organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z,NE)-N′-[(2-Hy­dr­oxy-1-naphth­yl)methyl­­idene]furan-2-carbohydrazonic acid

aDepartment of Chemistry, Zanjan University, 45195-313 Zanjan, Iran, bFaculty of Chemistry, Iran University of Science and Technology (IUST), 16846 Tehran, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55019 Kurupelit, Samsun, Turkey
*Correspondence e-mail: bikas_r@yahoo.com

(Received 18 May 2010; accepted 13 July 2010; online 21 July 2010)

In the title compound, C16H12N2O3, the dihedral angle between the mean planes of the naphthalene ring system and the furan ring is 21.3 (6)°. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) graph-set motif.

Related literature

For historical background to aroylhydrazones, see: Arapov et al. (1987[Arapov, O. V., Alferva, O. F., Levocheskaya, E. I. & Krasilnikov, I. (1987). Radiobiologiya, 27, 843-846.]); Pickart et al. (1983[Pickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868-3871.]); Offe et al. (1952[Offe, H. A., Siefken, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 462-468.]); Nagaraju et al. (2009[Nagaraju, C., Avaji, P. G., Vinod Kumar, C. H., Patil, S. A. & Shivananda, K. N. (2009). Eur. J. Med. Chem. 44, 3552-3559.]); Ghosh et al. (2007[Ghosh, T., Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G. & Drew, M. G. B. (2007). Inorg. Chim. Acta, 360, 1753-1761.]). For related structures, see: Monfared et al. (2010[Monfared, H. H., Bikas, R. & Mayer, P. (2010). Acta Cryst. E66, o236-o237.]); Ali et al. (2005[Ali, H. M., Puvaneswary, S., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, o1079-o1080.]); Qian et al. (2006[Qian, H.-Y., Yin, Z.-G., Jia, J., Liu, S.-M. & Feng, L.-Q. (2006). Acta Cryst. E62, o3623-o3624.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547-2554.]); Prathapachandra Kurup & Bessy Raj (2007[Prathapachandra Kurup, M. R., Bessy Raj, B. N., (2007). Spectrochim. Acta Part A, 66, 898-903.]). For graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O3

  • Mr = 280.28

  • Orthorhombic, P n a 21

  • a = 9.7427 (8) Å

  • b = 21.4182 (8) Å

  • c = 6.445 (2) Å

  • V = 1344.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.31 × 0.27 × 0.15 mm

Data collection
  • STOE IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.970, Tmax = 0.985

  • 7278 measured reflections

  • 1440 independent reflections

  • 944 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.095

  • S = 1.02

  • 1440 reflections

  • 191 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.84 2.565 (5) 146

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrazone ligands derived from the condensation of aliphatic acid hydrazides or aromatic acid hydrazides with aromatic 2-hydroxy carbonyl compounds are important tridentate O, N,O-donor ligands. These compounds, due to their facile keto-enol tautomerization and the availability of several potential donor sites, can coordinate to metals. Furthermore, the possibility of tautomerism makes their study interesting (Ghosh et al., 2007). Hydrazones have wide spread applications in coordination, analytical and bioinorganic chemistry, and display magnetic, electronic, NLO and fluorescent properties in biologically active compounds (Prathapachandra Kurup et al., 2007). They find applications in the treatment of diseases such as anti-tumor, tuberculosis, leprosy and mental disorder (Nagaraju et al., 2009). As part of our studies on the synthesis and characterization of aroylhydrazone derivatives, we report here the crystal structure of C16H12N2O3.

In the title compound, C16H12N2O3, the dihedral angle between the mean planes of the naphthalene and furan rings is 21.3 (6)° (Fig.1). The angle formed between the menn planes of the naphthalene substituted hydroxy group (C11/C10/C1/O1/H1) and the 2-carbohydrazonic acid furan substituted hydroxy group (N1/N2/C12/O2/H22) is 17.9 (1)°. Bond distances and angles are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by O1—H1···N1 intramolecular hydrogen bonds which form an S11(6) graph-set motif (Bernstein et al., 1995), Etter et al., 1990), (Fig. 2).

Related literature top

For historical background to aroylhydrazones, see: Arapov et al. (1987); Pickart et al. (1983); Offe et al. (1952); Nagaraju et al. (2009); Ghosh et al. (2007). For related structures, see: Monfared et al. (2010); Ali et al. (2005); Qian et al. (2006); Tarafder et al. (2002); Prathapachandra Kurup & Bessy Raj (2007). For graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995); Etter et al. (1990). For bond-length data, see: Allen et al. (1987).

Experimental top

All reagents were commercially available and used as received. A methanol (10 ml) solution of 2-hydroxy-1-naphtaldehyde (1.5 mmol) was drop-wise added to a methanol solution (10 ml) of 2-furanecarboxylic acid hydrazide (1.5 mmol), and the mixture was refluxed for 3 h. Then the solution was evaporated on a steam bath to 5 cm3 and cooled to room temperature. Yellow precipitates of the title compound were separated and filtered off, washed with 3 ml of cooled methanol and then dried in air. X-ray quality crystals of the title compound were obtained from methanol by slow solvent evaporation. Yield: 82%, mp 197-198 °C.

Refinement top

The hydroxyl hydrogen atoms were located by Fourier analysis and refined using the riding model with d(O—H) = 0.82Å [Uiso(H) = 1.5Ueq(O)]. C-bonded H atoms were positioned geometrically (C—H = 0.93 Å) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Structure description top

Hydrazone ligands derived from the condensation of aliphatic acid hydrazides or aromatic acid hydrazides with aromatic 2-hydroxy carbonyl compounds are important tridentate O, N,O-donor ligands. These compounds, due to their facile keto-enol tautomerization and the availability of several potential donor sites, can coordinate to metals. Furthermore, the possibility of tautomerism makes their study interesting (Ghosh et al., 2007). Hydrazones have wide spread applications in coordination, analytical and bioinorganic chemistry, and display magnetic, electronic, NLO and fluorescent properties in biologically active compounds (Prathapachandra Kurup et al., 2007). They find applications in the treatment of diseases such as anti-tumor, tuberculosis, leprosy and mental disorder (Nagaraju et al., 2009). As part of our studies on the synthesis and characterization of aroylhydrazone derivatives, we report here the crystal structure of C16H12N2O3.

In the title compound, C16H12N2O3, the dihedral angle between the mean planes of the naphthalene and furan rings is 21.3 (6)° (Fig.1). The angle formed between the menn planes of the naphthalene substituted hydroxy group (C11/C10/C1/O1/H1) and the 2-carbohydrazonic acid furan substituted hydroxy group (N1/N2/C12/O2/H22) is 17.9 (1)°. Bond distances and angles are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by O1—H1···N1 intramolecular hydrogen bonds which form an S11(6) graph-set motif (Bernstein et al., 1995), Etter et al., 1990), (Fig. 2).

For historical background to aroylhydrazones, see: Arapov et al. (1987); Pickart et al. (1983); Offe et al. (1952); Nagaraju et al. (2009); Ghosh et al. (2007). For related structures, see: Monfared et al. (2010); Ali et al. (2005); Qian et al. (2006); Tarafder et al. (2002); Prathapachandra Kurup & Bessy Raj (2007). For graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995); Etter et al. (1990). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, C16H12N2O3, with atom labels and anisotropic displacement ellipsoids (drawn at 30% probability level) for non-H atoms.
[Figure 2] Fig. 2. View of the unit cell of the title compound, C16H12N2O3, viewed along [110].
(2Z,N'E)-N'-[(2-Hydroxy-1- naphthyl)methylidene]furan-2-carbohydrazonic acid top
Crystal data top
C16H12N2O3Dx = 1.384 Mg m3
Mr = 280.28Melting point = 470–471 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8863 reflections
a = 9.7427 (8) Åθ = 1.9–27.1°
b = 21.4182 (8) ŵ = 0.10 mm1
c = 6.445 (2) ÅT = 293 K
V = 1344.8 (4) Å3Prism, colourless
Z = 40.31 × 0.27 × 0.15 mm
F(000) = 584
Data collection top
STOE IPDS 2
diffractometer
1440 independent reflections
Radiation source: fine-focus sealed tube944 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.097
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.9°
rotation method scansh = 1210
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2624
Tmin = 0.970, Tmax = 0.985l = 77
7278 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.031P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1440 reflectionsΔρmax = 0.18 e Å3
191 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (17)
Crystal data top
C16H12N2O3V = 1344.8 (4) Å3
Mr = 280.28Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.7427 (8) ŵ = 0.10 mm1
b = 21.4182 (8) ÅT = 293 K
c = 6.445 (2) Å0.31 × 0.27 × 0.15 mm
Data collection top
STOE IPDS 2
diffractometer
1440 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
944 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.985Rint = 0.097
7278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.095H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
1440 reflectionsΔρmin = 0.13 e Å3
191 parameters
Special details top

Experimental. 12912 Friedel pairs have been merged

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2976 (5)0.54675 (18)0.6316 (7)0.0451 (11)
C20.2057 (5)0.5256 (2)0.4789 (8)0.0522 (12)
H20.19690.54790.35590.063*
C30.1290 (6)0.4730 (2)0.5070 (8)0.0706 (16)
H30.06880.46010.40360.085*
C40.1400 (7)0.4384 (2)0.6892 (10)0.0786 (18)
H40.08830.40220.70650.094*
C50.2262 (6)0.4574 (2)0.8410 (10)0.0714 (16)
H50.23200.43470.96360.086*
C60.3079 (5)0.51178 (19)0.8155 (7)0.0499 (12)
C70.4022 (6)0.5297 (2)0.9729 (7)0.0591 (14)
H70.40510.50781.09740.071*
C80.4882 (5)0.5788 (2)0.9420 (8)0.0552 (13)
H80.55160.58971.04360.066*
C90.4814 (5)0.61298 (19)0.7575 (7)0.0474 (11)
C100.3861 (5)0.6002 (2)0.6042 (6)0.0406 (10)
C110.3758 (5)0.63934 (18)0.4226 (6)0.0440 (11)
H110.30270.63400.33140.053*
C120.5461 (5)0.7550 (2)0.1419 (7)0.0488 (11)
C130.5167 (5)0.78815 (19)0.0481 (7)0.0513 (12)
C140.5895 (6)0.8270 (2)0.1646 (8)0.0631 (14)
H140.67640.84250.13430.076*
C150.5117 (7)0.8404 (3)0.3412 (9)0.0810 (19)
H150.53710.86610.45110.097*
C160.3952 (7)0.8095 (3)0.3215 (9)0.0783 (18)
H160.32400.81020.41780.094*
N10.4666 (4)0.68174 (16)0.3852 (6)0.0488 (10)
N20.4425 (4)0.71739 (15)0.2109 (6)0.0495 (10)
O10.5751 (3)0.65972 (14)0.7404 (5)0.0632 (10)
H10.56410.67790.62960.095*
O20.6585 (3)0.76014 (14)0.2278 (5)0.0658 (10)
H220.65980.73850.33280.099*
O30.3934 (3)0.77680 (15)0.1422 (6)0.0675 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (3)0.037 (2)0.048 (3)0.008 (2)0.011 (2)0.001 (2)
C20.052 (3)0.048 (3)0.056 (3)0.002 (2)0.008 (3)0.001 (2)
C30.075 (4)0.056 (3)0.081 (4)0.017 (3)0.005 (3)0.006 (3)
C40.084 (5)0.052 (3)0.100 (5)0.015 (3)0.023 (4)0.005 (4)
C50.076 (4)0.058 (3)0.080 (4)0.001 (3)0.015 (4)0.009 (3)
C60.052 (3)0.040 (2)0.057 (3)0.010 (2)0.011 (2)0.002 (2)
C70.073 (4)0.057 (3)0.047 (3)0.023 (3)0.002 (3)0.013 (2)
C80.055 (3)0.060 (3)0.050 (3)0.016 (3)0.007 (2)0.011 (3)
C90.046 (3)0.042 (2)0.054 (3)0.008 (2)0.001 (2)0.003 (2)
C100.036 (3)0.043 (2)0.043 (2)0.011 (2)0.003 (2)0.001 (2)
C110.037 (3)0.047 (2)0.049 (3)0.001 (2)0.000 (2)0.002 (2)
C120.036 (3)0.054 (3)0.056 (3)0.002 (2)0.005 (2)0.008 (2)
C130.044 (3)0.047 (2)0.063 (3)0.000 (2)0.007 (3)0.005 (2)
C140.059 (3)0.060 (3)0.070 (3)0.018 (3)0.012 (3)0.009 (3)
C150.087 (5)0.075 (4)0.081 (4)0.011 (4)0.027 (4)0.034 (3)
C160.060 (4)0.087 (4)0.088 (5)0.022 (3)0.011 (3)0.033 (4)
N10.038 (2)0.050 (2)0.058 (3)0.002 (2)0.0096 (18)0.0013 (19)
N20.043 (2)0.0485 (19)0.057 (2)0.0082 (18)0.0117 (19)0.0134 (19)
O10.056 (2)0.060 (2)0.074 (2)0.0063 (18)0.0109 (19)0.0017 (18)
O20.056 (2)0.078 (2)0.064 (2)0.0186 (18)0.001 (2)0.0063 (19)
O30.040 (2)0.078 (2)0.085 (3)0.0037 (18)0.0047 (19)0.0323 (19)
Geometric parameters (Å, º) top
C1—C21.406 (6)C10—C111.443 (6)
C1—C61.406 (6)C11—N11.291 (5)
C1—C101.444 (6)C11—H110.9300
C2—C31.364 (7)C12—O21.232 (5)
C2—H20.9300C12—N21.366 (5)
C3—C41.393 (8)C12—C131.444 (6)
C3—H30.9300C13—C141.326 (6)
C4—C51.352 (8)C13—O31.367 (5)
C4—H40.9300C14—C151.398 (7)
C5—C61.420 (7)C14—H140.9300
C5—H50.9300C15—C161.321 (8)
C6—C71.422 (7)C15—H150.9300
C7—C81.359 (7)C16—O31.352 (6)
C7—H70.9300C16—H160.9300
C8—C91.397 (6)N1—N21.379 (5)
C8—H80.9300O1—H10.8200
C9—O11.359 (5)O2—H220.8200
C9—C101.384 (6)
C2—C1—C6117.6 (4)C9—C10—C11120.7 (4)
C2—C1—C10123.4 (4)C9—C10—C1118.1 (4)
C6—C1—C10118.9 (4)C11—C10—C1121.2 (4)
C3—C2—C1121.5 (5)N1—C11—C10120.8 (4)
C3—C2—H2119.3N1—C11—H11119.6
C1—C2—H2119.3C10—C11—H11119.6
C2—C3—C4120.6 (5)O2—C12—N2124.3 (4)
C2—C3—H3119.7O2—C12—C13120.9 (4)
C4—C3—H3119.7N2—C12—C13114.8 (4)
C5—C4—C3119.8 (5)C14—C13—O3109.3 (4)
C5—C4—H4120.1C14—C13—C12133.0 (5)
C3—C4—H4120.1O3—C13—C12117.6 (4)
C4—C5—C6120.8 (6)C13—C14—C15107.5 (5)
C4—C5—H5119.6C13—C14—H14126.3
C6—C5—H5119.6C15—C14—H14126.3
C1—C6—C5119.6 (5)C16—C15—C14106.5 (5)
C1—C6—C7120.3 (4)C16—C15—H15126.7
C5—C6—C7120.1 (5)C14—C15—H15126.7
C8—C7—C6120.2 (5)C15—C16—O3110.7 (6)
C8—C7—H7119.9C15—C16—H16124.7
C6—C7—H7119.9O3—C16—H16124.7
C7—C8—C9120.0 (5)C11—N1—N2115.1 (4)
C7—C8—H8120.0C12—N2—N1117.7 (4)
C9—C8—H8120.0C9—O1—H1109.5
O1—C9—C10122.6 (4)C12—O2—H22109.5
O1—C9—C8115.0 (5)C16—O3—C13106.0 (4)
C10—C9—C8122.4 (5)
C6—C1—C2—C30.1 (7)C6—C1—C10—C92.6 (6)
C10—C1—C2—C3176.6 (4)C2—C1—C10—C116.2 (6)
C1—C2—C3—C40.2 (8)C6—C1—C10—C11177.3 (4)
C2—C3—C4—C50.9 (9)C9—C10—C11—N19.5 (6)
C3—C4—C5—C61.3 (8)C1—C10—C11—N1170.6 (4)
C2—C1—C6—C50.3 (6)O2—C12—C13—C140.1 (8)
C10—C1—C6—C5177.1 (4)N2—C12—C13—C14178.3 (5)
C2—C1—C6—C7178.0 (4)O2—C12—C13—O3175.5 (4)
C10—C1—C6—C71.2 (6)N2—C12—C13—O32.6 (6)
C4—C5—C6—C11.0 (7)O3—C13—C14—C150.9 (5)
C4—C5—C6—C7177.3 (5)C12—C13—C14—C15175.0 (5)
C1—C6—C7—C83.5 (7)C13—C14—C15—C160.7 (6)
C5—C6—C7—C8174.8 (5)C14—C15—C16—O30.1 (7)
C6—C7—C8—C91.8 (7)C10—C11—N1—N2177.8 (4)
C7—C8—C9—O1177.9 (4)O2—C12—N2—N11.6 (6)
C7—C8—C9—C102.2 (7)C13—C12—N2—N1176.5 (4)
O1—C9—C10—C114.3 (6)C11—N1—N2—C12168.4 (4)
C8—C9—C10—C11175.5 (4)C15—C16—O3—C130.5 (6)
O1—C9—C10—C1175.7 (4)C14—C13—O3—C160.9 (5)
C8—C9—C10—C14.5 (6)C12—C13—O3—C16175.7 (4)
C2—C1—C10—C9173.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.565 (5)146

Experimental details

Crystal data
Chemical formulaC16H12N2O3
Mr280.28
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)9.7427 (8), 21.4182 (8), 6.445 (2)
V3)1344.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.31 × 0.27 × 0.15
Data collection
DiffractometerSTOE IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.970, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7278, 1440, 944
Rint0.097
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.095, 1.02
No. of reflections1440
No. of parameters191
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.13

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82001.84002.565 (5)146.00
 

Acknowledgements

The authors are grateful to Zanjan University and Ondokuz Mayis University.

References

First citationAli, H. M., Puvaneswary, S., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, o1079–o1080.  CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArapov, O. V., Alferva, O. F., Levocheskaya, E. I. & Krasilnikov, I. (1987). Radiobiologiya, 27, 843–846.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, T., Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G. & Drew, M. G. B. (2007). Inorg. Chim. Acta, 360, 1753–1761.  Web of Science CSD CrossRef CAS Google Scholar
First citationMonfared, H. H., Bikas, R. & Mayer, P. (2010). Acta Cryst. E66, o236–o237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagaraju, C., Avaji, P. G., Vinod Kumar, C. H., Patil, S. A. & Shivananda, K. N. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science PubMed Google Scholar
First citationOffe, H. A., Siefken, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 462–468.  Google Scholar
First citationPickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868–3871.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPrathapachandra Kurup, M. R., Bessy Raj, B. N., (2007). Spectrochim. Acta Part A, 66, 898–903.  Google Scholar
First citationQian, H.-Y., Yin, Z.-G., Jia, J., Liu, S.-M. & Feng, L.-Q. (2006). Acta Cryst. E62, o3623–o3624.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds