organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{(1S,2S,4aR,8R,8aR)-8-Hy­dr­oxy-4a,8-di­methyl-1-[(2E)-2-methyl­but-2-eno­yl­­oxy]perhydro­naphthalen-2-yl}acrylic acid from Sclerorhachis platyrachis

aDepartment of Chemistry, Shahid Beheshti University, General Campus, Tehran, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 13 September 2011; accepted 15 September 2011; online 30 September 2011)

The eudesmane-type terpenoid, C20H30O5, isolated from Sclerorhachis platyrachis, has a deca­lin skeleton whose six-membered rings adopt chair conformations. The two methyl substituents occupy axial positions, whereas the other three substituents occupy equatorial positions. The hy­droxy group is an intra­molecular hydrogen-bond donor to the single-bond ester O atom; adjacent mol­ecules are linked through the carb­oxy­lic acid interacting with the hydroxyl group, forming a hydrogen-bonded chain running along the c axis.

Related literature

For the crystal structure of epiilic acid, see: Daniewski et al. (1986[Daniewski, W. M., Kroszcznski, W., Bloszyk, E., Drozdz, B., Nawrot, J., Rychlewska, U., Budesinsky, M. & Holub, M. (1986). Collect. Czech. Chem. Commun. 51, 1710-1721.]). For a review of eudesmane-type sesquiterpenoids, see: Wu et al. (2006[Wu, Q.-X., Shi, Y.-P. & Jia, Z.-J. (2006). Nat. Prod. Rep. 23, 699-734.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30O5

  • Mr = 350.44

  • Monoclinic, P 21

  • a = 6.2718 (1) Å

  • b = 19.0285 (3) Å

  • c = 8.4530 (2) Å

  • β = 110.184 (2)°

  • V = 946.85 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.872, Tmax = 0.872

  • 5962 measured reflections

  • 3663 independent reflections

  • 3635 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.076

  • S = 1.03

  • 3663 reflections

  • 238 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1705 Friedel pairs

  • Flack parameter: 0.08 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.85 (2) 1.80 (2) 2.648 (1) 174 (2)
O5—H5⋯O3 0.85 (2) 1.99 (2) 2.692 (1) 139 (2)
Symmetry code: (i) x, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Eudesmane-type of sesquiterpenoids (from the Asteraceae family) have been reviewed; some structural assignments and stereochemistries have also revised; however, the title compound (Scheme I) is not included in the review (Wu et al., 2006). The compound is a derivative of epiilic (vachanic) acid having a 1-(2-methylbut-2-enoyloxy) substitutent. The crystal structure of the parent acid itself, which was first isolated from Dittrichia vicossa (L.), has been reported (Daniewski et al., 186). The two methyl substituents occupy axial positions whereas the other three substituents occupy equatorial positions (Fig 1). The hydroxy group is an intramolecular hydrogen-bond donor to the single-bond ester O atom; adjacent molecules are linked through the carboxylic acid portion to form a hydrogen-bonded chain running along the c-axis of the monoclinic unit cell (Table 1).

Related literature top

For the crystal structure of epiilic acid, see: Daniewski et al. (1986). For a review of eudesmane-type sesquiterpenoids, see: Wu et al. (2006).

Experimental top

The leaves and stems of Sclerorhachis platyrachis (Compositae family) were collected from Sabzevar, Khorasan Razavi Province, Iran, at the flowering stage of the plant, i.e., around May. The aerial parts were dried in the shade. The aerial parts (300 g) were extracted with chloroform by maceration at room temperature. The extract was concentrated to a green gummy extract (16 g). The extract was subjected to column chromatography on silica gel (4×70 cm, 70–230 mesh) with a gradient of n-hexane–ethyl acetate and then methanol as eluent. Eighty-three fractions were collected according to TLC analysis and those giving similar spots were combined. Fraction 51 (n-hexane: ethylacetate 4:1) afforded colorless crystals of the title compound (500 mg).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The carboxylic and hydroxy H-atoms were located in a difference Fourier map, and were freely refined.

Structure description top

Eudesmane-type of sesquiterpenoids (from the Asteraceae family) have been reviewed; some structural assignments and stereochemistries have also revised; however, the title compound (Scheme I) is not included in the review (Wu et al., 2006). The compound is a derivative of epiilic (vachanic) acid having a 1-(2-methylbut-2-enoyloxy) substitutent. The crystal structure of the parent acid itself, which was first isolated from Dittrichia vicossa (L.), has been reported (Daniewski et al., 186). The two methyl substituents occupy axial positions whereas the other three substituents occupy equatorial positions (Fig 1). The hydroxy group is an intramolecular hydrogen-bond donor to the single-bond ester O atom; adjacent molecules are linked through the carboxylic acid portion to form a hydrogen-bonded chain running along the c-axis of the monoclinic unit cell (Table 1).

For the crystal structure of epiilic acid, see: Daniewski et al. (1986). For a review of eudesmane-type sesquiterpenoids, see: Wu et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H30O5 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain structure.
2-{(1S,2S,4aR,8R,8aR)-8-Hydroxy- 4a,8-dimethyl-1-[(2E)-2-methylbut-2-enoyloxy]decahydronaphthalen- 2-yl}acrylic acid top
Crystal data top
C20H30O5F(000) = 380
Mr = 350.44Dx = 1.229 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 4968 reflections
a = 6.2718 (1) Åθ = 5.6–74.1°
b = 19.0285 (3) ŵ = 0.71 mm1
c = 8.4530 (2) ÅT = 100 K
β = 110.184 (2)°Prism, colourless
V = 946.85 (3) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3663 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3635 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
Detector resolution: 10.4041 pixels mm-1θmax = 74.2°, θmin = 5.6°
ω scansh = 67
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2322
Tmin = 0.872, Tmax = 0.872l = 1010
5962 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.1079P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3663 reflectionsΔρmax = 0.19 e Å3
238 parametersΔρmin = 0.13 e Å3
1 restraintAbsolute structure: Flack (1983), 1705 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (11)
Crystal data top
C20H30O5V = 946.85 (3) Å3
Mr = 350.44Z = 2
Monoclinic, P21Cu Kα radiation
a = 6.2718 (1) ŵ = 0.71 mm1
b = 19.0285 (3) ÅT = 100 K
c = 8.4530 (2) Å0.20 × 0.20 × 0.20 mm
β = 110.184 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3663 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3635 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.872Rint = 0.015
5962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.19 e Å3
S = 1.03Δρmin = 0.13 e Å3
3663 reflectionsAbsolute structure: Flack (1983), 1705 Friedel pairs
238 parametersAbsolute structure parameter: 0.08 (11)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.94364 (17)0.50094 (5)0.32350 (12)0.0229 (2)
O21.0317 (2)0.39226 (6)0.42340 (14)0.0337 (2)
O30.88724 (14)0.44178 (4)0.13924 (11)0.01664 (18)
O40.64080 (17)0.41443 (5)0.00727 (13)0.0264 (2)
O50.76555 (15)0.51072 (5)0.43525 (11)0.01914 (19)
C11.0458 (2)0.43922 (7)0.33077 (16)0.0212 (3)
C21.1838 (2)0.43410 (7)0.21712 (15)0.0190 (2)
C31.3138 (3)0.37790 (8)0.2342 (2)0.0305 (3)
H3A1.31670.34310.31550.037*
H3B1.40420.37230.16510.037*
C41.1868 (2)0.49268 (6)0.09608 (15)0.0170 (2)
H41.29010.47660.03580.020*
C51.2922 (2)0.56070 (7)0.19001 (15)0.0200 (3)
H5A1.20690.57520.26360.024*
H5B1.45120.55140.26260.024*
C61.2884 (2)0.62031 (7)0.06860 (16)0.0199 (3)
H6A1.39280.60860.00730.024*
H6B1.34540.66370.13420.024*
C71.0501 (2)0.63443 (6)0.06021 (15)0.0167 (2)
C80.8926 (2)0.65941 (7)0.03410 (16)0.0205 (3)
H8A0.95910.70080.10240.031*
H8B0.87510.62170.10750.031*
H8C0.74350.67170.04770.031*
C91.0683 (2)0.69343 (7)0.17927 (17)0.0198 (3)
H9A1.10130.73830.11620.024*
H9B1.19680.68320.21820.024*
C100.8522 (2)0.70175 (7)0.33205 (16)0.0205 (3)
H10A0.72380.71410.29460.025*
H10B0.87200.74020.40470.025*
C110.8004 (2)0.63328 (7)0.43153 (15)0.0196 (3)
H11A0.92680.62260.47260.023*
H11B0.66110.63960.53130.023*
C120.7668 (2)0.57076 (7)0.32876 (14)0.0165 (2)
C130.5355 (2)0.57294 (7)0.30647 (15)0.0210 (3)
H13A0.52340.53360.23530.031*
H13B0.41510.56930.41690.031*
H13C0.51960.61730.25290.031*
C140.97307 (19)0.56460 (6)0.16172 (14)0.0150 (2)
H141.10380.55050.19680.018*
C150.95518 (19)0.50674 (6)0.04079 (14)0.0144 (2)
H150.84020.51980.01180.017*
C160.7264 (2)0.40082 (6)0.11125 (15)0.0178 (2)
C170.6621 (2)0.33936 (6)0.22701 (15)0.0172 (2)
C180.7910 (2)0.32087 (7)0.31761 (16)0.0196 (3)
H180.92270.34860.30210.024*
C190.7516 (2)0.26166 (7)0.44010 (17)0.0249 (3)
H19A0.88320.23010.40530.037*
H19B0.73010.28040.55260.037*
H19C0.61560.23560.44290.037*
C200.4449 (2)0.30420 (7)0.23055 (18)0.0249 (3)
H20A0.42100.26140.29900.037*
H20B0.31700.33640.27950.037*
H20C0.45560.29200.11540.037*
H10.881 (4)0.5016 (12)0.399 (3)0.053 (6)*
H50.787 (4)0.4729 (12)0.379 (3)0.041 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (5)0.0223 (5)0.0201 (4)0.0048 (4)0.0150 (4)0.0010 (4)
O20.0468 (6)0.0291 (5)0.0353 (6)0.0089 (5)0.0270 (5)0.0130 (5)
O30.0187 (4)0.0162 (4)0.0172 (4)0.0033 (3)0.0090 (3)0.0039 (3)
O40.0302 (5)0.0262 (5)0.0305 (5)0.0080 (4)0.0205 (4)0.0073 (4)
O50.0248 (5)0.0190 (5)0.0144 (4)0.0004 (4)0.0078 (3)0.0025 (4)
C10.0245 (6)0.0220 (6)0.0178 (6)0.0016 (5)0.0082 (5)0.0016 (5)
C20.0211 (5)0.0192 (6)0.0170 (5)0.0002 (5)0.0069 (4)0.0022 (5)
C30.0377 (8)0.0240 (7)0.0382 (8)0.0084 (6)0.0238 (7)0.0095 (6)
C40.0175 (6)0.0182 (6)0.0162 (5)0.0002 (4)0.0069 (5)0.0005 (5)
C50.0199 (6)0.0217 (7)0.0153 (5)0.0035 (5)0.0019 (4)0.0003 (5)
C60.0185 (6)0.0209 (6)0.0194 (6)0.0042 (5)0.0053 (5)0.0000 (5)
C70.0186 (6)0.0156 (6)0.0159 (5)0.0025 (4)0.0058 (5)0.0017 (4)
C80.0244 (6)0.0189 (6)0.0193 (6)0.0004 (5)0.0090 (5)0.0041 (5)
C90.0218 (6)0.0169 (6)0.0214 (6)0.0017 (4)0.0083 (5)0.0003 (4)
C100.0252 (6)0.0161 (6)0.0207 (6)0.0034 (5)0.0084 (5)0.0027 (5)
C110.0220 (6)0.0212 (6)0.0150 (6)0.0017 (5)0.0057 (5)0.0010 (5)
C120.0184 (6)0.0170 (6)0.0147 (5)0.0011 (5)0.0063 (4)0.0024 (5)
C130.0166 (6)0.0269 (7)0.0189 (6)0.0014 (5)0.0054 (5)0.0025 (5)
C140.0147 (5)0.0168 (6)0.0147 (5)0.0004 (4)0.0067 (4)0.0020 (5)
C150.0167 (6)0.0133 (5)0.0141 (5)0.0008 (4)0.0065 (4)0.0027 (4)
C160.0161 (5)0.0196 (6)0.0186 (6)0.0007 (4)0.0072 (4)0.0017 (5)
C170.0166 (5)0.0157 (6)0.0182 (5)0.0002 (4)0.0045 (4)0.0013 (4)
C180.0186 (6)0.0196 (6)0.0197 (6)0.0010 (5)0.0054 (5)0.0006 (5)
C190.0265 (6)0.0251 (7)0.0232 (7)0.0012 (5)0.0088 (5)0.0056 (5)
C200.0199 (6)0.0232 (7)0.0333 (7)0.0044 (5)0.0113 (5)0.0041 (5)
Geometric parameters (Å, º) top
O1—C11.3290 (16)C9—C101.5236 (18)
O1—H10.85 (2)C9—H9A0.9900
O2—C11.2113 (16)C9—H9B0.9900
O3—C161.3586 (15)C10—C111.5237 (18)
O3—C151.4689 (13)C10—H10A0.9900
O4—C161.2056 (16)C10—H10B0.9900
O5—C121.4530 (14)C11—C121.5297 (17)
O5—H50.85 (2)C11—H11A0.9900
C1—C21.5021 (17)C11—H11B0.9900
C2—C31.322 (2)C12—C131.5265 (16)
C2—C41.5175 (16)C12—C141.5559 (15)
C3—H3A0.9500C13—H13A0.9800
C3—H3B0.9500C13—H13B0.9800
C4—C151.5365 (15)C13—H13C0.9800
C4—C51.5429 (17)C14—C151.5325 (16)
C4—H41.0000C14—H141.0000
C5—C61.5245 (17)C15—H151.0000
C5—H5A0.9900C16—C171.4885 (16)
C5—H5B0.9900C17—C181.3388 (18)
C6—C71.5394 (17)C17—C201.5083 (17)
C6—H6A0.9900C18—C191.4920 (17)
C6—H6B0.9900C18—H180.9500
C7—C91.5380 (17)C19—H19A0.9800
C7—C81.5428 (17)C19—H19B0.9800
C7—C141.5650 (16)C19—H19C0.9800
C8—H8A0.9800C20—H20A0.9800
C8—H8B0.9800C20—H20B0.9800
C8—H8C0.9800C20—H20C0.9800
C1—O1—H1108.4 (15)H10A—C10—H10B108.2
C16—O3—C15118.15 (9)C10—C11—C12113.36 (10)
C12—O5—H5110.5 (14)C10—C11—H11A108.9
O2—C1—O1122.71 (12)C12—C11—H11A108.9
O2—C1—C2123.53 (12)C10—C11—H11B108.9
O1—C1—C2113.74 (11)C12—C11—H11B108.9
C3—C2—C1116.90 (12)H11A—C11—H11B107.7
C3—C2—C4121.14 (12)O5—C12—C13107.20 (10)
C1—C2—C4121.84 (11)O5—C12—C11103.42 (9)
C2—C3—H3A120.0C13—C12—C11111.83 (11)
C2—C3—H3B120.0O5—C12—C14109.15 (9)
H3A—C3—H3B120.0C13—C12—C14114.71 (9)
C2—C4—C15114.03 (10)C11—C12—C14109.86 (10)
C2—C4—C5111.84 (10)C12—C13—H13A109.5
C15—C4—C5111.54 (10)C12—C13—H13B109.5
C2—C4—H4106.3H13A—C13—H13B109.5
C15—C4—H4106.3C12—C13—H13C109.5
C5—C4—H4106.3H13A—C13—H13C109.5
C6—C5—C4111.93 (10)H13B—C13—H13C109.5
C6—C5—H5A109.2C15—C14—C12115.48 (9)
C4—C5—H5A109.2C15—C14—C7108.91 (9)
C6—C5—H5B109.2C12—C14—C7115.86 (10)
C4—C5—H5B109.2C15—C14—H14105.1
H5A—C5—H5B107.9C12—C14—H14105.1
C5—C6—C7113.06 (10)C7—C14—H14105.1
C5—C6—H6A109.0O3—C15—C14107.48 (8)
C7—C6—H6A109.0O3—C15—C4107.10 (9)
C5—C6—H6B109.0C14—C15—C4111.08 (9)
C7—C6—H6B109.0O3—C15—H15110.4
H6A—C6—H6B107.8C14—C15—H15110.4
C6—C7—C9108.48 (10)C4—C15—H15110.4
C6—C7—C8109.08 (10)O4—C16—O3123.23 (11)
C9—C7—C8108.57 (10)O4—C16—C17124.06 (11)
C6—C7—C14106.28 (10)O3—C16—C17112.67 (10)
C9—C7—C14109.85 (9)C18—C17—C16120.16 (11)
C8—C7—C14114.42 (10)C18—C17—C20126.28 (12)
C7—C8—H8A109.5C16—C17—C20113.55 (11)
C7—C8—H8B109.5C17—C18—C19127.40 (12)
H8A—C8—H8B109.5C17—C18—H18116.3
C7—C8—H8C109.5C19—C18—H18116.3
H8A—C8—H8C109.5C18—C19—H19A109.5
H8B—C8—H8C109.5C18—C19—H19B109.5
C10—C9—C7112.67 (10)H19A—C19—H19B109.5
C10—C9—H9A109.1C18—C19—H19C109.5
C7—C9—H9A109.1H19A—C19—H19C109.5
C10—C9—H9B109.1H19B—C19—H19C109.5
C7—C9—H9B109.1C17—C20—H20A109.5
H9A—C9—H9B107.8C17—C20—H20B109.5
C11—C10—C9109.70 (10)H20A—C20—H20B109.5
C11—C10—H10A109.7C17—C20—H20C109.5
C9—C10—H10A109.7H20A—C20—H20C109.5
C11—C10—H10B109.7H20B—C20—H20C109.5
C9—C10—H10B109.7
O2—C1—C2—C37.2 (2)C13—C12—C14—C779.68 (14)
O1—C1—C2—C3171.30 (13)C11—C12—C14—C747.30 (13)
O2—C1—C2—C4176.65 (13)C6—C7—C14—C1563.08 (12)
O1—C1—C2—C44.81 (17)C9—C7—C14—C15179.76 (9)
C3—C2—C4—C15120.75 (14)C8—C7—C14—C1557.36 (13)
C1—C2—C4—C1563.31 (15)C6—C7—C14—C12164.75 (10)
C3—C2—C4—C5111.53 (15)C9—C7—C14—C1247.59 (13)
C1—C2—C4—C564.41 (15)C8—C7—C14—C1274.81 (13)
C2—C4—C5—C6178.17 (10)C16—O3—C15—C14137.12 (10)
C15—C4—C5—C649.13 (14)C16—O3—C15—C4103.46 (11)
C4—C5—C6—C753.90 (14)C12—C14—C15—O348.75 (12)
C5—C6—C7—C9178.02 (10)C7—C14—C15—O3178.88 (8)
C5—C6—C7—C863.89 (13)C12—C14—C15—C4165.60 (9)
C5—C6—C7—C1459.95 (13)C7—C14—C15—C462.02 (12)
C6—C7—C9—C10168.69 (10)C2—C4—C15—O360.90 (12)
C8—C7—C9—C1072.89 (13)C5—C4—C15—O3171.23 (9)
C14—C7—C9—C1052.92 (13)C2—C4—C15—C14177.99 (10)
C7—C9—C10—C1159.35 (14)C5—C4—C15—C1454.14 (12)
C9—C10—C11—C1259.45 (14)C15—O3—C16—O41.68 (17)
C10—C11—C12—O5169.09 (10)C15—O3—C16—C17176.10 (9)
C10—C11—C12—C1375.89 (13)O4—C16—C17—C18168.19 (13)
C10—C11—C12—C1452.68 (13)O3—C16—C17—C1814.06 (16)
O5—C12—C14—C1570.92 (12)O4—C16—C17—C2012.88 (18)
C13—C12—C14—C1549.37 (14)O3—C16—C17—C20164.88 (11)
C11—C12—C14—C15176.34 (9)C16—C17—C18—C19179.39 (12)
O5—C12—C14—C7160.04 (9)C20—C17—C18—C190.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.85 (2)1.80 (2)2.648 (1)174 (2)
O5—H5···O30.85 (2)1.99 (2)2.692 (1)139 (2)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H30O5
Mr350.44
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.2718 (1), 19.0285 (3), 8.4530 (2)
β (°) 110.184 (2)
V3)946.85 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.872, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
5962, 3663, 3635
Rint0.015
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.03
No. of reflections3663
No. of parameters238
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.13
Absolute structureFlack (1983), 1705 Friedel pairs
Absolute structure parameter0.08 (11)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.85 (2)1.80 (2)2.648 (1)174 (2)
O5—H5···O30.85 (2)1.99 (2)2.692 (1)139 (2)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDaniewski, W. M., Kroszcznski, W., Bloszyk, E., Drozdz, B., Nawrot, J., Rychlewska, U., Budesinsky, M. & Holub, M. (1986). Collect. Czech. Chem. Commun. 51, 1710–1721.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Q.-X., Shi, Y.-P. & Jia, Z.-J. (2006). Nat. Prod. Rep. 23, 699–734.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds