Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title one-dimensional coordination polymer, [Cu(tdzdta)(phen)(H2O)]n [where tdzdta2− is the 1,3,4-thia­diazole-2,5-diyldithio­diacetate dianion (C6H4N2O4S32−) and phen is 1,10-phenanthroline (C12H8N2)], the CuII atom displays an elongated square-pyramidal coordination geometry with the base capped by one very long semicoordinate Cu—Ocarbox­ylate bond [2.842 (2) Å]. The CuII ions are bridged by tdzdta2− groups, resulting in a one-dimensional chain structure. The intra­chain Cu...Cu separation is 9.112 (4) Å. Furthermore, the chains are linked into a three-dimensional supramolecular network via hydrogen bonds and π–π stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039784/jh6028sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039784/jh6028Isup2.hkl
Contains datablock I

CCDC reference: 296593

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.048
  • wR factor = 0.171
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT322_ALERT_2_C Check Hybridisation of S2 in Main Residue . ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

We have studied metal complexes of dicarboxylic acids having two –X—CH2CO2H arms (where X is O or S) on a aromatic unit, such as benzenedioxyacetatic acid (Gao et al., 2004a,b) and 4-(carboxymethoxy)phenylsulfanylacetic acid (Gao, Su et al., 2005; Huo et al., 2005). 1,3,4-Thiadiazolyl-2,5-dithioacetic acid (tdzdtaH2) is also a multidentate flexible aromatic carboxylate having two –S—CH2CO2H arms, and it can be considered as an potential candidate for the construction of supramolecular complexes. Recently, we reported the crystal structure of a mononuclear CuII complex based on the tdzdtaH ligand, namely [Cu(tdzdtaH)(C10H8N2)2](tdzdtaH)·2H2O (Gao, Huo et al., 2005), in which the tdzdtaH ligand shows monodentate coordination. We have now synthesized the title new one-dimensional chain CuII coordination polymer, [Cu((tdzdta)(phen)(H2O)]n, (I), and report its crystal structure here.

The CuII atom in (I) is coordinated by three carboxyl O atoms from two different tdzdta2− groups, two N donors from the phen ligand and one water molecule, displaying an elongated square-pyramidal coordination geometry, with the base capped by one very long semicoordinate Cu1—O2 bond distance of 2.842 (2) Å (Sieroń et al., 2002) (Fig. 1). Atoms N1, N2, O1 and O3i [symmetry code: (i) x, −y + 3/2, z + 1/2] define the basal plane [r.m.s. deviation 0.053 (3) Å]. The CuII atom is displaced from the mean basal plane by 0.19 (4) Å. Atom O1W occupies the apical site, with the Cu—O1W bond distance being 2.210 (3) Å. Both thioacetate groups are twisted out of the 1,3,4-thiadiazole ring plane, with torsion angles of 64.8 (3)° (C15—S1—C14—C13) and 64.5 (3)° (C16—S2—C17—C18), respectively. This demonstrates their obvious conformational flexibility.

The O1—C13 [1.277 (4) Å] and O3—C18 distances [1.257 (4) Å] are longer than those of O2—C13 [1.228 (4) Å] and O4—C18 [1.225 (4) Å], in agreement with the greater double-bond character of the latter bonds. Each tdzdta2− ligand serves as a bis-monodentate bridging group to link two CuII ions, giving rise to a one-dimensional chain structure (Fig. 2). The antiparallel phen ligands lie on alternate sides of the chain. The polymeric chains run along the c axis of the unit cell and show a corrugated arrangement. The shortest adjacent intrachain Cu···Cu distance is 9.112 (4) Å.

The polymeric chains are connected via hydrogen bonds between the carboxylate O atoms and the water molecule (Table 2), leading to a two-dimensional hydrogen-bonding layer architecture along the crystallographic ac plane. Individual layers are stacked in an offset manner through ππ stacking interactions between adjacent phen molecules at 3.432 (3) Å. With the help of the hydrogen-bonding and ππ stacking interactions, a three-dimensional supramolecular network structure is constructed, as shown in Fig. 3.

Experimental top

1,3,4-Thiadiazolyl-2,5-dithioacetic acid (tdzdtaH2) was prepared from 2,5-dimercapto-1,3,4-thiadiazole, using the method for synthesis of benzene-1,4-dioxyacetic acid reported by Liu et al. (2004). The copper complex was obtained from the reaction of copper dinitrate hexahydrate (1.43 g, 5 mmol), 1,10-phenanthroline (1.99 g, 10 mmol) and tdzdtaH2 (2.66 g, 10 mmol) in water (Volume?), and then the pH was raised to about 6 with 0.2 M sodium hydroxide. The hot solution (heating temperature and time?) was filtered and yielded blue crystals of (I) when left aside for several days. CHN analysis, calculated for C18H14N4O5S3Cu: C 41.10, H 2.68, N 10.65%; found: C 41.13, H 2.71, N 10.69%.

Refinement top

C-bound H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C), and were refined in the riding-model approximation. The H atoms of the water molecule were located in a difference Fourier map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A plot of the title complex, with 30% probability displacement ellipsoids. The semicoordinate bond is shown as a dashed line. [Symmetry codes: (i) x, −y + 3/2, z + 1/2; (A) x, −y + 3/2, z − 1/2.]
[Figure 2] Fig. 2. The 1-D chain structure of the title complex. The semicoordinate bond is shown as a dashed line.
[Figure 3] Fig. 3. A packing diagram of the title complex, viewed along the a axis. Hydrogen bonds and the semicoordinate bond are shown as dashed lines (the H atoms on C atoms have been omitted).
catena-Poly[[aqua(1,10-phenanthroline-κ2N,N')copper(II)]- µ-1,3,4-thiadiazol-2,5-diyldithiodiacetato] top
Crystal data top
[Cu(C6H4N2O4S3)(C12H8N2)(H2O)]F(000) = 1068
Mr = 526.09Dx = 1.744 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16825 reflections
a = 7.226 (1) Åθ = 3.3–27.5°
b = 15.230 (3) ŵ = 1.44 mm1
c = 18.222 (4) ÅT = 295 K
β = 92.19 (3)°Prism, blue
V = 2003.9 (7) Å30.39 × 0.28 × 0.21 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4590 independent reflections
Radiation source: fine-focus sealed tube4016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 89
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.623, Tmax = 0.737l = 2323
17853 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.119P)2 + 1.1283P]
where P = (Fo2 + 2Fc2)/3
4590 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.55 e Å3
3 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(C6H4N2O4S3)(C12H8N2)(H2O)]V = 2003.9 (7) Å3
Mr = 526.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.226 (1) ŵ = 1.44 mm1
b = 15.230 (3) ÅT = 295 K
c = 18.222 (4) Å0.39 × 0.28 × 0.21 mm
β = 92.19 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4590 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4016 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.737Rint = 0.062
17853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0483 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.55 e Å3
4590 reflectionsΔρmin = 0.50 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.43020 (5)0.75499 (2)0.48148 (2)0.03130 (16)
S10.98859 (12)0.84555 (6)0.29926 (5)0.0418 (2)
S21.02624 (13)0.70449 (7)0.18212 (6)0.0480 (3)
S30.84385 (12)0.54647 (6)0.10634 (5)0.0402 (2)
O10.5230 (3)0.81527 (15)0.39541 (13)0.0356 (5)
O1W0.1509 (4)0.8140 (3)0.4827 (2)0.0795 (12)
H1W10.041 (3)0.801 (5)0.469 (4)0.119*
H1W20.151 (9)0.853 (4)0.516 (3)0.119*
O20.8001 (3)0.76688 (16)0.43470 (14)0.0396 (5)
N10.3515 (4)0.64695 (18)0.42210 (15)0.0365 (6)
N20.3902 (4)0.66975 (18)0.56652 (15)0.0353 (6)
N30.7377 (4)0.7219 (2)0.25759 (17)0.0448 (7)
N40.7040 (4)0.6491 (2)0.21182 (16)0.0437 (7)
C10.3382 (5)0.6378 (2)0.3495 (2)0.0443 (8)
H10.37260.68420.31980.053*
C20.2730 (6)0.5591 (3)0.3163 (2)0.0523 (9)
H20.26440.55430.26540.063*
C30.2223 (6)0.4898 (3)0.3596 (3)0.0523 (9)
H30.17780.43820.33800.063*
C40.2381 (4)0.4972 (2)0.4368 (2)0.0423 (8)
C50.1963 (5)0.4279 (2)0.4881 (3)0.0527 (10)
H50.15730.37350.47020.063*
C60.2125 (5)0.4405 (2)0.5611 (3)0.0506 (9)
H60.18200.39510.59260.061*
C70.2762 (5)0.5228 (2)0.5915 (2)0.0422 (8)
C80.2988 (5)0.5409 (3)0.6678 (2)0.0514 (9)
H80.26840.49870.70220.062*
C90.3664 (5)0.6217 (3)0.6906 (2)0.0472 (8)
H90.38100.63430.74040.057*
C100.4129 (5)0.6845 (3)0.63819 (19)0.0407 (7)
H100.46100.73820.65400.049*
C110.3234 (4)0.5908 (2)0.54331 (19)0.0355 (6)
C120.3032 (4)0.5781 (2)0.46514 (19)0.0367 (7)
C130.6996 (4)0.81329 (19)0.39506 (16)0.0310 (6)
C140.7788 (5)0.8793 (2)0.34144 (18)0.0362 (7)
H14A0.80270.93400.36740.043*
H14B0.68560.89100.30300.043*
C150.8990 (5)0.7557 (2)0.24900 (19)0.0354 (7)
C160.8412 (4)0.6322 (2)0.17009 (17)0.0346 (6)
C170.6030 (5)0.5183 (2)0.10691 (19)0.0371 (7)
H17A0.58330.46590.07740.045*
H17B0.57240.50380.15690.045*
C180.4682 (5)0.5897 (2)0.07819 (17)0.0350 (6)
O30.5378 (3)0.65280 (16)0.04436 (14)0.0413 (5)
O40.3041 (4)0.5791 (2)0.0903 (2)0.0687 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0306 (2)0.0283 (2)0.0353 (2)0.00449 (13)0.00505 (17)0.00281 (13)
S10.0356 (4)0.0480 (5)0.0425 (4)0.0129 (3)0.0104 (3)0.0094 (3)
S20.0381 (4)0.0500 (5)0.0571 (5)0.0089 (4)0.0159 (4)0.0156 (4)
S30.0387 (4)0.0324 (4)0.0494 (5)0.0061 (3)0.0004 (3)0.0051 (3)
O10.0316 (10)0.0327 (11)0.0429 (11)0.0030 (9)0.0068 (9)0.0006 (9)
O1W0.0313 (13)0.120 (3)0.086 (2)0.0195 (17)0.0125 (14)0.056 (2)
O20.0362 (12)0.0376 (12)0.0451 (13)0.0023 (10)0.0049 (10)0.0035 (10)
N10.0325 (13)0.0344 (13)0.0428 (14)0.0022 (11)0.0021 (11)0.0040 (11)
N20.0342 (13)0.0328 (13)0.0392 (13)0.0005 (10)0.0068 (11)0.0004 (11)
N30.0414 (16)0.0535 (18)0.0401 (15)0.0093 (14)0.0094 (12)0.0110 (13)
N40.0426 (15)0.0476 (17)0.0413 (14)0.0133 (13)0.0054 (12)0.0077 (13)
C10.0473 (19)0.0398 (18)0.0459 (18)0.0012 (15)0.0001 (15)0.0048 (15)
C20.052 (2)0.052 (2)0.053 (2)0.0065 (17)0.0026 (17)0.0147 (17)
C30.0431 (19)0.0413 (19)0.072 (2)0.0004 (16)0.0031 (18)0.0224 (18)
C40.0290 (14)0.0302 (16)0.068 (2)0.0006 (12)0.0024 (14)0.0064 (15)
C50.0366 (17)0.0278 (16)0.094 (3)0.0050 (13)0.0083 (19)0.0056 (18)
C60.0403 (18)0.0311 (17)0.081 (3)0.0018 (14)0.0143 (18)0.0124 (17)
C70.0296 (15)0.0362 (17)0.061 (2)0.0032 (12)0.0104 (14)0.0107 (15)
C80.0429 (19)0.053 (2)0.059 (2)0.0076 (16)0.0130 (17)0.0213 (18)
C90.0370 (17)0.061 (2)0.0445 (18)0.0083 (16)0.0073 (14)0.0096 (16)
C100.0350 (16)0.0476 (19)0.0396 (16)0.0030 (14)0.0039 (13)0.0024 (14)
C110.0266 (13)0.0296 (15)0.0507 (17)0.0026 (11)0.0068 (12)0.0046 (13)
C120.0262 (13)0.0295 (15)0.0546 (19)0.0006 (12)0.0055 (13)0.0018 (13)
C130.0332 (14)0.0245 (13)0.0357 (14)0.0024 (11)0.0069 (11)0.0041 (11)
C140.0381 (16)0.0295 (15)0.0413 (15)0.0053 (12)0.0082 (13)0.0003 (12)
C150.0336 (16)0.0388 (17)0.0341 (15)0.0031 (12)0.0056 (13)0.0005 (12)
C160.0330 (14)0.0333 (15)0.0377 (14)0.0002 (12)0.0015 (12)0.0014 (12)
C170.0409 (16)0.0262 (14)0.0438 (16)0.0008 (12)0.0045 (13)0.0006 (12)
C180.0377 (15)0.0286 (14)0.0386 (15)0.0005 (12)0.0018 (12)0.0012 (12)
O30.0364 (12)0.0379 (12)0.0496 (13)0.0032 (10)0.0030 (10)0.0143 (10)
O40.0409 (14)0.0585 (18)0.107 (3)0.0028 (13)0.0105 (16)0.0342 (18)
Geometric parameters (Å, º) top
Cu1—O3i1.955 (2)C1—H10.9300
Cu1—O11.958 (2)C2—C31.376 (6)
Cu1—O22.842 (2)C2—H20.9300
Cu1—N12.038 (3)C3—C41.412 (6)
Cu1—N22.051 (3)C3—H30.9300
Cu1—O1W2.210 (3)C4—C121.410 (5)
O1—C131.277 (4)C4—C51.450 (6)
O2—C131.228 (4)C5—C61.345 (7)
C18—O41.225 (4)C5—H50.9300
C18—O31.257 (4)C6—C71.439 (6)
S1—C151.756 (3)C6—H60.9300
S1—C141.801 (3)C7—C111.409 (5)
S2—C151.739 (4)C7—C81.420 (6)
S2—C161.739 (3)C8—C91.382 (6)
S3—C161.748 (3)C8—H80.9300
S3—C171.793 (4)C9—C101.402 (5)
O1W—H1W10.85 (3)C9—H90.9300
O1W—H1W20.85 (6)C10—H100.9300
N1—C11.330 (5)C11—C121.440 (5)
N1—C121.363 (4)C13—C141.529 (4)
N2—C101.329 (4)C14—H14A0.9700
N2—C111.357 (4)C14—H14B0.9700
N3—C151.289 (5)C17—C181.539 (4)
N3—N41.403 (4)C17—H17A0.9700
N4—C161.298 (4)C17—H17B0.9700
C1—C21.415 (5)O3—Cu1ii1.955 (2)
O3i—Cu1—O189.54 (10)C5—C6—H6119.3
O3i—Cu1—N1171.01 (11)C7—C6—H6119.3
O1—Cu1—N192.89 (11)C11—C7—C8116.5 (3)
O3i—Cu1—N294.37 (11)C11—C7—C6118.8 (4)
O1—Cu1—N2164.76 (10)C8—C7—C6124.7 (3)
N1—Cu1—N281.12 (12)C9—C8—C7119.6 (3)
O3i—Cu1—O1W92.59 (12)C9—C8—H8120.2
O1—Cu1—O1W99.11 (15)C7—C8—H8120.2
N1—Cu1—O1W95.57 (13)C8—C9—C10119.6 (4)
N2—Cu1—O1W95.42 (16)C8—C9—H9120.2
O2—Cu1—O151.39 (11)C10—C9—H9120.2
O2—Cu1—O1W147.86 (12)N2—C10—C9122.0 (4)
O2—Cu1—N197.97 (10)N2—C10—H10119.0
O2—Cu1—N2115.36 (10)C9—C10—H10119.0
O2—Cu1—O3i76.89 (11)N2—C11—C7123.3 (3)
C15—S1—C1498.37 (16)N2—C11—C12116.7 (3)
C15—S2—C1687.02 (16)C7—C11—C12120.0 (3)
C16—S3—C1798.02 (15)N1—C12—C4123.4 (3)
C13—O1—Cu1111.5 (2)N1—C12—C11116.6 (3)
Cu1—O1W—H1W1139 (5)C4—C12—C11120.0 (3)
Cu1—O1W—H1W2108 (4)O2—C13—O1125.4 (3)
H1W1—O1W—H1W2111 (7)O2—C13—C14121.8 (3)
C1—N1—C12118.7 (3)O1—C13—C14112.7 (3)
C1—N1—Cu1128.4 (2)C13—C14—S1115.3 (2)
C12—N1—Cu1112.8 (2)C13—C14—H14A108.5
C10—N2—C11119.0 (3)S1—C14—H14A108.5
C10—N2—Cu1128.3 (2)C13—C14—H14B108.5
C11—N2—Cu1112.6 (2)S1—C14—H14B108.5
C15—N3—N4112.4 (3)H14A—C14—H14B107.5
C16—N4—N3112.7 (3)N3—C15—S2114.2 (3)
N1—C1—C2121.7 (4)N3—C15—S1124.4 (3)
N1—C1—H1119.2S2—C15—S1121.4 (2)
C2—C1—H1119.2N4—C16—S2113.7 (3)
C3—C2—C1119.7 (4)N4—C16—S3124.4 (3)
C3—C2—H2120.1S2—C16—S3121.90 (19)
C1—C2—H2120.1C18—C17—S3115.5 (2)
C2—C3—C4119.8 (3)C18—C17—H17A108.4
C2—C3—H3120.1S3—C17—H17A108.4
C4—C3—H3120.1C18—C17—H17B108.4
C12—C4—C3116.6 (3)S3—C17—H17B108.4
C12—C4—C5118.3 (4)H17A—C17—H17B107.5
C3—C4—C5125.1 (3)O4—C18—O3126.8 (3)
C6—C5—C4121.5 (3)O4—C18—C17116.7 (3)
C6—C5—H5119.3O3—C18—C17116.5 (3)
C4—C5—H5119.3C18—O3—Cu1ii132.7 (2)
C5—C6—C7121.3 (3)
C15—S1—C14—C1364.8 (3)Cu1—N2—C11—C7176.8 (2)
C16—S3—C17—C1864.5 (3)C10—N2—C11—C12179.5 (3)
O3i—Cu1—O1—C1367.7 (2)Cu1—N2—C11—C123.7 (3)
N1—Cu1—O1—C13103.6 (2)C8—C7—C11—N21.0 (5)
N2—Cu1—O1—C1337.4 (5)C6—C7—C11—N2177.9 (3)
O1W—Cu1—O1—C13160.3 (2)C8—C7—C11—C12179.5 (3)
O1—Cu1—N1—C112.3 (3)C6—C7—C11—C121.6 (5)
N2—Cu1—N1—C1178.2 (3)C1—N1—C12—C40.5 (5)
O1W—Cu1—N1—C187.1 (3)Cu1—N1—C12—C4177.8 (2)
O1—Cu1—N1—C12169.6 (2)C1—N1—C12—C11178.9 (3)
N2—Cu1—N1—C123.7 (2)Cu1—N1—C12—C112.8 (3)
O1W—Cu1—N1—C1291.0 (2)C3—C4—C12—N10.6 (5)
O3i—Cu1—N2—C107.4 (3)C5—C4—C12—N1178.2 (3)
O1—Cu1—N2—C10111.8 (4)C3—C4—C12—C11179.9 (3)
N1—Cu1—N2—C10179.5 (3)C5—C4—C12—C111.1 (5)
O1W—Cu1—N2—C1085.7 (3)N2—C11—C12—N10.6 (4)
O3i—Cu1—N2—C11176.2 (2)C7—C11—C12—N1179.9 (3)
O1—Cu1—N2—C1171.7 (5)N2—C11—C12—C4178.7 (3)
N1—Cu1—N2—C114.0 (2)C7—C11—C12—C40.7 (5)
O1W—Cu1—N2—C1190.8 (2)Cu1—O1—C13—O212.7 (4)
C15—N3—N4—C160.8 (5)Cu1—O1—C13—C14164.55 (19)
C12—N1—C1—C20.9 (5)O2—C13—C14—S135.4 (4)
Cu1—N1—C1—C2177.1 (3)O1—C13—C14—S1147.3 (2)
N1—C1—C2—C30.3 (6)N4—N3—C15—S21.7 (4)
C1—C2—C3—C40.9 (6)N4—N3—C15—S1178.2 (3)
C2—C3—C4—C121.3 (5)C16—S2—C15—N31.6 (3)
C2—C3—C4—C5177.5 (4)C16—S2—C15—S1178.3 (2)
C12—C4—C5—C62.2 (5)C14—S1—C15—N311.6 (4)
C3—C4—C5—C6179.1 (4)C14—S1—C15—S2168.5 (2)
C4—C5—C6—C71.4 (6)N3—N4—C16—S20.4 (4)
C5—C6—C7—C110.5 (5)N3—N4—C16—S3179.6 (3)
C5—C6—C7—C8179.3 (4)C15—S2—C16—N41.1 (3)
C11—C7—C8—C90.8 (5)C15—S2—C16—S3179.7 (2)
C6—C7—C8—C9178.1 (3)C17—S3—C16—N412.3 (3)
C7—C8—C9—C100.4 (5)C17—S3—C16—S2166.9 (2)
C11—N2—C10—C91.3 (5)S3—C17—C18—O4167.0 (3)
Cu1—N2—C10—C9175.0 (2)S3—C17—C18—O313.4 (4)
C8—C9—C10—N21.5 (5)O4—C18—O3—Cu1ii14.0 (6)
C10—N2—C11—C70.0 (5)C17—C18—O3—Cu1ii165.6 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2iii0.85 (3)1.90 (4)2.745 (4)176 (6)
O1W—H1W2···O4i0.85 (6)2.00 (4)2.749 (5)146 (6)
Symmetry codes: (i) x, y+3/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C6H4N2O4S3)(C12H8N2)(H2O)]
Mr526.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.226 (1), 15.230 (3), 18.222 (4)
β (°) 92.19 (3)
V3)2003.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.39 × 0.28 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.623, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
17853, 4590, 4016
Rint0.062
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.171, 1.06
No. of reflections4590
No. of parameters286
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.50

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O3i1.955 (2)Cu1—O1W2.210 (3)
Cu1—O11.958 (2)O1—C131.277 (4)
Cu1—O22.842 (2)O2—C131.228 (4)
Cu1—N12.038 (3)C18—O41.225 (4)
Cu1—N22.051 (3)C18—O31.257 (4)
O3i—Cu1—O189.54 (10)N1—Cu1—O1W95.57 (13)
O3i—Cu1—N1171.01 (11)N2—Cu1—O1W95.42 (16)
O1—Cu1—N192.89 (11)O2—Cu1—O151.39 (11)
O3i—Cu1—N294.37 (11)O2—Cu1—O1W147.86 (12)
O1—Cu1—N2164.76 (10)O2—Cu1—N197.97 (10)
N1—Cu1—N281.12 (12)O2—Cu1—N2115.36 (10)
O3i—Cu1—O1W92.59 (12)O2—Cu1—O3i76.89 (11)
O1—Cu1—O1W99.11 (15)
Symmetry code: (i) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2ii0.85 (3)1.90 (4)2.745 (4)176 (6)
O1W—H1W2···O4i0.85 (6)2.00 (4)2.749 (5)146 (6)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds