organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2427-o2428

syn,syn-15,17-Di-2-naphthyl­hexa­cyclo­[10.2.1.13,10.15,8.02,11.04,9]hepta­decane deutero­chloro­form monosolvate

aDepartment of Chemistry, Biochemistry and Physics, Marist College, Poughkeepsie, NY 12601, USA, bOlin College, Needham, MA 02492, USA, and cDepartment of Chemistry, MS015, Brandeis University, Waltham, MA 02454, USA
*Correspondence e-mail: jocelyn.nadeau@marist.edu

(Received 20 August 2009; accepted 3 September 2009; online 12 September 2009)

The main molecule of the title compound, C37H36·CDCl3, is a hydro­carbon with two naphthalene segments attached to opposite ends of a rigid norbornylogous spacer with an overall structure that is approximately C-shaped. The dihedral angle between the naphthalene ring planes is 9.27 (7)°. The cleft that exists between the naphthalene rings is large enough that the compound crystallizes with a solvent mol­ecule (CDCl3) in the cleft. The CDCl3 solvent mol­ecule is present in two disordered orientations in a 3:2 ratio, each involving C—D⋯π to C6 ring centers.

Related literature

For examples of related mol­ecules with C-shaped topologies, see: Chou et al. (2005[Chou, T.-C., Hwa, C.-L., Lin, J.-J., Liao, K.-C. & Tseng, J.-C. (2005). J. Org. Chem. 70, 9717-9726.]); Klärner et al. (2001[Klärner, F.-G., Panitzky, J., Bläser, D. & Boese, R. (2001). Tetrahedron, 57, 3673-3687.]); Kurebayashi et al. (2001[Kurebayashi, H., Haino, T., Usui, S. & Fukazawa, Y. (2001). Tetrahedron, 57, 8667-8674.]); Nemoto et al. (2000[Nemoto, H., Kawano, T., Ueji, N., Bando, M., Kido, M., Suzuki, I. & Shibuya, M. (2000). Org. Lett. 2, 1015-1017.]). For examples of related mol­ecules with the same norbornyl skeleton, see: Bodige et al. (1999[Bodige, S. G., Sun, D., Marchand, A. P., Namboothiri, N. N., Shukla, R. & Watson, W. H. (1999). J. Chem. Crystallogr. 29, 523-530.]); Nadeau et al. (2003[Nadeau, J. M., Liu, M., Waldeck, D. H. & Zimmt, M. B. (2003). J. Am. Chem. Soc. 125, 15964-15973.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C38H37Cl3

  • Mr = 600.07

  • Triclinic, [P \overline 1]

  • a = 6.0833 (4) Å

  • b = 14.6343 (10) Å

  • c = 16.2725 (12) Å

  • α = 93.641 (5)°

  • β = 94.437 (4)°

  • γ = 90.770 (4)°

  • V = 1441.15 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 120 K

  • 0.59 × 0.29 × 0.24 mm

Data collection
  • Area diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2006[Bruker (2006). APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.90, Tmax = 0.92

  • 18141 measured reflections

  • 5889 independent reflections

  • 4451 reflections with I > 2.0σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.162

  • S = 1.00

  • 5889 reflections

  • 505 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
C—D⋯π interactions (Å, °)

C—D⋯Cg C—D D⋯Cg D⋯Cg C—D⋯Cg
C38—H381⋯Cg1 0.97 2.44 3.399 173
C381—H3811⋯Cg2 0.98 2.61 3.521 154
Cg1 is the centroid of the C30–C37 ring andCg2 is the centroid of the C4–C10 ring.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2006[Bruker (2006). APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: APEX2 (Bruker, 2006[Bruker (2006). APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]).

Supporting information


Comment top

The structure of the title compound, C37H36.CDCl3, consists of two naphthalene rings connected to opposite ends of a rigid, norbornylogous hydrocarbon spacer. The overall topology of the molecule is roughly C-shaped, and the cleft that exists between the rings allows for inclusion of a molecule of crystallization, chloroform-d (CDCl3), as shown in Figs. 1 and 2. Although the naphthalene rings can rotate freely about the C—C bond through which they are attached to the rigid spacer, they are only found in a cofacially stacked, eclipsed conformation. The anti conformer is not observed. The CDCl3 within the cleft is in two disordered orientations, occurring in about a 3:2 ratio. Both orientations show interactions with different areas of the naphthalene rings. The most common orientation shows coordination between the chloroform deuterium atom and the π system of the distal ring of the naphthyl group. In this orientation, the C···π and D···π distances are 3.399 and 2.44 Å, repectively, with a C—D···π angle of 172.7°. In the other orientation, the C···π and D···π distances are 3.521 and 2.61 Å, repectively, with a C—D···π angle of 153.9°. To establish the context for the measurements associated with this interaction, the Cambridge Structural Database (Allen, 2002: Version 5.30, including May 2009 updates) was searched for homologous structure-solvent motifs. The search results are organized into two histograms, one for the H(D)···π distance (Fig. 3) and one for the C—H(D)···π angle (Fig. 4). The histograms support the observations, with the values for distance and angle falling well within the range of previously observed values. The observed C···π distance of 3.399 Å was on the low end of recorded distances, whereas the angle of 172.7° was binned at the higher end of the angle range.

Related literature top

For examples of related molecules with C-shaped topologies, see: Chou et al. (2005); Klärner et al. (2001); Kurebayashi et al. (2001); Nemoto et al. (2000). For examples of related molecules with the same norbornyl skeleton, see: Bodige et al. (1999); Nadeau et al. (2003). For the Cambridge Structural Database, see: Allen (2002). Cg1 is the centroid of the C30—C37 ring and

Cg2 is the centroid of the C4–C10 ring.

Experimental top

Triethylsilane (94 µL; 0.588 mmol) and trifluoroacetic acid (44 µL; 0.588 mmol) were added to a stirring suspension of 15,17-di-2-naphthylhexacyclo[10.2.1.13,10.15,8.02,11.04,9]heptadecane-15,17-diol (25 mg; 0.049 mmol) in CH2Cl2 under nitrogen. Upon adding the trifluoroacetic acid, the solid gradually went into solution, and the reaction was refluxed for two hours. Upon cooling, solid sodium bicarbonate was added. After 30 minutes, the reaction mixture was filtered and concentrated under reduced pressure. The crude solid was purified by preparative TLC on silica gel (30% CH2Cl2 in petroleum ether) to give the title compound as the major diastereomer (with evidence of at least one additional diastereomer by NMR) as an off-white solid in 42% yield (10 mg). Single crystals suitable for crystallographic analysis were obtained by slow vapor diffusion of hexanes into a solution of the compound dissolved in chloroform-d at room temperature.

Refinement top

The C and Cl atoms were refined by using anisotropic displacement parameters; occupancies of the two disordered CDCl3 solvates were constrained to sum to 1.0. The H atoms were located in a difference map, initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 and Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom), after which only their positional parameters were refined (Uiso(H) fixed).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. The major component [0.60 (1)] of the disordered CDCl3 solvate is shown.
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. The minor component [0.40 (1)] of the disordered CDCl3 solvate is shown.
[Figure 3] Fig. 3. Histogram of C···π distance versus number of structures (378 REFCODES, 443 data points).
[Figure 4] Fig. 4. Histogram of C—H···π angle versus number of structures (378 REFCODES, 443 data points).
syn,syn-15,17-Di-2-naphthylhexacyclo[10.2.1.13,10.15,8.02,11.04,9]heptadecane deuterochloroform monosolvate top
Crystal data top
C38H37Cl3Z = 2
Mr = 600.07F(000) = 632
Triclinic, P1Dx = 1.383 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0833 (4) ÅCell parameters from 4571 reflections
b = 14.6343 (10) Åθ = 3–26°
c = 16.2725 (12) ŵ = 0.35 mm1
α = 93.641 (5)°T = 120 K
β = 94.437 (4)°Acicular, colourless
γ = 90.770 (4)°0.59 × 0.29 × 0.24 mm
V = 1441.15 (17) Å3
Data collection top
Area
diffractometer
5889 independent reflections
Radiation source: fine-focus sealed tube4451 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 26.4°, θmin = 1.4°
Absorption correction: multi-scan
(APEX2; Bruker, 2006)
h = 77
Tmin = 0.90, Tmax = 0.92k = 1818
18141 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.00 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.09P)2 + 0.62P],
where P = (max(Fo2,0) + 2Fc2)/3
5889 reflections(Δ/σ)max = 0.005
505 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.83 e Å3
0 constraints
Crystal data top
C38H37Cl3γ = 90.770 (4)°
Mr = 600.07V = 1441.15 (17) Å3
Triclinic, P1Z = 2
a = 6.0833 (4) ÅMo Kα radiation
b = 14.6343 (10) ŵ = 0.35 mm1
c = 16.2725 (12) ÅT = 120 K
α = 93.641 (5)°0.59 × 0.29 × 0.24 mm
β = 94.437 (4)°
Data collection top
Area
diffractometer
5889 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2006)
4451 reflections with I > 2.0σ(I)
Tmin = 0.90, Tmax = 0.92Rint = 0.074
18141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.56 e Å3
5889 reflectionsΔρmin = 0.83 e Å3
505 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.9320 (6)0.2872 (2)0.1765 (2)0.03360.600 (10)
Cl21.0165 (7)0.4616 (3)0.1051 (3)0.03010.600 (10)
Cl30.6094 (4)0.4332 (3)0.18090 (16)0.04400.600 (10)
Cl40.9649 (15)0.2877 (5)0.1738 (5)0.08360.400 (10)
Cl50.9765 (16)0.4486 (6)0.0912 (6)0.07350.400 (10)
Cl60.5802 (11)0.4017 (5)0.1684 (4)0.09280.400 (10)
C10.7151 (4)0.66524 (17)0.32622 (16)0.0234
C20.9142 (4)0.67093 (17)0.28739 (15)0.0239
C31.0658 (4)0.60376 (16)0.29452 (15)0.0219
C41.0253 (4)0.52624 (16)0.33995 (14)0.0184
C50.8249 (4)0.52025 (15)0.37930 (14)0.0179
C60.6729 (4)0.59234 (16)0.37159 (15)0.0202
C71.1743 (4)0.45312 (16)0.34613 (15)0.0201
C81.1285 (4)0.37861 (16)0.38892 (14)0.0190
C90.9303 (4)0.37194 (15)0.42908 (13)0.0162
C100.7845 (4)0.44253 (16)0.42341 (14)0.0175
C110.8895 (3)0.29369 (15)0.48275 (14)0.0159
C121.0068 (4)0.20154 (15)0.46699 (14)0.0159
C130.9271 (4)0.14916 (16)0.53826 (14)0.0194
C140.6849 (4)0.18168 (16)0.54398 (14)0.0199
C150.6560 (4)0.24780 (15)0.47487 (14)0.0167
C160.6501 (3)0.20180 (14)0.38662 (13)0.0137
C170.8948 (3)0.16819 (14)0.38136 (14)0.0143
C180.8645 (3)0.06545 (15)0.35275 (13)0.0150
C190.6558 (4)0.03744 (15)0.39369 (14)0.0166
C200.5112 (4)0.11355 (15)0.35897 (13)0.0156
C210.5351 (3)0.10019 (15)0.26463 (14)0.0152
C220.7780 (3)0.06515 (14)0.26049 (13)0.0144
C230.3984 (3)0.02792 (15)0.20792 (14)0.0158
C240.7472 (4)0.02281 (15)0.20291 (14)0.0161
C250.6271 (4)0.10214 (16)0.23961 (15)0.0181
C260.3867 (4)0.06678 (16)0.24400 (16)0.0194
C270.5594 (4)0.00657 (15)0.14019 (14)0.0158
C280.6114 (4)0.08106 (15)0.08410 (14)0.0163
C290.4645 (4)0.14835 (16)0.06462 (14)0.0191
C300.5074 (4)0.21408 (15)0.00734 (14)0.0178
C310.7088 (4)0.21017 (16)0.03175 (14)0.0187
C320.8588 (4)0.14046 (16)0.01134 (15)0.0196
C330.8119 (4)0.07889 (16)0.04453 (14)0.0190
C340.3567 (4)0.28382 (17)0.01205 (16)0.0243
C350.4032 (4)0.34658 (19)0.06702 (17)0.0305
C360.6024 (4)0.34290 (18)0.10577 (16)0.0293
C370.7516 (4)0.27660 (17)0.08869 (15)0.0239
C380.8210 (7)0.3799 (3)0.1248 (3)0.0265 (13)*0.600 (10)
C3810.8524 (14)0.3936 (6)0.1721 (7)0.048 (3)*0.400 (10)
H110.607 (5)0.7098 (19)0.3195 (17)0.0275*
H210.943 (4)0.725 (2)0.2548 (17)0.0293*
H311.208 (5)0.6084 (18)0.2710 (17)0.0260*
H610.530 (4)0.5875 (18)0.4020 (16)0.0252*
H711.315 (4)0.4588 (18)0.3205 (16)0.0237*
H811.223 (4)0.3286 (19)0.3925 (16)0.0234*
H1010.647 (4)0.4421 (17)0.4477 (16)0.0208*
H1110.932 (4)0.3167 (17)0.5370 (16)0.0189*
H1211.169 (4)0.2040 (17)0.4708 (15)0.0190*
H1311.020 (4)0.1663 (18)0.5902 (17)0.0233*
H1320.930 (4)0.0838 (19)0.5293 (16)0.0218*
H1410.675 (4)0.2147 (18)0.5985 (17)0.0245*
H1420.572 (4)0.1300 (19)0.5386 (16)0.0239*
H1510.534 (4)0.2870 (18)0.4797 (15)0.0192*
H1610.616 (4)0.2521 (17)0.3478 (15)0.0158*
H1710.966 (4)0.2026 (17)0.3373 (15)0.0165*
H1811.006 (4)0.0277 (17)0.3629 (15)0.0184*
H1910.676 (4)0.0403 (17)0.4514 (17)0.0189*
H1920.601 (4)0.0250 (18)0.3766 (15)0.0196*
H2010.356 (4)0.1180 (17)0.3726 (15)0.0185*
H2110.511 (4)0.1604 (17)0.2381 (15)0.0177*
H2210.867 (4)0.1082 (17)0.2315 (15)0.0158*
H2310.249 (4)0.0489 (17)0.1887 (15)0.0189*
H2410.888 (4)0.0443 (17)0.1796 (15)0.0187*
H2510.703 (4)0.1205 (17)0.2963 (16)0.0207*
H2520.632 (4)0.1557 (19)0.2046 (16)0.0218*
H2610.343 (4)0.0617 (18)0.2997 (17)0.0229*
H2620.279 (4)0.1069 (18)0.2084 (16)0.0223*
H2710.506 (4)0.0479 (17)0.1044 (15)0.0188*
H2910.319 (4)0.1522 (18)0.0904 (16)0.0227*
H3210.997 (4)0.1389 (18)0.0381 (16)0.0234*
H3310.915 (4)0.0338 (18)0.0586 (16)0.0222*
H3410.228 (5)0.2868 (19)0.0184 (17)0.0297*
H3510.308 (5)0.396 (2)0.0806 (18)0.0354*
H3610.633 (5)0.389 (2)0.1449 (18)0.0351*
H3710.891 (5)0.2712 (19)0.1160 (17)0.0288*
H3810.74790.35640.07290.0315*0.600 (10)
H38110.90960.42680.22400.0571*0.400 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0500 (11)0.0233 (12)0.0269 (13)0.0005 (7)0.0086 (8)0.0115 (9)
Cl20.0318 (9)0.0239 (10)0.0356 (10)0.0007 (7)0.0087 (7)0.0022 (7)
Cl30.0431 (9)0.0483 (15)0.0436 (11)0.0073 (9)0.0233 (7)0.0010 (9)
Cl40.155 (6)0.045 (3)0.055 (3)0.006 (3)0.039 (3)0.000 (2)
Cl50.102 (5)0.045 (3)0.085 (5)0.035 (3)0.054 (3)0.031 (3)
Cl60.091 (3)0.061 (3)0.130 (4)0.003 (2)0.066 (3)0.038 (3)
C10.0247 (12)0.0180 (12)0.0273 (14)0.0033 (10)0.0002 (10)0.0005 (10)
C20.0339 (14)0.0195 (12)0.0184 (12)0.0035 (10)0.0031 (10)0.0007 (10)
C30.0247 (12)0.0218 (12)0.0194 (12)0.0041 (10)0.0070 (10)0.0014 (10)
C40.0203 (11)0.0197 (11)0.0145 (11)0.0040 (9)0.0014 (8)0.0041 (9)
C50.0187 (11)0.0159 (11)0.0183 (12)0.0014 (9)0.0012 (9)0.0037 (9)
C60.0190 (11)0.0181 (11)0.0230 (12)0.0007 (9)0.0015 (9)0.0015 (9)
C70.0175 (11)0.0215 (12)0.0213 (12)0.0020 (9)0.0046 (9)0.0025 (9)
C80.0158 (11)0.0195 (12)0.0211 (12)0.0011 (9)0.0015 (9)0.0035 (9)
C90.0166 (10)0.0163 (11)0.0146 (11)0.0022 (8)0.0010 (8)0.0039 (9)
C100.0144 (11)0.0204 (12)0.0176 (11)0.0028 (9)0.0039 (9)0.0024 (9)
C110.0156 (11)0.0162 (11)0.0156 (11)0.0005 (8)0.0012 (8)0.0018 (9)
C120.0134 (11)0.0156 (11)0.0185 (12)0.0007 (8)0.0011 (8)0.0005 (9)
C130.0236 (12)0.0172 (12)0.0170 (12)0.0005 (9)0.0011 (9)0.0003 (9)
C140.0252 (12)0.0189 (12)0.0160 (12)0.0002 (10)0.0047 (9)0.0001 (9)
C150.0163 (11)0.0154 (11)0.0187 (12)0.0002 (9)0.0034 (8)0.0005 (9)
C160.0136 (10)0.0134 (10)0.0145 (11)0.0011 (8)0.0024 (8)0.0019 (8)
C170.0124 (10)0.0137 (10)0.0170 (11)0.0004 (8)0.0035 (8)0.0001 (8)
C180.0134 (10)0.0148 (11)0.0170 (11)0.0005 (8)0.0012 (8)0.0020 (9)
C190.0190 (11)0.0157 (11)0.0148 (11)0.0019 (9)0.0011 (9)0.0001 (9)
C200.0134 (10)0.0170 (11)0.0165 (11)0.0009 (8)0.0041 (8)0.0014 (9)
C210.0125 (10)0.0137 (11)0.0196 (12)0.0005 (8)0.0029 (8)0.0007 (9)
C220.0124 (10)0.0131 (10)0.0180 (11)0.0008 (8)0.0029 (8)0.0008 (9)
C230.0112 (10)0.0189 (11)0.0173 (11)0.0003 (8)0.0010 (8)0.0008 (9)
C240.0161 (11)0.0156 (11)0.0167 (11)0.0017 (8)0.0018 (8)0.0004 (9)
C250.0192 (11)0.0133 (11)0.0219 (12)0.0000 (9)0.0029 (9)0.0013 (9)
C260.0169 (11)0.0179 (11)0.0229 (12)0.0040 (9)0.0017 (9)0.0017 (9)
C270.0146 (10)0.0152 (11)0.0171 (11)0.0004 (8)0.0010 (8)0.0019 (9)
C280.0163 (11)0.0163 (11)0.0157 (11)0.0026 (8)0.0007 (8)0.0040 (9)
C290.0165 (11)0.0197 (12)0.0208 (12)0.0002 (9)0.0030 (9)0.0019 (9)
C300.0179 (11)0.0167 (11)0.0181 (11)0.0007 (9)0.0005 (9)0.0026 (9)
C310.0201 (11)0.0188 (11)0.0164 (11)0.0033 (9)0.0012 (9)0.0048 (9)
C320.0164 (11)0.0212 (12)0.0211 (12)0.0008 (9)0.0054 (9)0.0042 (9)
C330.0163 (11)0.0200 (12)0.0202 (12)0.0035 (9)0.0012 (9)0.0038 (9)
C340.0221 (12)0.0240 (13)0.0274 (14)0.0030 (10)0.0026 (10)0.0034 (10)
C350.0303 (14)0.0263 (14)0.0359 (16)0.0060 (11)0.0028 (11)0.0094 (12)
C360.0386 (15)0.0241 (13)0.0262 (14)0.0012 (11)0.0055 (11)0.0071 (11)
C370.0252 (13)0.0260 (13)0.0207 (12)0.0037 (10)0.0056 (10)0.0019 (10)
Geometric parameters (Å, º) top
Cl1—C381.756 (5)C18—C221.552 (3)
Cl2—C381.736 (6)C18—H1811.04 (3)
Cl3—C381.794 (6)C19—C201.537 (3)
Cl4—C3811.704 (12)C19—H1910.94 (3)
Cl5—C3811.795 (12)C19—H1920.98 (3)
Cl6—C3811.658 (11)C20—C211.553 (3)
C1—C21.413 (3)C20—H2010.99 (2)
C1—C61.368 (3)C21—C221.575 (3)
C1—H110.94 (3)C21—C231.548 (3)
C2—C31.361 (4)C21—H2111.01 (3)
C2—H211.00 (3)C22—C241.544 (3)
C3—C41.422 (3)C22—H2210.99 (2)
C3—H310.98 (3)C23—C261.542 (3)
C4—C51.425 (3)C23—C271.550 (3)
C4—C71.415 (3)C23—H2310.99 (3)
C5—C61.417 (3)C24—C251.540 (3)
C5—C101.412 (3)C24—C271.556 (3)
C6—H611.04 (3)C24—H2411.01 (3)
C7—C81.367 (3)C25—C261.563 (3)
C7—H710.98 (3)C25—H2511.05 (3)
C8—C91.421 (3)C25—H2520.94 (3)
C8—H810.94 (3)C26—H2610.96 (3)
C9—C101.373 (3)C26—H2621.00 (3)
C9—C111.513 (3)C27—C281.511 (3)
C10—H1010.95 (3)C27—H2710.99 (3)
C11—C121.550 (3)C28—C291.374 (3)
C11—C151.556 (3)C28—C331.423 (3)
C11—H1110.94 (3)C29—C301.417 (3)
C12—C131.535 (3)C29—H2911.01 (3)
C12—C171.550 (3)C30—C311.424 (3)
C12—H1210.99 (3)C30—C341.415 (3)
C13—C141.562 (3)C31—C321.416 (3)
C13—H1311.00 (3)C31—C371.420 (3)
C13—H1320.96 (3)C32—C331.363 (3)
C14—C151.531 (3)C32—H3210.98 (3)
C14—H1410.99 (3)C33—H3310.94 (3)
C14—H1421.01 (3)C34—C351.364 (4)
C15—C161.545 (3)C34—H3410.96 (3)
C15—H1510.95 (3)C35—C361.408 (4)
C16—C171.580 (3)C35—H3510.95 (3)
C16—C201.556 (3)C36—C371.365 (4)
C16—H1611.01 (2)C36—H3610.98 (3)
C17—C181.550 (3)C37—H3710.99 (3)
C17—H1711.02 (2)C38—H3810.965
C18—C191.541 (3)C381—H38110.984
C2—C1—C6120.4 (2)C19—C20—H201119.6 (14)
C2—C1—H11120.8 (17)C16—C20—H201113.0 (14)
C6—C1—H11118.8 (17)C21—C20—H201113.0 (14)
C1—C2—C3120.3 (2)C20—C21—C22102.95 (17)
C1—C2—H21119.3 (16)C20—C21—C23122.72 (18)
C3—C2—H21120.4 (16)C22—C21—C23102.85 (17)
C2—C3—C4120.7 (2)C20—C21—H211109.9 (14)
C2—C3—H31121.5 (16)C22—C21—H211112.7 (14)
C4—C3—H31117.7 (16)C23—C21—H211105.6 (14)
C3—C4—C5119.1 (2)C18—C22—C21103.20 (17)
C3—C4—C7122.6 (2)C18—C22—C24123.41 (18)
C5—C4—C7118.3 (2)C21—C22—C24102.85 (16)
C4—C5—C6118.4 (2)C18—C22—H221110.2 (14)
C4—C5—C10118.8 (2)C21—C22—H221110.3 (14)
C6—C5—C10122.7 (2)C24—C22—H221106.3 (14)
C5—C6—C1121.0 (2)C21—C23—C26113.65 (18)
C5—C6—H61117.2 (15)C21—C23—C27100.81 (16)
C1—C6—H61121.8 (15)C26—C23—C2799.68 (18)
C4—C7—C8121.2 (2)C21—C23—H231113.8 (14)
C4—C7—H71117.8 (15)C26—C23—H231111.4 (14)
C8—C7—H71121.0 (15)C27—C23—H231116.4 (15)
C7—C8—C9121.3 (2)C22—C24—C25114.65 (19)
C7—C8—H81122.5 (16)C22—C24—C27100.62 (17)
C9—C8—H81116.2 (16)C25—C24—C2799.23 (17)
C8—C9—C10118.0 (2)C22—C24—H241113.5 (14)
C8—C9—C11121.1 (2)C25—C24—H241110.9 (14)
C10—C9—C11120.7 (2)C27—C24—H241116.9 (14)
C5—C10—C9122.4 (2)C24—C25—C26103.21 (18)
C5—C10—H101114.9 (16)C24—C25—H251113.2 (14)
C9—C10—H101122.6 (16)C26—C25—H251114.7 (14)
C9—C11—C12119.44 (18)C24—C25—H252110.0 (16)
C9—C11—C15118.04 (18)C26—C25—H252111.8 (16)
C12—C11—C1593.27 (16)H251—C25—H252104 (2)
C9—C11—H111105.1 (15)C23—C26—C25103.04 (17)
C12—C11—H111108.2 (16)C23—C26—H261111.2 (16)
C15—C11—H111112.6 (15)C25—C26—H261112.2 (15)
C11—C12—C1399.73 (18)C23—C26—H262109.1 (15)
C11—C12—C17100.98 (17)C25—C26—H262111.3 (15)
C13—C12—C17113.39 (17)H261—C26—H262110 (2)
C11—C12—H121116.4 (15)C23—C27—C2493.55 (17)
C13—C12—H121109.7 (14)C23—C27—C28118.46 (19)
C17—C12—H121115.4 (14)C24—C27—C28117.74 (18)
C12—C13—C14103.27 (18)C23—C27—H271110.1 (14)
C12—C13—H131110.0 (15)C24—C27—H271109.0 (14)
C14—C13—H131111.4 (15)C28—C27—H271107.3 (14)
C12—C13—H132114.3 (15)C27—C28—C29122.4 (2)
C14—C13—H132110.5 (15)C27—C28—C33119.7 (2)
H131—C13—H132107 (2)C29—C28—C33117.7 (2)
C13—C14—C15102.96 (18)C28—C29—C30122.2 (2)
C13—C14—H141108.2 (15)C28—C29—H291120.7 (15)
C15—C14—H141110.5 (15)C30—C29—H291117.1 (15)
C13—C14—H142113.8 (15)C29—C30—C31119.0 (2)
C15—C14—H142113.4 (15)C29—C30—C34122.1 (2)
H141—C14—H142108 (2)C31—C30—C34118.9 (2)
C14—C15—C1199.77 (18)C30—C31—C32118.3 (2)
C14—C15—C16114.65 (18)C30—C31—C37118.8 (2)
C11—C15—C16100.76 (17)C32—C31—C37122.9 (2)
C14—C15—H151113.5 (15)C31—C32—C33120.9 (2)
C11—C15—H151117.2 (15)C31—C32—H321117.5 (15)
C16—C15—H151110.2 (15)C33—C32—H321121.6 (15)
C15—C16—C17102.56 (16)C28—C33—C32121.9 (2)
C15—C16—C20122.89 (18)C28—C33—H331118.2 (16)
C17—C16—C20102.65 (17)C32—C33—H331119.9 (16)
C15—C16—H161106.0 (14)C30—C34—C35120.8 (2)
C17—C16—H161111.2 (13)C30—C34—H341116.3 (17)
C20—C16—H161111.0 (13)C35—C34—H341122.7 (17)
C12—C17—C16102.74 (17)C34—C35—C36120.5 (2)
C12—C17—C18122.80 (18)C34—C35—H351123.4 (18)
C16—C17—C18103.31 (16)C36—C35—H351116.1 (18)
C12—C17—H171108.3 (13)C35—C36—C37120.4 (2)
C16—C17—H171108.7 (13)C35—C36—H361118.9 (17)
C18—C17—H171110.0 (14)C37—C36—H361120.6 (17)
C17—C18—C19102.78 (17)C31—C37—C36120.6 (2)
C17—C18—C22104.64 (17)C31—C37—H371117.0 (16)
C19—C18—C22101.88 (17)C36—C37—H371122.3 (16)
C17—C18—H181113.6 (14)Cl3—C38—Cl1110.8 (3)
C19—C18—H181118.4 (14)Cl3—C38—Cl2109.7 (3)
C22—C18—H181113.8 (14)Cl1—C38—Cl2113.8 (3)
C18—C19—C2095.48 (17)Cl3—C38—H381105.4
C18—C19—H191112.9 (15)Cl1—C38—H381108.3
C20—C19—H191114.2 (15)Cl2—C38—H381108.5
C18—C19—H192114.0 (14)Cl5—C381—Cl4105.6 (7)
C20—C19—H192114.2 (14)Cl5—C381—Cl6114.0 (7)
H191—C19—H192106 (2)Cl4—C381—Cl6118.6 (6)
C19—C20—C16102.68 (17)Cl5—C381—H3811105.9
C19—C20—C21102.59 (17)Cl4—C381—H3811105.6
C16—C20—C21104.22 (17)Cl6—C381—H3811106.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C38—H381···Cg10.972.443.399173
C381—H3811···Cg20.982.613.521154

Experimental details

Crystal data
Chemical formulaC38H37Cl3
Mr600.07
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.0833 (4), 14.6343 (10), 16.2725 (12)
α, β, γ (°)93.641 (5), 94.437 (4), 90.770 (4)
V3)1441.15 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.59 × 0.29 × 0.24
Data collection
DiffractometerArea
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2006)
Tmin, Tmax0.90, 0.92
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
18141, 5889, 4451
Rint0.074
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.162, 1.00
No. of reflections5889
No. of parameters505
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.83

Computer programs: APEX2 (Bruker, 2006), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Selected geometric parameters (Å, º) top
Cl1—C381.756 (5)C16—C201.556 (3)
Cl2—C381.736 (6)C17—C181.550 (3)
Cl3—C381.794 (6)C18—C191.541 (3)
Cl4—C3811.704 (12)C18—C221.552 (3)
Cl5—C3811.795 (12)C19—C201.537 (3)
Cl6—C3811.658 (11)C20—C211.553 (3)
C1—C21.413 (3)C21—C221.575 (3)
C1—C61.368 (3)C21—C231.548 (3)
C2—C31.361 (4)C22—C241.544 (3)
C3—C41.422 (3)C23—C261.542 (3)
C4—C51.425 (3)C23—C271.550 (3)
C4—C71.415 (3)C24—C251.540 (3)
C5—C61.417 (3)C24—C271.556 (3)
C5—C101.412 (3)C25—C261.563 (3)
C7—C81.367 (3)C27—C281.511 (3)
C8—C91.421 (3)C28—C291.374 (3)
C9—C101.373 (3)C28—C331.423 (3)
C9—C111.513 (3)C29—C301.417 (3)
C11—C121.550 (3)C30—C311.424 (3)
C11—C151.556 (3)C30—C341.415 (3)
C12—C131.535 (3)C31—C321.416 (3)
C12—C171.550 (3)C31—C371.420 (3)
C13—C141.562 (3)C32—C331.363 (3)
C14—C151.531 (3)C34—C351.364 (4)
C15—C161.545 (3)C35—C361.408 (4)
C16—C171.580 (3)C36—C371.365 (4)
C2—C1—C6120.4 (2)C20—C21—C22102.95 (17)
C1—C2—C3120.3 (2)C20—C21—C23122.72 (18)
C2—C3—C4120.7 (2)C22—C21—C23102.85 (17)
C3—C4—C5119.1 (2)C18—C22—C21103.20 (17)
C3—C4—C7122.6 (2)C18—C22—C24123.41 (18)
C5—C4—C7118.3 (2)C21—C22—C24102.85 (16)
C4—C5—C6118.4 (2)C21—C23—C26113.65 (18)
C4—C5—C10118.8 (2)C21—C23—C27100.81 (16)
C6—C5—C10122.7 (2)C26—C23—C2799.68 (18)
C5—C6—C1121.0 (2)C22—C24—C25114.65 (19)
C4—C7—C8121.2 (2)C22—C24—C27100.62 (17)
C7—C8—C9121.3 (2)C25—C24—C2799.23 (17)
C8—C9—C10118.0 (2)C24—C25—C26103.21 (18)
C8—C9—C11121.1 (2)C23—C26—C25103.04 (17)
C10—C9—C11120.7 (2)C23—C27—C2493.55 (17)
C5—C10—C9122.4 (2)C23—C27—C28118.46 (19)
C9—C11—C12119.44 (18)C24—C27—C28117.74 (18)
C9—C11—C15118.04 (18)C27—C28—C29122.4 (2)
C12—C11—C1593.27 (16)C27—C28—C33119.7 (2)
C11—C12—C1399.73 (18)C29—C28—C33117.7 (2)
C11—C12—C17100.98 (17)C28—C29—C30122.2 (2)
C13—C12—C17113.39 (17)C29—C30—C31119.0 (2)
C12—C13—C14103.27 (18)C29—C30—C34122.1 (2)
C13—C14—C15102.96 (18)C31—C30—C34118.9 (2)
C14—C15—C1199.77 (18)C30—C31—C32118.3 (2)
C14—C15—C16114.65 (18)C30—C31—C37118.8 (2)
C11—C15—C16100.76 (17)C32—C31—C37122.9 (2)
C15—C16—C17102.56 (16)C31—C32—C33120.9 (2)
C15—C16—C20122.89 (18)C28—C33—C32121.9 (2)
C17—C16—C20102.65 (17)C30—C34—C35120.8 (2)
C12—C17—C16102.74 (17)C34—C35—C36120.5 (2)
C12—C17—C18122.80 (18)C35—C36—C37120.4 (2)
C16—C17—C18103.31 (16)C31—C37—C36120.6 (2)
C17—C18—C19102.78 (17)Cl3—C38—Cl1110.8 (3)
C17—C18—C22104.64 (17)Cl3—C38—Cl2109.7 (3)
C19—C18—C22101.88 (17)Cl1—C38—Cl2113.8 (3)
C18—C19—C2095.48 (17)Cl5—C381—Cl4105.6 (7)
C19—C20—C16102.68 (17)Cl5—C381—Cl6114.0 (7)
C19—C20—C21102.59 (17)Cl4—C381—Cl6118.6 (6)
C16—C20—C21104.22 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C38—H381···Cg10.972.443.399172.7
C381—H3811···Cg20.982.613.521153.9
 

Acknowledgements

The authors acknowledge the donors of the American Chemical Society Petroleum Research Fund for financial support (to JMN) and the National Science Foundation (grant No. CHE-0521047, to BMF) for funding to support the purchase of an X-ray diffractometer. We thank Professor Matthew B. Zimmt of Brown University for valuable discussions.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBodige, S. G., Sun, D., Marchand, A. P., Namboothiri, N. N., Shukla, R. & Watson, W. H. (1999). J. Chem. Crystallogr. 29, 523–530.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChou, T.-C., Hwa, C.-L., Lin, J.-J., Liao, K.-C. & Tseng, J.-C. (2005). J. Org. Chem. 70, 9717–9726.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKlärner, F.-G., Panitzky, J., Bläser, D. & Boese, R. (2001). Tetrahedron, 57, 3673–3687.  Google Scholar
First citationKurebayashi, H., Haino, T., Usui, S. & Fukazawa, Y. (2001). Tetrahedron, 57, 8667–8674.  Web of Science CSD CrossRef CAS Google Scholar
First citationNadeau, J. M., Liu, M., Waldeck, D. H. & Zimmt, M. B. (2003). J. Am. Chem. Soc. 125, 15964–15973.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNemoto, H., Kawano, T., Ueji, N., Bando, M., Kido, M., Suzuki, I. & Shibuya, M. (2000). Org. Lett. 2, 1015–1017.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2427-o2428
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds