5B—C6B—C7B120.3 (8)
N1A—C7A—C6A112.7 (7)C6B—C7B—N1B114.1 (7)
N1A—C7A—H7AA109.0C6B—C7B—H7BA108.7
C6A—C7A—H7AA109.0N1B—C7B—H7BA108.7
N1A—C7A—H7AB109.0C6B—C7B—H7BB108.7
C6A—C7A—H7AB109.0N1B—C7B—H7BB108.7
H7AA—C7A—H7AB107.8H7BA—C7B—H7BB107.6
N1A—C8A—H8AA109.5N1B—C8B—H8BA109.5
N1A—C8A—H8AB109.5N1B—C8B—H8BB109.5
H8AA—C8A—H8AB109.5H8BA—C8B—H8BB109.5
N1A—C8A—H8AC109.5N1B—C8B—H8BC109.5
H8AA—C8A—H8AC109.5H8BA—C8B—H8BC109.5
H8AB—C8A—H8AC109.5H8BB—C8B—H8BC109.5
N1A—C9A—H9AA109.5N1B—C9B—H9BA109.5
N1A—C9A—H9AB109.5N1B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
N1A—C9A—H9AC109.5N1B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
N1B—Pd1B—Cl1B96.3 (2)Cl1S—C1S—Cl1Sii107.8 (9)
N1B—Pd1B—Te1B92.6 (2)Cl1S—C1S—H1SA111.0
Cl1B—Pd1B—Te1B169.67 (7)Cl1Sii—C1S—H1SA109.2
N1A—Pd1A—Te1A—C1A58.9 (3)Cl1B—Pd1B—Te1B—Pd1A117.7 (4)
Cl1A—Pd1A—Te1A—C1A94.4 (5)Te1Bi—Pd1B—Te1B—Pd1A87.59 (2)
Te1Ai—Pd1A—Te1A—C1A119.8 (2)Te1Ai—Pd1B—Te1B—Pd1A6.410 (18)
Te1B—Pd1A—Te1A—C1A159.2 (2)N1A—Pd1A—Te1B—C1B83.5 (5)
N1A—Pd1A—Te1A—Pd1Ai164.97 (18)Cl1A—Pd1A—Te1B—C1B15.3 (5)
Cl1A—Pd1A—Te1A—Pd1Ai11.6 (4)Te1A—Pd1A—Te1B—C1B173.7 (5)
Te1Ai—Pd1A—Te1A—Pd1Ai13.74 (4)Te1Ai—Pd1A—Te1B—C1B103.6 (5)
Te1B—Pd1A—Te1A—Pd1Ai94.78 (2)N1A—Pd1A—Te1B—Pd1B178.4 (2)
Cl1A—Pd1A—N1A—C9A34.8 (6)Cl1A—Pd1A—Te1B—Pd1B79.66 (7)
Te1A—Pd1A—N1A—C9A141.0 (6)Te1A—Pd1A—Te1B—Pd1B91.32 (3)
Te1Ai—Pd1A—N1A—C9A130.5 (14)Te1Ai—Pd1A—Te1B—Pd1B8.64 (2)
Te1B—Pd1A—N1A—C9A138.9 (6)N1A—Pd1A—Te1B—Pd1Bi81.7 (2)
Cl1A—Pd1A—N1A—C8A81.7 (6)Cl1A—Pd1A—Te1B—Pd1Bi179.49 (6)
Te1A—Pd1A—N1A—C8A102.5 (6)Te1A—Pd1A—Te1B—Pd1Bi8.52 (2)
Te1Ai—Pd1A—N1A—C8A113.0 (15)Te1Ai—Pd1A—Te1B—Pd1Bi91.20 (3)
Te1B—Pd1A—N1A—C8A22.4 (6)Cl1B—Pd1B—N1B—C9B32.5 (6)
Cl1A—Pd1A—N1A—C7A158.8 (5)Te1B—Pd1B—N1B—C9B142.1 (6)
Te1A—Pd1A—N1A—C7A17.1 (5)Te1Bi—Pd1B—N1B—C9B133.0 (14)
Te1Ai—Pd1A—N1A—C7A6.5 (19)Te1Ai—Pd1B—N1B—C9B137.6 (6)
Te1B—Pd1A—N1A—C7A97.1 (5)Cl1B—Pd1B—N1B—C8B85.8 (6)
Pd1A—Te1A—C1A—C6A65.8 (6)Te1B—Pd1B—N1B—C8B99.6 (6)
Pd1Ai—Te1A—C1A—C6A161.5 (6)Te1Bi—Pd1B—N1B—C8B108.7 (15)
Pd1A—Te1A—C1A—C2A115.9 (7)Te1Ai—Pd1B—N1B—C8B19.3 (6)
Pd1Ai—Te1A—C1A—C2A20.1 (7)Cl1B—Pd1B—N1B—C7B155.8 (5)
C6A—C1A—C2A—C3A0.7 (13)Te1B—Pd1B—N1B—C7B18.8 (5)
Te1A—C1A—C2A—C3A178.9 (6)Te1Bi—Pd1B—N1B—C7B9.7 (19)
C1A—C2A—C3A—C4A2.5 (13)Te1Ai—Pd1B—N1B—C7B99.1 (5)
C2A—C3A—C4A—C5A2.0 (14)Pd1B—Te1B—C1B—C2B114.6 (7)
C3A—C4A—C5A—C6A0.4 (14)Pd1Bi—Te1B—C1B—C2B18.2 (8)
C2A—C1A—C6A—C5A1.6 (13)Pd1A—Te1B—C1B—C2B146.7 (6)
Te1A—C1A—C6A—C5A176.7 (6)Pd1B—Te1B—C1B—C6B66.6 (6)
C2A—C1A—C6A—C7A177.4 (8)Pd1Bi—Te1B—C1B—C6B163.0 (6)
Te1A—C1A—C6A—C7A4.3 (11)Pd1A—Te1B—C1B—C6B32.2 (10)
C4A—C5A—C6A—C1A2.2 (13)C6B—C1B—C2B—C3B0.5 (14)
C4A—C5A—C6A—C7A176.9 (8)Te1B—C1B—C2B—C3B178.3 (7)
C9A—N1A—C7A—C6A71.5 (9)C1B—C2B—C3B—C4B3.7 (14)
C8A—N1A—C7A—C6A171.9 (7)C2B—C3B—C4B—C5B4.8 (14)
Pd1A—N1A—C7A—C6A53.5 (8)C3B—C4B—C5B—C6B1.8 (14)
C1A—C6A—C7A—N1A74.3 (10)C2B—C1B—C6B—C5B3.4 (13)
C5A—C6A—C7A—N1A104.7 (9)Te1B—C1B—C6B—C5B175.4 (7)
N1B—Pd1B—Te1B—C1B60.2 (3)C2B—C1B—C6B—C7B175.1 (8)
Cl1B—Pd1B—Te1B—C1B88.6 (5)Te1B—C1B—C6B—C7B6.1 (11)
Te1Bi—Pd1B—Te1B—C1B118.7 (2)C4B—C5B—C6B—C1B2.3 (13)
Te1Ai—Pd1B—Te1B—C1B160.1 (2)C4B—C5B—C6B—C7B176.2 (8)
N1B—Pd1B—Te1B—Pd1Bi165.28 (19)C1B—C6B—C7B—N1B72.2 (11)
Cl1B—Pd1B—Te1B—Pd1Bi16.5 (4)C5B—C6B—C7B—N1B106.3 (10)
Te1Bi—Pd1B—Te1B—Pd1Bi13.59 (4)C9B—N1B—C7B—C6B72.4 (10)
Te1Ai—Pd1B—Te1B—Pd1Bi94.77 (2)C8B—N1B—C7B—C6B168.3 (7)
N1B—Pd1B—Te1B—Pd1A93.54 (19)Pd1B—N1B—C7B—C6B50.6 (8)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1S—H1SA···Cl1B0.962.873.827 (9)173
C5A—H5AA···Cl1Aiii0.952.913.778 (9)152
C7A—H7AA···Cl1Aiii0.992.733.681 (9)162
C9A—H9AC···Cl1A0.982.703.313 (10)121
C7B—H7BA···Cl1Biv0.992.773.746 (10)169
C7B—H7BB···Cl1Siv0.992.753.514 (10)135
C9B—H9BB···Cl1B0.982.673.300 (11)123
Symmetry codes: (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y1/2, z+2.

Experimental details

Crystal data
Chemical formula[Pd2(C9H12NTe)2Cl2]·0.5CH2Cl2
Mr1699.51
Crystal system, space groupOrthorhombic, P21212
Temperature (K)100
a, b, c (Å)14.035 (2), 14.842 (2), 12.3188 (16)
V3)2566.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.95
Crystal size (mm)0.32 × 0.26 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.615, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
36521, 5506, 5148
Rint0.050
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.06
No. of reflections5506
No. of parameters254
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0501P)2 + 22.7234P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.12, 0.90
Absolute structureFlack (1983), 2355 Friedel pairs
Absolute structure parameter0.06 (4)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1S—H1SA···Cl1B0.962.873.827 (9)173.4
C5A—H5AA···Cl1Ai0.952.913.778 (9)152.1
C7A—H7AA···Cl1Ai0.992.733.681 (9)162.1
C9A—H9AC···Cl1A0.982.703.313 (10)120.9
C7B—H7BA···Cl1Bii0.992.773.746 (10)169.2
C7B—H7BB···Cl1Sii0.992.753.514 (10)134.8
C9B—H9BB···Cl1B0.982.673.300 (11)122.7
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+2.
 

Acknowledgements

HBS acknowledges the DST, New Delhi, for financial support. TC acknowledges the CSIR, New Delhi, for a fellowship. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationBrown, M. J. & Corrigan, J. F. (2004). J. Organomet. Chem. 689, 2872–2879.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, T., Srivastava, K., Singh, H. B. & Butcher, R. J. (2011). J. Organomet. Chem. 696, 2782–2788.  Web of Science CSD CrossRef CAS Google Scholar
First citationChakravorty, T., Singh, H. B. & Butcher, R. J. (2012). Acta Cryst. E68, m113–m114.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDey, S., Jain, V. K., Varghese, B., Schurr, T., Niemeyer, M., Kaim, W. & Butcher, R. J. (2006). Inorg. Chim. Acta, 359, 1449–1457.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFord, S., Morley, C. P. & Di Viara, M. (2004). Inorg. Chem. 43, 7101–7110.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKaur, R., Menon, S. C., Panda, S., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, 28, 2363–2371.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorley, C. P., Webster, C. A. & Di Vaira, M. (2006). J. Organomet. Chem. 691, 4244–4249.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakata, N., Uchiumi, R., Yoshino, T., Ikeda, T., Kamon, H. & Ishii, A. (2009). Organometallics, 28, 1981–1984.  Web of Science CSD CrossRef CAS Google Scholar
First citationOilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (1999). J. Organomet. Chem. 587, 200–206.  Web of Science CSD CrossRef CAS Google Scholar
First citationOilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2000). J. Organomet. Chem. 595, 232–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationOilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2001). J. Organomet. Chem. 623, 168–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m141-m142
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds