organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1α,11α,15β-Triacet­­oxy-7β-hy­droxy-7α,20-ep­­oxy-ent-kaur-16-en-6-one

aSchool of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
*Correspondence e-mail: yanfulin03@xxmu.edu.cn

(Received 1 September 2009; accepted 13 October 2009; online 17 October 2009)

The title compound, C26H34O9, a natural ent-kaurane diterpenoid, is composed of four rings with the expected cis and trans junctions. In the crystal structure, the mol­ecules stack along the a axis and are linked together by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the genus Isodon and diterpenoids, see: Sun et al. (2001[Sun, H. D., Xu, Y. L. & Jing, B. (2001). Diterpenoids from Isodon Species, Vol. 140, pp. 4-17. Beijing: Science Press.]); Li et al. (2006[Li, L. M., Li, G. Y., Huang, S. X., Li, S. H., Zhou, Y. & Sun, H. D. (2006). J. Nat. Prod. 69, 645-649.]); Yan et al. (2009[Yan, F. L., Guo, L. Q., Wang, C. M. & Zhang, J. X. (2009). J. Asian Nat. Prod. Res. 11, 326-331.]). For hydorgen bonds, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For a description of the Cambridge Structural Database, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H34O9

  • Mr = 490.53

  • Orthorhombic, P 21 21 21

  • a = 11.3317 (5) Å

  • b = 11.5061 (4) Å

  • c = 19.0663 (6) Å

  • V = 2485.93 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 93 K

  • 0.43 × 0.37 × 0.33 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: none

  • 16790 measured reflections

  • 3165 independent reflections

  • 3073 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.00

  • 3165 reflections

  • 325 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯O3i 0.89 (3) 2.18 (3) 2.853 (2) 133 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), C26H34O9, is a natural ent-kaurane diterpenoid isolated from the medicinal plant Isodon Japonica. The leaves of this plant have been used as an antibacterial, anti-inflammatory and stomachic agent. The structure of compound (I), derived from Isodon Parvifolius, has been postulated from spectroscopic methods (Li et al., 2006). As a conformation of (I) the crystal structure analysis has been determined here and confirms the structure proposed above. One hydroxyl group adopts a β-orientation at C7, and three acetoxyl groups adopt α,α,β-orientations at C1,C11 and C15, respectively, Fig.1. A trans junction occurs between ring A (C1—C5/C10) and ring B (C5—C10) while cis junctions are present between rings B and C (C8/C9/C11—C14), and between rings C and D (C8/C13—C16). Bond lengths and angles are within expected ranges (Allen et al., 1987), with average values (Å): Csp3—Csp3 = 1.542 (3), Csp3—Csp2 = 1.509 (3), Csp2—Csp2 (CC) = 1.320 (3), CO = 1.207 (2), Csp3—O = 1.438 (2), and Csp2—O = 1.351 (2). Ring A adopts a chair conformation, with an average torsion angle of 51.5 (2) °. Rings B and C adopt a boat conformation because of the formation of an oxygen bridge at C-7 and C-20. Ring D shows an envelope conformation; the flap atom, C14, lies 0.7648 (0.0028) Å from the plane defined by atoms C8, C15, C16 and C13. In addition, the six-membered rings O1/C20/C10/C5—C7 and O1/C7—C10/C20 both adopt boat conformations. Compound (I) contains nine chiral centers at C1(S), C5(R), C7(S), C8(S), C9(S), C10(S), C11(R), C13(S) and C15(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed this compound to be in the ent-kaurane series as reported in genus Isodon (Sun et al.,2001), rather than in the Kaurane series, which allowed us to assign the correct configuration. The title molecule is characterized by the formation of O–H···O hydrogen-bonds (Table 1, Nardelli, 1995). The strong hydrogen bond O–H···O interaction is responsible for crystal growth in [100] direction, Fig. 2. Indeed, in the substructure, atom O5 in the molecule at (x, y, z) acts as a hydrogen bond donor to the carbonyl O3 atom in the molecule at (-x +1/2, -y +1, z +1/2).

Related literature top

For the genus Isodon and diterpenoids, see: Sun et al. (2001); Li et al. (2006); Yan et al. (2009). For hydorgen bonds, see: Nardelli (1995). For a description of the Cambridge Structural Database, see: Allen et al. (1987);

Experimental top

The dried and crushed leaves of Isodon Japonica (17 kg, collected from Tongbai Prefecture, Henan Province, China) were extracted four times with Me2CO/H2O (7:3, v/v) at room temperature over a period of six days. The extract was filtered and the solvent was removed under reduced pressure. The residue was then partitioned between water and AcOEt. After removal of the solvent, the AcOEt residue was separated by repeated silica gel (200–300 mesh) column chromatography and recrystallization from CHCl3/Me2CO(10:1), giving 60 mg of compound (I) (m.p. 430–432 K. Optical rotation: [α]D22 -74.6 ° (c 0.45, MeOH). Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of compound (I) in Me2CO at room temperature.

Refinement top

All H atoms were included in calculated positions and refined as riding atoms, with C—H = 0.98Å (CH3), 0.99Å (CH2), and 1.00Å (CH), and with Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged. The choice of enantiomer was based on comparison of the optical rotation with that of related compounds with known stereochemistry.

Structure description top

The title compound, (I), C26H34O9, is a natural ent-kaurane diterpenoid isolated from the medicinal plant Isodon Japonica. The leaves of this plant have been used as an antibacterial, anti-inflammatory and stomachic agent. The structure of compound (I), derived from Isodon Parvifolius, has been postulated from spectroscopic methods (Li et al., 2006). As a conformation of (I) the crystal structure analysis has been determined here and confirms the structure proposed above. One hydroxyl group adopts a β-orientation at C7, and three acetoxyl groups adopt α,α,β-orientations at C1,C11 and C15, respectively, Fig.1. A trans junction occurs between ring A (C1—C5/C10) and ring B (C5—C10) while cis junctions are present between rings B and C (C8/C9/C11—C14), and between rings C and D (C8/C13—C16). Bond lengths and angles are within expected ranges (Allen et al., 1987), with average values (Å): Csp3—Csp3 = 1.542 (3), Csp3—Csp2 = 1.509 (3), Csp2—Csp2 (CC) = 1.320 (3), CO = 1.207 (2), Csp3—O = 1.438 (2), and Csp2—O = 1.351 (2). Ring A adopts a chair conformation, with an average torsion angle of 51.5 (2) °. Rings B and C adopt a boat conformation because of the formation of an oxygen bridge at C-7 and C-20. Ring D shows an envelope conformation; the flap atom, C14, lies 0.7648 (0.0028) Å from the plane defined by atoms C8, C15, C16 and C13. In addition, the six-membered rings O1/C20/C10/C5—C7 and O1/C7—C10/C20 both adopt boat conformations. Compound (I) contains nine chiral centers at C1(S), C5(R), C7(S), C8(S), C9(S), C10(S), C11(R), C13(S) and C15(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed this compound to be in the ent-kaurane series as reported in genus Isodon (Sun et al.,2001), rather than in the Kaurane series, which allowed us to assign the correct configuration. The title molecule is characterized by the formation of O–H···O hydrogen-bonds (Table 1, Nardelli, 1995). The strong hydrogen bond O–H···O interaction is responsible for crystal growth in [100] direction, Fig. 2. Indeed, in the substructure, atom O5 in the molecule at (x, y, z) acts as a hydrogen bond donor to the carbonyl O3 atom in the molecule at (-x +1/2, -y +1, z +1/2).

For the genus Isodon and diterpenoids, see: Sun et al. (2001); Li et al. (2006); Yan et al. (2009). For hydorgen bonds, see: Nardelli (1995). For a description of the Cambridge Structural Database, see: Allen et al. (1987);

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of compound (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis, showing the O–H···O hydrogen bonds as dashed lines.
1α,11α,15β-Triacetoxy-7β-hydroxy-7α,20-epoxy-ent-kaur-16-en-6-one top
Crystal data top
C26H34O9F(000) = 1048
Mr = 490.53Dx = 1.311 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8353 reflections
a = 11.3317 (5) Åθ = 3.2–27.5°
b = 11.5061 (4) ŵ = 0.10 mm1
c = 19.0663 (6) ÅT = 93 K
V = 2485.93 (16) Å3Block, colorless
Z = 40.43 × 0.37 × 0.33 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3073 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 28.5714 pixels mm-1h = 1412
Multi–scank = 148
16790 measured reflectionsl = 2424
3165 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.356P]
where P = (Fo2 + 2Fc2)/3
3165 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C26H34O9V = 2485.93 (16) Å3
Mr = 490.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.3317 (5) ŵ = 0.10 mm1
b = 11.5061 (4) ÅT = 93 K
c = 19.0663 (6) Å0.43 × 0.37 × 0.33 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3073 reflections with I > 2σ(I)
16790 measured reflectionsRint = 0.029
3165 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.21 e Å3
3165 reflectionsΔρmin = 0.18 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38167 (12)0.37232 (12)0.65858 (7)0.0230 (3)
O20.41296 (12)0.53784 (11)0.46276 (6)0.0199 (3)
O30.34305 (13)0.65688 (12)0.37900 (7)0.0278 (3)
O40.10378 (13)0.37757 (11)0.70404 (7)0.0232 (3)
O50.31311 (13)0.40633 (13)0.76801 (7)0.0239 (3)
O60.53506 (12)0.62167 (12)0.58354 (7)0.0230 (3)
O70.60240 (13)0.75251 (14)0.50554 (8)0.0299 (3)
O80.13104 (11)0.65130 (11)0.71188 (7)0.0185 (3)
O90.05804 (12)0.63399 (13)0.82130 (7)0.0266 (3)
C10.29255 (16)0.52505 (16)0.48909 (9)0.0175 (4)
H10.24960.60010.48210.021*
C20.23307 (18)0.43133 (17)0.44501 (10)0.0232 (4)
H2A0.23220.45570.39520.028*
H2B0.27880.35820.44850.028*
C30.10758 (18)0.41011 (18)0.46967 (10)0.0232 (4)
H3A0.07050.35120.43890.028*
H3B0.06200.48310.46490.028*
C40.10019 (17)0.36823 (16)0.54617 (9)0.0199 (4)
C50.17123 (17)0.45659 (15)0.59208 (9)0.0170 (4)
H50.12200.52870.59250.020*
C60.18088 (17)0.42097 (15)0.66877 (9)0.0170 (4)
C70.30344 (17)0.44315 (16)0.69929 (9)0.0193 (4)
C80.33202 (17)0.57276 (15)0.69257 (9)0.0174 (4)
C90.32401 (16)0.60840 (15)0.61315 (9)0.0168 (4)
H90.25140.65750.60960.020*
C100.29698 (16)0.49793 (15)0.56786 (9)0.0169 (4)
C110.42551 (17)0.68795 (16)0.59020 (10)0.0205 (4)
H110.40560.72320.54370.025*
C120.44686 (19)0.78558 (17)0.64350 (10)0.0242 (4)
H12A0.38910.84860.63500.029*
H12B0.52680.81800.63600.029*
C130.43596 (18)0.74467 (19)0.72063 (10)0.0249 (4)
H130.49400.78540.75160.030*
C140.45021 (17)0.61168 (18)0.72499 (9)0.0228 (4)
H14A0.45850.58490.77410.027*
H14B0.51840.58420.69710.027*
C150.24973 (16)0.64528 (17)0.73956 (10)0.0189 (4)
H150.24650.60810.78690.023*
C160.31041 (19)0.76122 (18)0.74652 (10)0.0247 (4)
C170.2620 (2)0.8570 (2)0.77153 (13)0.0365 (5)
H17A0.18230.85630.78700.044*
H17B0.30690.92660.77410.044*
C180.03029 (17)0.37090 (18)0.56763 (10)0.0251 (4)
H18A0.07710.32760.53320.030*
H18B0.05770.45160.56940.030*
H18C0.03940.33520.61400.030*
C190.14350 (18)0.24192 (16)0.55248 (11)0.0254 (4)
H19A0.08790.19010.52860.031*
H19B0.14860.22040.60210.031*
H19C0.22160.23490.53080.031*
C200.38806 (17)0.40401 (16)0.58546 (9)0.0197 (4)
H20A0.37340.33450.55610.024*
H20B0.46820.43320.57460.024*
C210.42336 (18)0.60148 (16)0.40372 (9)0.0215 (4)
C220.54572 (18)0.59762 (19)0.37348 (10)0.0269 (4)
H22A0.58770.66940.38540.032*
H22B0.54100.59000.32240.032*
H22C0.58840.53090.39290.032*
C230.61675 (18)0.66545 (18)0.54004 (10)0.0257 (4)
C240.72644 (19)0.5931 (2)0.54079 (13)0.0367 (5)
H24A0.78040.62250.57680.044*
H24B0.76490.59730.49480.044*
H24C0.70590.51220.55120.044*
C250.04182 (17)0.63722 (15)0.75910 (10)0.0196 (4)
C260.07351 (17)0.62392 (18)0.72259 (11)0.0241 (4)
H26A0.13680.61740.75740.029*
H26B0.07190.55370.69350.029*
H26C0.08770.69190.69280.029*
H5O0.247 (3)0.370 (3)0.7794 (16)0.058 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0266 (7)0.0260 (6)0.0164 (6)0.0104 (6)0.0032 (5)0.0041 (5)
O20.0214 (7)0.0240 (6)0.0143 (6)0.0021 (6)0.0037 (5)0.0021 (5)
O30.0346 (8)0.0311 (7)0.0178 (7)0.0017 (7)0.0006 (6)0.0050 (6)
O40.0266 (7)0.0249 (6)0.0182 (6)0.0046 (6)0.0036 (6)0.0027 (5)
O50.0248 (8)0.0322 (7)0.0147 (7)0.0030 (7)0.0002 (5)0.0073 (5)
O60.0193 (7)0.0290 (7)0.0207 (6)0.0022 (6)0.0025 (5)0.0004 (6)
O70.0317 (8)0.0329 (7)0.0251 (7)0.0120 (7)0.0042 (7)0.0001 (6)
O80.0185 (7)0.0225 (6)0.0146 (6)0.0010 (5)0.0010 (5)0.0005 (5)
O90.0306 (8)0.0325 (7)0.0168 (6)0.0021 (7)0.0029 (6)0.0005 (6)
C10.0188 (9)0.0203 (8)0.0133 (8)0.0004 (7)0.0029 (7)0.0001 (7)
C20.0298 (11)0.0267 (10)0.0131 (8)0.0054 (9)0.0009 (8)0.0024 (7)
C30.0263 (10)0.0281 (9)0.0151 (8)0.0050 (9)0.0009 (8)0.0017 (7)
C40.0219 (10)0.0218 (8)0.0160 (8)0.0032 (8)0.0007 (7)0.0012 (7)
C50.0197 (9)0.0180 (8)0.0132 (8)0.0023 (7)0.0002 (7)0.0003 (7)
C60.0212 (9)0.0139 (7)0.0160 (8)0.0038 (7)0.0018 (7)0.0000 (6)
C70.0229 (10)0.0231 (9)0.0119 (8)0.0040 (8)0.0005 (7)0.0029 (7)
C80.0177 (9)0.0216 (8)0.0130 (8)0.0016 (7)0.0006 (7)0.0014 (7)
C90.0173 (9)0.0203 (8)0.0129 (8)0.0002 (7)0.0002 (7)0.0003 (7)
C100.0195 (9)0.0183 (8)0.0130 (8)0.0003 (7)0.0000 (7)0.0006 (7)
C110.0216 (10)0.0218 (9)0.0181 (8)0.0011 (8)0.0005 (7)0.0012 (7)
C120.0259 (10)0.0244 (9)0.0223 (9)0.0056 (8)0.0001 (8)0.0022 (8)
C130.0243 (10)0.0326 (10)0.0178 (9)0.0048 (9)0.0021 (8)0.0045 (8)
C140.0191 (10)0.0339 (10)0.0154 (8)0.0001 (8)0.0042 (7)0.0001 (8)
C150.0176 (9)0.0245 (9)0.0147 (8)0.0002 (8)0.0030 (7)0.0019 (7)
C160.0275 (11)0.0291 (9)0.0175 (9)0.0044 (9)0.0018 (8)0.0064 (8)
C170.0378 (13)0.0326 (11)0.0392 (13)0.0092 (10)0.0053 (10)0.0127 (10)
C180.0232 (10)0.0307 (10)0.0214 (9)0.0046 (9)0.0002 (8)0.0016 (8)
C190.0314 (11)0.0217 (9)0.0232 (9)0.0052 (9)0.0016 (8)0.0021 (8)
C200.0226 (10)0.0207 (8)0.0157 (8)0.0033 (8)0.0025 (7)0.0022 (7)
C210.0299 (11)0.0204 (9)0.0142 (8)0.0039 (8)0.0015 (7)0.0010 (7)
C220.0309 (11)0.0297 (10)0.0202 (9)0.0088 (9)0.0070 (8)0.0012 (8)
C230.0241 (10)0.0330 (10)0.0199 (9)0.0097 (9)0.0021 (8)0.0031 (8)
C240.0240 (11)0.0475 (13)0.0386 (13)0.0045 (10)0.0078 (9)0.0033 (11)
C250.0236 (10)0.0153 (8)0.0199 (8)0.0015 (7)0.0040 (8)0.0007 (7)
C260.0212 (10)0.0246 (9)0.0265 (10)0.0005 (8)0.0008 (8)0.0006 (8)
Geometric parameters (Å, º) top
O1—C71.433 (2)C10—C201.532 (3)
O1—C201.443 (2)C11—C121.534 (3)
O2—C211.348 (2)C11—H111.0000
O2—C11.461 (2)C12—C131.549 (3)
O3—C211.207 (2)C12—H12A0.9900
O4—C61.210 (2)C12—H12B0.9900
O5—C71.381 (2)C13—C161.518 (3)
O5—H5O0.89 (3)C13—C141.541 (3)
O6—C231.341 (2)C13—H131.0000
O6—C111.462 (2)C14—H14A0.9900
O7—C231.209 (3)C14—H14B0.9900
O8—C251.364 (2)C15—C161.507 (3)
O8—C151.446 (2)C15—H151.0000
O9—C251.201 (2)C16—C171.320 (3)
C1—C21.524 (3)C17—H17A0.9500
C1—C101.535 (2)C17—H17B0.9500
C1—H11.0000C18—H18A0.9800
C2—C31.517 (3)C18—H18B0.9800
C2—H2A0.9900C18—H18C0.9800
C2—H2B0.9900C19—H19A0.9800
C3—C41.538 (2)C19—H19B0.9800
C3—H3A0.9900C19—H19C0.9800
C3—H3B0.9900C20—H20A0.9900
C4—C181.534 (3)C20—H20B0.9900
C4—C191.539 (3)C21—C221.502 (3)
C4—C51.565 (2)C22—H22A0.9800
C5—C61.522 (2)C22—H22B0.9800
C5—C101.572 (3)C22—H22C0.9800
C5—H51.0000C23—C241.496 (3)
C6—C71.527 (3)C24—H24A0.9800
C7—C81.531 (3)C24—H24B0.9800
C8—C151.539 (3)C24—H24C0.9800
C8—C141.542 (3)C25—C261.489 (3)
C8—C91.571 (2)C26—H26A0.9800
C9—C111.534 (3)C26—H26B0.9800
C9—C101.567 (2)C26—H26C0.9800
C9—H91.0000
C7—O1—C20114.25 (13)C13—C12—H12B108.9
C21—O2—C1115.03 (14)H12A—C12—H12B107.8
C7—O5—H5O108 (2)C16—C13—C14101.84 (16)
C23—O6—C11116.35 (15)C16—C13—C12110.20 (17)
C25—O8—C15116.29 (14)C14—C13—C12110.16 (16)
O2—C1—C2107.14 (14)C16—C13—H13111.4
O2—C1—C10109.03 (14)C14—C13—H13111.4
C2—C1—C10114.22 (15)C12—C13—H13111.4
O2—C1—H1108.8C13—C14—C8100.13 (15)
C2—C1—H1108.8C13—C14—H14A111.7
C10—C1—H1108.8C8—C14—H14A111.7
C3—C2—C1110.94 (16)C13—C14—H14B111.7
C3—C2—H2A109.5C8—C14—H14B111.7
C1—C2—H2A109.5H14A—C14—H14B109.5
C3—C2—H2B109.5O8—C15—C16114.46 (15)
C1—C2—H2B109.5O8—C15—C8112.15 (14)
H2A—C2—H2B108.0C16—C15—C8104.77 (15)
C2—C3—C4113.27 (17)O8—C15—H15108.4
C2—C3—H3A108.9C16—C15—H15108.4
C4—C3—H3A108.9C8—C15—H15108.4
C2—C3—H3B108.9C17—C16—C15125.55 (19)
C4—C3—H3B108.9C17—C16—C13127.7 (2)
H3A—C3—H3B107.7C15—C16—C13106.74 (16)
C18—C4—C3107.40 (16)C16—C17—H17A120.0
C18—C4—C19107.78 (16)C16—C17—H17B120.0
C3—C4—C19110.65 (16)H17A—C17—H17B120.0
C18—C4—C5109.48 (15)C4—C18—H18A109.5
C3—C4—C5107.39 (15)C4—C18—H18B109.5
C19—C4—C5113.95 (16)H18A—C18—H18B109.5
C6—C5—C4113.54 (15)C4—C18—H18C109.5
C6—C5—C10107.36 (15)H18A—C18—H18C109.5
C4—C5—C10119.92 (14)H18B—C18—H18C109.5
C6—C5—H5104.9C4—C19—H19A109.5
C4—C5—H5104.9C4—C19—H19B109.5
C10—C5—H5104.9H19A—C19—H19B109.5
O4—C6—C5126.36 (18)C4—C19—H19C109.5
O4—C6—C7120.91 (16)H19A—C19—H19C109.5
C5—C6—C7112.72 (15)H19B—C19—H19C109.5
O5—C7—O1106.88 (14)O1—C20—C10110.86 (14)
O5—C7—C6112.48 (16)O1—C20—H20A109.5
O1—C7—C6105.14 (14)C10—C20—H20A109.5
O5—C7—C8111.17 (15)O1—C20—H20B109.5
O1—C7—C8112.19 (15)C10—C20—H20B109.5
C6—C7—C8108.86 (14)H20A—C20—H20B108.1
C7—C8—C15110.56 (15)O3—C21—O2123.17 (18)
C7—C8—C14115.67 (15)O3—C21—C22124.18 (17)
C15—C8—C1497.78 (14)O2—C21—C22112.64 (17)
C7—C8—C9108.82 (15)C21—C22—H22A109.5
C15—C8—C9112.61 (15)C21—C22—H22B109.5
C14—C8—C9111.15 (15)H22A—C22—H22B109.5
C11—C9—C10118.26 (15)C21—C22—H22C109.5
C11—C9—C8112.79 (15)H22A—C22—H22C109.5
C10—C9—C8109.30 (14)H22B—C22—H22C109.5
C11—C9—H9105.1O7—C23—O6123.7 (2)
C10—C9—H9105.1O7—C23—C24125.3 (2)
C8—C9—H9105.1O6—C23—C24111.01 (18)
C20—C10—C1112.32 (14)C23—C24—H24A109.5
C20—C10—C9108.66 (14)C23—C24—H24B109.5
C1—C10—C9112.38 (14)H24A—C24—H24B109.5
C20—C10—C5109.46 (14)C23—C24—H24C109.5
C1—C10—C5108.62 (14)H24A—C24—H24C109.5
C9—C10—C5105.13 (14)H24B—C24—H24C109.5
O6—C11—C9110.50 (14)O9—C25—O8122.84 (17)
O6—C11—C12107.79 (16)O9—C25—C26126.38 (17)
C9—C11—C12111.49 (15)O8—C25—C26110.75 (15)
O6—C11—H11109.0C25—C26—H26A109.5
C9—C11—H11109.0C25—C26—H26B109.5
C12—C11—H11109.0H26A—C26—H26B109.5
C11—C12—C13113.19 (16)C25—C26—H26C109.5
C11—C12—H12A108.9H26A—C26—H26C109.5
C13—C12—H12A108.9H26B—C26—H26C109.5
C11—C12—H12B108.9
C21—O2—C1—C279.21 (18)C8—C9—C10—C1177.79 (15)
C21—O2—C1—C10156.71 (14)C11—C9—C10—C5164.89 (15)
O2—C1—C2—C3178.82 (15)C8—C9—C10—C564.24 (17)
C10—C1—C2—C358.0 (2)C6—C5—C10—C2052.48 (18)
C1—C2—C3—C460.8 (2)C4—C5—C10—C2079.04 (19)
C2—C3—C4—C18170.35 (17)C6—C5—C10—C1175.44 (14)
C2—C3—C4—C1972.3 (2)C4—C5—C10—C143.9 (2)
C2—C3—C4—C552.7 (2)C6—C5—C10—C964.08 (16)
C18—C4—C5—C668.7 (2)C4—C5—C10—C9164.41 (15)
C3—C4—C5—C6175.05 (16)C23—O6—C11—C9155.35 (15)
C19—C4—C5—C652.1 (2)C23—O6—C11—C1282.60 (19)
C18—C4—C5—C10162.57 (15)C10—C9—C11—O655.2 (2)
C3—C4—C5—C1046.3 (2)C8—C9—C11—O674.07 (18)
C19—C4—C5—C1076.7 (2)C10—C9—C11—C12175.06 (15)
C4—C5—C6—O440.0 (2)C8—C9—C11—C1245.8 (2)
C10—C5—C6—O4174.96 (17)O6—C11—C12—C1381.5 (2)
C4—C5—C6—C7138.70 (16)C9—C11—C12—C1339.9 (2)
C10—C5—C6—C73.77 (19)C11—C12—C13—C1691.6 (2)
C20—O1—C7—O5176.40 (15)C11—C12—C13—C1420.0 (2)
C20—O1—C7—C663.87 (18)C16—C13—C14—C844.81 (17)
C20—O1—C7—C854.3 (2)C12—C13—C14—C872.12 (19)
O4—C6—C7—O51.3 (2)C7—C8—C14—C13169.77 (16)
C5—C6—C7—O5177.53 (14)C15—C8—C14—C1352.46 (16)
O4—C6—C7—O1117.22 (17)C9—C8—C14—C1365.50 (17)
C5—C6—C7—O161.59 (18)C25—O8—C15—C16104.33 (18)
O4—C6—C7—C8122.38 (18)C25—O8—C15—C8136.49 (15)
C5—C6—C7—C858.80 (19)C7—C8—C15—O873.12 (19)
O5—C7—C8—C1557.8 (2)C14—C8—C15—O8165.67 (15)
O1—C7—C8—C15177.47 (14)C9—C8—C15—O848.8 (2)
C6—C7—C8—C1566.59 (18)C7—C8—C15—C16162.17 (15)
O5—C7—C8—C1452.1 (2)C14—C8—C15—C1640.96 (17)
O1—C7—C8—C1467.5 (2)C9—C8—C15—C1675.87 (18)
C6—C7—C8—C14176.51 (14)O8—C15—C16—C1743.7 (3)
O5—C7—C8—C9177.99 (15)C8—C15—C16—C17167.0 (2)
O1—C7—C8—C958.37 (19)O8—C15—C16—C13137.21 (16)
C6—C7—C8—C957.57 (19)C8—C15—C16—C1313.96 (19)
C7—C8—C9—C11137.05 (16)C14—C13—C16—C17160.0 (2)
C15—C8—C9—C11100.02 (18)C12—C13—C16—C1783.1 (3)
C14—C8—C9—C118.5 (2)C14—C13—C16—C1519.07 (19)
C7—C8—C9—C103.3 (2)C12—C13—C16—C1597.83 (19)
C15—C8—C9—C10126.24 (16)C7—O1—C20—C106.8 (2)
C14—C8—C9—C10125.19 (16)C1—C10—C20—O1174.21 (15)
O2—C1—C10—C2046.06 (19)C9—C10—C20—O160.82 (19)
C2—C1—C10—C2073.7 (2)C5—C10—C20—O153.47 (19)
O2—C1—C10—C976.83 (18)C1—O2—C21—O39.4 (2)
C2—C1—C10—C9163.36 (16)C1—O2—C21—C22171.83 (15)
O2—C1—C10—C5167.28 (13)C11—O6—C23—O72.5 (3)
C2—C1—C10—C547.5 (2)C11—O6—C23—C24177.06 (17)
C11—C9—C10—C2078.01 (19)C15—O8—C25—O98.8 (2)
C8—C9—C10—C2052.86 (19)C15—O8—C25—C26169.77 (15)
C11—C9—C10—C146.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O3i0.89 (3)2.18 (3)2.853 (2)133 (3)
Symmetry code: (i) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H34O9
Mr490.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)93
a, b, c (Å)11.3317 (5), 11.5061 (4), 19.0663 (6)
V3)2485.93 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.43 × 0.37 × 0.33
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16790, 3165, 3073
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.00
No. of reflections3165
No. of parameters325
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O3i0.89 (3)2.18 (3)2.853 (2)133 (3)
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

Acknowledgements

This work was supported by the Henan Provincial Science and Technology Foundation of China (No. 611042600)

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationLi, L. M., Li, G. Y., Huang, S. X., Li, S. H., Zhou, Y. & Sun, H. D. (2006). J. Nat. Prod. 69, 645–649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H. D., Xu, Y. L. & Jing, B. (2001). Diterpenoids from Isodon Species, Vol. 140, pp. 4–17. Beijing: Science Press.  Google Scholar
First citationYan, F. L., Guo, L. Q., Wang, C. M. & Zhang, J. X. (2009). J. Asian Nat. Prod. Res. 11, 326–331.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds