inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium peroxodi­sulfate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland
*Correspondence e-mail: d.r.allan@ed.ac.uk

(Received 18 January 2006; accepted 3 February 2006; online 8 February 2006)

The asymmetric unit of disodium peroxodisulfate 2Na+·S2O82− consists of a single Na+ cation and half of a peroxodisulfate dianion, the latter lying across a crystallographic inversion centre. The crystal structure is isostructural with that of potassium peroxodisulfate and it is composed of layers of mol­ecules, partitioned by the Na+ cations, parallel to the (0[\overline{1}]1) plane of the triclinic cell. Neighbouring mol­ecules within each layer are bridged end-to-end by pairs of short S⋯O inter­molecular contacts [S⋯O = 3.074 (2) Å].

Comment

Sodium peroxodisulfate, (I)[link], readily forms SO4 radicals in hot aqueous solution. It is a powerful oxidizing and bleaching agent and it can also be used as a polymerization promoter, as well as providing a cleaner alternative to ferric chloride for copper etchant solutions (Serguchev et al., 1980[Serguchev, Yu. A. & Beletskaya, I. P. (1980). Usp. Khim. 49, 2257-2285.]).

[Scheme 1]

Compund (I) crystallizes from aqueous solution in the triclinic space group P[\overline{1}], with one Na+ cation and half of the peroxodisulfate dianion, the latter located across an inversion centre, in the asymmetric unit (Fig. 1[link]). Its crystal structure, which is isostructural with that of potassium peroxodisulfate, K2S2O8, [Naumov et al., 1997[Naumov, D. Yu. & Virovets, A. V. (1997). J. Struct. Chem. 38, 772-778.]; ICSD (Belsky et al., 2002[Belsky, A., Hellenbrandt, M., Karen, L.V. & Luksch, P. (2002). Acta Cryst. B58, 364-369.]) refcode 54024] is composed of layers of peroxodisulfate anions, which are aligned parallel to the (0[\overline{1}]1) plane and partitioned by corrugated layers of Na+ cations (Fig. 2[link]).

The intra­molecular S—O distances and O—S—O bond angles for the peroxodisulfate dianion are very simlar to those reported for the potassium analogue (see Table 1[link]). However, the cation environments for the two analogues are quite different. In potassium peroxodisulfate, the K+ cations are coordinated by nine O atoms with inter­atomic distances ranging from 2.751 (3) to 3.347 (3) Å. For sodium peroxo­disulfate, the Na+ cations are coordinated by six O atoms, with Na—O inter­atomic distances between 2.340 (2) and 2.596 (2) Å. It is inter­esting to note that in the sodium analogue, the O atom involved in the intra­molecular peroxo bond, O1, is not involved in the cation coordinate environment, although it does exhibit the shortest Na—O distance outside this range [Na1—O1 = 3.167 (2) Å]. The K1—O1 distance in the potassium analogue [3.089 (3) Å] is of an inter­mediate length compared with the other O atoms defining the coordination environment. The overall effect of the Na—O coordination environment in sodium peroxodisulfate is the formation of a three-dimensional network. This is indicated by the polyhedral plot shown in Fig. 3[link]. The Na+ cations form layers of distorted edge-sharing octa­hedra (shown as the blue polyhedra in Fig. 3[link]), while the tetra­hedra formed by each end of the dianions (shown as the yellow polyhedra in Fig. 3[link]) form corner-sharing bridges between the layers.

Perhaps the most striking difference between the two structures concerns the S⋯O intra­molecular contact distances. Within the layers, neighbouring anions are aligned end-to-end so that pairs of relatively short S⋯O contacts are formed. In the sodium analogue these contacts are extremely short [S1⋯O3 = 3.074 (2) Å] (Fig. 4[link]), while in the crystal structure of the potassium analogue these contacts are significantly longer [S1⋯O3 = 3.417 (3) Å].

[Figure 1]
Figure 1
The structure of sodium peroxodisulfate, showing 30% probability ellipsoids [symmetry code: (i) −x + 1, −y + 2, −z + 1].
[Figure 2]
Figure 2
The packing of sodium peroxodisulfate, viewed along the a axis.
[Figure 3]
Figure 3
A polyhedral representation of the crystal structure of sodium peroxodisulfate. The structure is viewed along the c axis, with the a axis directed to the right and the b axis directed upwards. The blue polyhedra indicate the layers of distorted edge-sharing NaO6 octa­hedra while the yellow tetra­hedra indicate the SO4 groups of the peroxodisulfate dianion.
[Figure 4]
Figure 4
The dashed lines indicate short S⋯O contacts in sodium peroxodisulfate. This view is approximately perpendicular to (0[\overline{1}]1).

Experimental

The sample of sodium peroxodisulfate was prepared from anhydrous starting material (of 99% purity, as received from Aldrich) and recrystallized from an aqueous solution by slow evaporation. A suitable crystal was selected from the resulting batch. The sample was cooled to 150 K using an Oxford Cryosystems low-temperature device (Cosier & Glazer, 1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]) during data collection.

Crystal data
  • 2Na+·O8S22−

  • Mr = 238.11

  • Triclinic, [P \overline 1]

  • a = 4.780 (2) Å

  • b = 5.575 (2) Å

  • c = 6.091 (3) Å

  • α = 101.871 (7)°

  • β = 103.337 (7)°

  • γ = 97.418 (7)°

  • V = 151.89 (11) Å3

  • Z = 1

  • Dx = 2.603 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 680 reflections

  • θ = 7–57°

  • μ = 1.02 mm−1

  • T = 150 K

  • Needle, colourless

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART diffractometer

  • φ and ω scans

  • Absorption correction: multi-scanSADABS (Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Gottingen, Germany.])Tmin = 0.67, Tmax = 0.95

  • 1326 measured reflections

  • 696 independent reflections

  • 590 reflections with I > 2σ(I)

  • Rint = 0.021

  • θmax = 28.9°

  • h = −6 → 6

  • k = −7 → 7

  • l = −8 → 7

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.034

  • S = 1.06

  • 590 reflections

  • 56 parameters

  • Modified Chebychev polynomial (Watkin, 1994[Watkin, D. J., (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]) with the coefficients 1.89, −1.11, 1.17

  • (Δ/σ)max < 0.001

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—O1 1.6392 (19)
S1—O2 1.4389 (18)
S1—O3 1.4408 (19)
S1—O4 1.4396 (19)
O1—O1i 1.479 (3)
Na1—O3 2.376 (2)
Na1—O3ii 2.380 (2)
Na1—O2iii 2.389 (2)
Na1—O2iv 2.476 (2)
Na1—O4v 2.340 (2)
Na1—O4vi 2.596 (2)
O1—S1—O2 97.30 (11)
O1—S1—O3 105.92 (11)
O1—S1—O4 106.87 (11)
O2—S1—O3 115.78 (12)
O2—S1—O4 115.65 (12)
O3—S1—O4 113.08 (11)
O1i—O1—S1 106.26 (17)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z; (iii) x-1, y-1, z; (iv) -x+1, -y+1, -z; (v) -x+1, -y+1, -z+1; (vi) x-1, y, z.

Indexing with GEMINI (Sparks, 1999[Sparks, R. A. (1999). GEMINI. Bruker AXS Inc, Madison, Wisconsin, USA.]) revealed that the sample was twinned non-merohedrally with two domains. The data set was integrated using the orientation matrix of the stronger subset of reflections, corresponding to the larger domain. During refinement, the ROTAX procedure, as implemented in the CRYSTALS refinement package (Cooper et al., 2002[Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168-174.]), was used to identify the relationship between the two domains. This could be expressed by the matrix ([\overline{1}]00, 0[\overline{1}]0, 0.667 0.523 1), which corresponds to a twofold rotation about the c* axis. Subsequent refinement indicated that the twin fraction of the second domain was 0.379 (8).

Data collection: SMART (Bruker Nonius, 2001[Bruker-Nonius (2001). SMART. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT; data reduction: SAINT (Bruker Nonius, 2003[Bruker-Nonius (2003). SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molec­ular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: SMART (Bruker–Nonius, 2001); cell refinement: SAINT; data reduction: SAINT (Bruker–Nonius, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2003).

disodium peroxodisulfate top
Crystal data top
2Na+·O8S22Z = 1
Mr = 238.11F(000) = 118
Triclinic, P1Dx = 2.603 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.780 (2) ÅCell parameters from 680 reflections
b = 5.575 (2) Åθ = 7–57°
c = 6.091 (3) ŵ = 1.02 mm1
α = 101.871 (7)°T = 150 K
β = 103.337 (7)°Needle, colourless
γ = 97.418 (7)°0.20 × 0.05 × 0.05 mm
V = 151.89 (11) Å3
Data collection top
Bruker SMART
diffractometer
590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 28.9°, θmin = 3.6°
Absorption correction: multi-scan
SADABS (Sheldrick, 2004)
h = 66
Tmin = 0.67, Tmax = 0.95k = 77
1326 measured reflectionsl = 87
696 independent reflections
Refinement top
Refinement on F0 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.038 Modified Chebychev polynomial (Watkin, 1994; Prince, 1982) with the coefficients 1.89, -1.11, 1.17
wR(F2) = 0.034(Δ/σ)max = 0.000217
S = 1.06Δρmax = 0.48 e Å3
590 reflectionsΔρmin = 0.42 e Å3
56 parameters
Special details top

Refinement. ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 T min and Tmax reported: 0.670 0.950 T min(prime) and Tmax expected: 0.814 0.950 RR(prime) = 0.824 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ············. 0.82

The crystal was a fine needle and the absorption correction correspondingly anisotropic.

PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ······. 0.97

This value is only marginally smaller than the ideal (0.99).

PLAT432_ALERT_2_C Short Inter X···Y Contact S1.. O3.. 3.07 A ng.

This short intermolecular contact bridges persulfate molecules end-on to form infinite chains. This interaction is similar to that observed by Naumov et al. (1997) for the isostructural potassium persulfate where the molecules are also bridged by short S···O intermolecular bonds. In this instance, however, the distance is 3.417 A ng.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.0359 (2)0.31397 (19)0.20685 (18)0.0131
S10.61154 (13)0.78124 (11)0.24744 (11)0.0080
O10.5785 (4)1.0388 (3)0.4180 (3)0.0143
O20.7722 (4)0.8959 (3)0.1113 (3)0.0113
O30.3176 (4)0.6526 (3)0.1263 (3)0.0111
O40.7701 (4)0.6451 (3)0.3949 (3)0.0130
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0141 (5)0.0136 (5)0.0102 (5)0.0005 (4)0.0012 (4)0.0032 (4)
S10.0088 (3)0.0082 (3)0.0068 (3)0.00165 (19)0.0025 (2)0.00122 (19)
O10.0223 (10)0.0094 (8)0.0132 (9)0.0009 (7)0.0125 (8)0.0006 (7)
O20.0135 (9)0.0106 (8)0.0112 (8)0.0013 (7)0.0063 (7)0.0031 (6)
O30.0099 (9)0.0106 (8)0.0114 (8)0.0004 (7)0.0016 (7)0.0017 (7)
O40.0119 (9)0.0165 (9)0.0116 (9)0.0046 (7)0.0013 (7)0.0065 (7)
Geometric parameters (Å, º) top
S1—O11.6392 (19)Na1—O3ii2.380 (2)
S1—O21.4389 (18)Na1—O2iii2.389 (2)
S1—O31.4408 (19)Na1—O2iv2.476 (2)
S1—O41.4396 (19)Na1—O4v2.340 (2)
O1—O1i1.479 (3)Na1—O4vi2.596 (2)
Na1—O32.376 (2)Na1—Na1ii3.565 (2)
O1—S1—O297.30 (11)O2iii—Na1—Na1ii121.43 (7)
O1—S1—O3105.92 (11)O2iv—Na1—Na1ii73.92 (6)
O1—S1—O4106.87 (11)O4vi—Na1—Na1ii79.90 (6)
O2—S1—O3115.78 (12)O4v—Na1—O3103.99 (8)
O2—S1—O4115.65 (12)O3ii—Na1—O382.92 (8)
O3—S1—O4113.08 (11)O2iii—Na1—O3153.31 (8)
O1i—O1—S1106.26 (17)O2iv—Na1—O377.27 (7)
O4v—Na1—O3ii154.76 (8)O4vi—Na1—O385.88 (8)
O4v—Na1—O2iii97.98 (8)Na1ii—Na1—O341.50 (5)
O3ii—Na1—O2iii83.62 (7)Na1vii—O2—Na1iv102.44 (7)
O4v—Na1—O2iv126.29 (8)Na1vii—O2—S1127.66 (11)
O3ii—Na1—O2iv78.77 (7)Na1iv—O2—S1127.67 (11)
O2iii—Na1—O2iv77.56 (7)Na1—O3—Na1ii97.08 (8)
O4v—Na1—O4vi77.36 (7)Na1—O3—S1128.52 (11)
O3ii—Na1—O4vi79.00 (7)Na1ii—O3—S1134.38 (11)
O2iii—Na1—O4vi113.94 (8)Na1v—O4—Na1viii102.64 (7)
O2iv—Na1—O4vi153.52 (7)Na1v—O4—S1137.82 (12)
O4v—Na1—Na1ii139.91 (7)Na1viii—O4—S1117.76 (11)
O3ii—Na1—Na1ii41.42 (5)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x1, y1, z; (iv) x+1, y+1, z; (v) x+1, y+1, z+1; (vi) x1, y, z; (vii) x+1, y+1, z; (viii) x+1, y, z.
 

Acknowledgements

We thank Dr F. P. A. Fabbiani for her help during the data collection and Professor A. J. Blake for his help in preparing this manuscript. We also thank the EPSRC for funding both this project and DRA's Advanced Research Fellowship.

References

First citationAltomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBelsky, A., Hellenbrandt, M., Karen, L.V. & Luksch, P. (2002). Acta Cryst. B58, 364–369.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker–Nonius (2001). SMART. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker–Nonius (2003). SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168–174.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNaumov, D. Yu. & Virovets, A. V. (1997). J. Struct. Chem. 38, 772–778.  CrossRef CAS Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer–Verlag.  Google Scholar
First citationSerguchev, Yu. A. & Beletskaya, I. P. (1980). Usp. Khim. 49, 2257–2285.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSparks, R. A. (1999). GEMINI. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., (1994). Acta Cryst. A50, 411–437.  CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds