metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m671-m672

Poly[[aqua­(μ5-1H-benzimidazole-5,6-di­carboxyl­ato)(μ4-1H-benzimidazole-5,6-di­carboxyl­ato)dibarium] 4.5-hydrate]

aDepartment of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China, bDepartment of Chemical Engineering, Huarui College, Northeast Petroleum University, Harbin 15002, People's Republic of China, cDepartment of Chemistry, Zhoukou Normal University, Zhoukou 466001, People's Republic of China, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 April 2011; accepted 26 April 2011; online 7 May 2011)

The polymeric title compound, {[Ba2(C9H4N2O4)2(H2O)]·4.5H2O}n, adopts a layer structure parallel to (001) in which adjacent BaII atoms are connected by two benzimidazole-5,6-dicarboxyl­ate dianions, one functioning in a μ4-bridging mode and the other in a μ5-bridging mode. The Ba atom having water in its coordination environment as well as the Ba atom without water exist in a nine-coordinate polyhedron of O atoms; the geometry is difficult to derive. Lattice water mol­ecules occupy the space between layers and inter­act with the layers through O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds. ne of the five lattice water molecules is equally disordered around an inversion centre and shows half-occupancy.

Related literature

For the strontium 1H-benzimidazole-5,6-dicarboxyl­ate deriv­ative, see: Song et al. (2009[Song, W.-D., Wang, H., Liu, J.-H., Ma, X.-T. & Ng, S. W. (2009). Acta Cryst. E65, m1643-m1644.]).

[Scheme 1]

Experimental

Crystal data
  • [Ba2(C9H4N2O4)2(H2O)]·4.5H2O

  • Mr = 782.05

  • Triclinic, [P \overline 1]

  • a = 6.9331 (4) Å

  • b = 9.5950 (4) Å

  • c = 18.0179 (7) Å

  • α = 103.186 (1)°

  • β = 92.068 (2)°

  • γ = 93.032 (2)°

  • V = 1163.94 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.44 mm−1

  • T = 293 K

  • 0.33 × 0.24 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.396, Tmax = 0.532

  • 11398 measured reflections

  • 5246 independent reflections

  • 4749 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.07

  • 5246 reflections

  • 343 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 1.54 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O4wi 0.84 1.66 2.49 (1) 170
O1w—H12⋯O2wii 0.84 1.88 2.60 (1) 143
O2w—H21⋯N2 0.84 2.00 2.83 (1) 168
O2w—H22⋯N2iii 0.84 2.28 2.83 (1) 124
O3w—H31⋯N3 0.84 2.34 2.95 (1) 129
O3w—H32⋯O6wiv 0.84 1.85 2.68 (1) 174
O4w—H41⋯O3wv 0.84 2.03 2.84 (2) 161
O5w—H51⋯O1wv 0.84 2.31 2.75 (1) 113
O6w—H61⋯O4vi 0.84 1.99 2.76 (1) 152
O6w—H62⋯O8 0.84 2.09 2.86 (1) 152
N1—H1⋯O1w 0.88 1.93 2.80 (1) 168
N4—H4⋯O4w 0.88 1.99 2.86 (1) 167
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+2; (iii) -x+1, -y+1, -z+2; (iv) x, y+1, z; (v) x, y-1, z; (vi) -x, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998[Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The 1H-benzimidazole-5,6-dicarboxylate dianion affords a large number of metal salts; most of the crystal structure studies involve rare earth metals. The crystal structures of only few main group derivatives have been reported. The SrII derivative exists as a monohydrate; the metal atom is also coordinated by two water ligands in an eight-coordinate square-antiprismatic geometry. The dianion functions in a \m4 bridging mode (Song et al., 2009). The BaII analog has 4.5 lattice water molecules (Scheme I). Polymeric Ba2(H2O)(C9H4NO4)2.4.5H2O adopts a layer structure in which adjacent BaII atoms are connected by two benzimidazole-5,6-dicarboxylate dianions, one functioning in a µ4 bridging mode and the other in a µ5 bridging mode. The Ba atom having water in its coordination environment as well as the Ba atom without water exist in a nine-coordinate polyhedron of O atom; the geometry is undefined. Lattice water molecules occupy the space between layers, and interact with the layers through O–H···O and N–H···O hydrogen bonds to generate a three-dimensional network (Table 1).

Related literature top

For the strontium 1H-benzimidazole-5,6-dicarboxylate derivative, see: Song et al. (2009).

Experimental top

Barium chloride (0.0416 g, 0.20 mmol) and 1H-benzimidazole-5,6-dicarboxylic acid (0.0412 g, 0.20 mmol) were placed in water (35 ml); the reactants dissolved upon addition of several drops of dilute sodium hydroxide to a pH of 7. The solution was set aside for the growth of crystals over several weeks; yield 60% based on Ba.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The amino and water H atoms were placed in chemically sensible positions on the basis of hydrogen bonding interactions (O–H 0.84 Å and N–H 0.88 Å); their temperature factors were tied by a factor of 1.2–1.5 times. Positioning the H atoms lead to H12···H21 and H31···H42 distances of about 2 Å, which are regarded as being acceptable. The O5w molecule then forms only one hydrogen bond. Positioning the second H atom elsewhere led to too short interactions.

On this basis, the N1 and N4 atoms are atoms having a hydrogen connected to them whereas the N2 and N3 atoms do not.

One of the water molecules (O5w) is disordered about a center-of-inversion.

The anisotropic temperature factors of the free water molecules were restrained to be nearly isotropic.

The final difference Fourier map had peaks in the vicinity of both Ba atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO (Rigaku Corporation, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the layer structure of Ba2(H2O)(C9H4NO4)2.4.5H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y + 1, z; (iv) x, y - 1, z; (v) -x + 1, -y, -z + 1; (vi) -x, -y, -z + 1.
Poly[[aqua(µ5-1H-benzimidazole-5,6-dicarboxylato)(µ4-1H- benzimidazole-5,6-dicarboxylato)dibarium] 4.5-hydrate] top
Crystal data top
[Ba2(C9H4N2O4)2(H2O)]·4.5H2OZ = 2
Mr = 782.05F(000) = 750
Triclinic, P1Dx = 2.231 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9331 (4) ÅCell parameters from 10107 reflections
b = 9.5950 (4) Åθ = 3.1–27.5°
c = 18.0179 (7) ŵ = 3.44 mm1
α = 103.186 (1)°T = 293 K
β = 92.068 (2)°Prism, colorless
γ = 93.032 (2)°0.33 × 0.24 × 0.21 mm
V = 1163.94 (9) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5246 independent reflections
Radiation source: fine-focus sealed tube4749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1112
Tmin = 0.396, Tmax = 0.532l = 2323
11398 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0388P)2 + 1.7294P]
where P = (Fo2 + 2Fc2)/3
5246 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 1.54 e Å3
30 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Ba2(C9H4N2O4)2(H2O)]·4.5H2Oγ = 93.032 (2)°
Mr = 782.05V = 1163.94 (9) Å3
Triclinic, P1Z = 2
a = 6.9331 (4) ÅMo Kα radiation
b = 9.5950 (4) ŵ = 3.44 mm1
c = 18.0179 (7) ÅT = 293 K
α = 103.186 (1)°0.33 × 0.24 × 0.21 mm
β = 92.068 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5246 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4749 reflections with I > 2σ(I)
Tmin = 0.396, Tmax = 0.532Rint = 0.025
11398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02830 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.07Δρmax = 1.54 e Å3
5246 reflectionsΔρmin = 0.68 e Å3
343 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.26276 (3)0.610140 (19)0.450910 (11)0.02043 (7)
Ba20.26062 (3)0.078630 (18)0.581428 (11)0.01842 (7)
O10.1686 (4)0.8140 (3)0.60189 (15)0.0296 (5)
O20.0501 (4)0.5894 (3)0.57721 (14)0.0267 (5)
O30.3591 (4)0.3818 (3)0.61724 (16)0.0335 (6)
O40.0593 (4)0.3350 (3)0.64668 (16)0.0325 (6)
O50.4310 (4)0.3577 (2)0.43836 (15)0.0282 (5)
O60.4612 (3)0.1417 (2)0.46119 (14)0.0228 (5)
O70.1291 (3)0.0557 (3)0.43544 (14)0.0259 (5)
O80.3566 (3)0.1786 (3)0.37175 (15)0.0262 (5)
O1w0.3097 (12)1.1921 (6)0.8946 (3)0.128 (2)
H110.20251.22350.90810.192*
H120.39981.24400.92130.192*
O2w0.5133 (16)0.5633 (9)1.0382 (5)0.083 (3)0.50
H210.45910.58831.00130.124*0.50
H220.58840.49861.02180.124*0.50
O3w0.2112 (15)0.4994 (10)0.1075 (5)0.177 (4)
H310.16890.41350.09220.266*
H320.22820.52100.15520.266*
O4w0.0138 (16)0.3037 (13)0.0517 (7)0.225 (5)
H410.02880.36610.07290.337*
H420.01520.32860.00390.337*
O5w0.3529 (5)0.1624 (4)0.74063 (18)0.0466 (8)
H510.28200.11370.76340.070*
H520.46940.14860.74920.070*
O6w0.2361 (6)0.4351 (4)0.2606 (3)0.0666 (11)
H610.12640.42980.27900.100*
H620.30690.36500.28550.100*
N10.3285 (6)0.9029 (4)0.8973 (2)0.0397 (8)
H10.32800.99660.90360.048*
N20.3607 (6)0.6883 (4)0.9229 (2)0.0424 (9)
N30.2152 (6)0.2189 (5)0.1479 (2)0.0434 (9)
N40.1238 (6)0.0140 (5)0.1170 (2)0.0473 (10)
H40.08250.09920.08970.057*
C10.1336 (4)0.6990 (3)0.62169 (19)0.0198 (6)
C20.1978 (5)0.6878 (3)0.70029 (19)0.0199 (6)
C30.2313 (5)0.8127 (4)0.7571 (2)0.0250 (7)
H3A0.21730.90230.74670.030*
C40.2863 (6)0.7997 (4)0.8300 (2)0.0290 (7)
C50.3694 (7)0.8313 (5)0.9496 (2)0.0459 (11)
H50.40140.87571.00040.055*
C60.3078 (6)0.6659 (4)0.8458 (2)0.0305 (8)
C70.2809 (6)0.5397 (4)0.7887 (2)0.0294 (8)
H70.29830.45060.79920.035*
C80.2277 (5)0.5522 (3)0.71628 (19)0.0208 (6)
C90.2134 (5)0.4149 (3)0.6539 (2)0.0241 (7)
C100.4047 (4)0.2236 (3)0.41961 (19)0.0198 (6)
C110.3099 (5)0.1562 (3)0.34209 (19)0.0201 (6)
C120.3057 (5)0.2372 (4)0.2876 (2)0.0271 (7)
H12A0.34820.33370.29990.033*
C130.2370 (5)0.1713 (4)0.2147 (2)0.0306 (8)
C140.1482 (8)0.1045 (6)0.0937 (3)0.0517 (12)
H140.12130.10930.04340.062*
C150.1772 (6)0.0235 (4)0.1942 (2)0.0312 (8)
C160.1771 (5)0.0567 (4)0.2494 (2)0.0285 (7)
H160.13420.15300.23710.034*
C170.2418 (5)0.0098 (3)0.32264 (19)0.0206 (6)
C180.2422 (5)0.0791 (3)0.38180 (19)0.0201 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01885 (11)0.01795 (11)0.02441 (11)0.00112 (7)0.00104 (7)0.00554 (8)
Ba20.01508 (11)0.01541 (10)0.02374 (11)0.00021 (7)0.00126 (7)0.00261 (8)
O10.0343 (14)0.0228 (12)0.0336 (14)0.0030 (10)0.0009 (11)0.0118 (11)
O20.0294 (13)0.0237 (12)0.0247 (12)0.0051 (10)0.0022 (10)0.0027 (10)
O30.0334 (15)0.0224 (12)0.0429 (16)0.0048 (10)0.0116 (12)0.0014 (11)
O40.0310 (14)0.0199 (12)0.0433 (15)0.0043 (10)0.0035 (11)0.0024 (11)
O50.0296 (14)0.0170 (11)0.0360 (14)0.0010 (10)0.0055 (11)0.0032 (10)
O60.0206 (12)0.0219 (11)0.0260 (12)0.0023 (9)0.0012 (9)0.0066 (10)
O70.0189 (12)0.0325 (13)0.0245 (12)0.0055 (10)0.0009 (9)0.0042 (10)
O80.0210 (12)0.0212 (11)0.0377 (14)0.0022 (9)0.0004 (10)0.0096 (11)
O1w0.250 (7)0.084 (3)0.052 (3)0.056 (4)0.013 (4)0.010 (3)
O2w0.115 (7)0.066 (5)0.070 (5)0.018 (5)0.021 (5)0.024 (4)
O3w0.222 (8)0.179 (7)0.139 (6)0.058 (6)0.037 (6)0.036 (5)
O4w0.220 (9)0.245 (8)0.216 (9)0.008 (7)0.022 (7)0.067 (7)
O5w0.049 (2)0.0500 (18)0.0395 (17)0.0039 (15)0.0036 (14)0.0080 (15)
O6w0.058 (2)0.046 (2)0.089 (3)0.0012 (17)0.014 (2)0.002 (2)
N10.051 (2)0.0288 (16)0.0326 (17)0.0046 (15)0.0052 (15)0.0057 (14)
N20.059 (2)0.042 (2)0.0234 (16)0.0016 (17)0.0061 (15)0.0048 (15)
N30.039 (2)0.062 (2)0.0366 (19)0.0035 (18)0.0018 (15)0.0271 (19)
N40.052 (2)0.061 (2)0.0265 (17)0.0011 (19)0.0085 (16)0.0065 (18)
C10.0138 (14)0.0201 (15)0.0252 (16)0.0012 (11)0.0034 (12)0.0045 (13)
C20.0161 (15)0.0184 (14)0.0244 (16)0.0021 (11)0.0013 (12)0.0031 (13)
C30.0246 (17)0.0189 (15)0.0304 (18)0.0025 (13)0.0012 (14)0.0028 (14)
C40.0298 (19)0.0263 (17)0.0259 (17)0.0017 (14)0.0002 (14)0.0044 (14)
C50.059 (3)0.049 (3)0.0234 (19)0.002 (2)0.0075 (18)0.0030 (18)
C60.035 (2)0.0309 (18)0.0237 (17)0.0003 (15)0.0015 (14)0.0036 (15)
C70.037 (2)0.0222 (16)0.0284 (18)0.0018 (14)0.0023 (15)0.0061 (14)
C80.0197 (16)0.0163 (14)0.0248 (16)0.0008 (12)0.0001 (12)0.0021 (13)
C90.0289 (18)0.0157 (14)0.0276 (17)0.0026 (13)0.0018 (13)0.0052 (13)
C100.0135 (14)0.0200 (14)0.0258 (16)0.0013 (11)0.0014 (12)0.0048 (13)
C110.0155 (15)0.0179 (14)0.0272 (16)0.0033 (11)0.0017 (12)0.0051 (13)
C120.0228 (17)0.0273 (17)0.0342 (19)0.0011 (13)0.0021 (14)0.0128 (15)
C130.0247 (18)0.041 (2)0.0309 (19)0.0055 (15)0.0008 (14)0.0178 (17)
C140.049 (3)0.079 (4)0.030 (2)0.004 (3)0.0050 (19)0.022 (2)
C150.0285 (19)0.038 (2)0.0248 (17)0.0024 (15)0.0037 (14)0.0022 (16)
C160.0274 (18)0.0265 (17)0.0292 (18)0.0013 (14)0.0015 (14)0.0019 (15)
C170.0166 (15)0.0202 (15)0.0248 (16)0.0026 (12)0.0006 (12)0.0044 (13)
C180.0157 (15)0.0176 (14)0.0258 (16)0.0047 (11)0.0032 (12)0.0044 (13)
Geometric parameters (Å, º) top
Ba1—O13.080 (3)O3w—H310.8400
Ba1—O22.795 (2)O3w—H320.8400
Ba1—O2i2.769 (2)O4w—H410.8401
Ba1—O3ii2.940 (3)O4w—H420.8400
Ba1—O4i2.936 (3)O5w—H510.8401
Ba1—O52.711 (2)O5w—H520.8400
Ba1—O5ii2.816 (3)O6w—H610.8401
Ba1—O6ii3.069 (2)O6w—H620.8400
Ba1—O8iii2.795 (2)N1—C51.318 (6)
Ba2—O1iv2.695 (2)N1—C41.389 (5)
Ba2—O32.871 (3)N1—H10.8800
Ba2—O42.923 (3)N2—C51.343 (6)
Ba2—O62.778 (2)N2—C61.389 (5)
Ba2—O6v2.928 (2)N3—C141.342 (7)
Ba2—O7vi2.700 (2)N3—C131.387 (5)
Ba2—O72.751 (2)N4—C141.304 (7)
Ba2—O8v2.806 (2)N4—C151.386 (5)
Ba2—O5w2.836 (3)N4—H40.8800
O1—C11.249 (4)C1—C21.498 (5)
O1—Ba2iii2.695 (2)C2—C31.390 (5)
O2—C11.266 (4)C2—C81.419 (4)
O2—Ba1i2.769 (2)C3—C41.389 (5)
O3—C91.242 (4)C3—H3A0.9300
O3—Ba1ii2.940 (3)C4—C61.392 (5)
O4—C91.266 (4)C5—H50.9300
O4—Ba1i2.936 (3)C6—C71.398 (5)
O5—C101.255 (4)C7—C81.376 (5)
O5—Ba1ii2.816 (3)C7—H70.9300
O6—C101.270 (4)C8—C91.521 (5)
O6—Ba2v2.928 (2)C10—C111.509 (5)
O6—Ba1ii3.069 (2)C10—Ba1ii3.290 (3)
O7—C181.254 (4)C11—C121.384 (5)
O7—Ba2vi2.700 (2)C11—C171.419 (4)
O8—C181.259 (4)C12—C131.377 (5)
O8—Ba1iv2.795 (2)C12—H12A0.9300
O8—Ba2v2.806 (2)C13—C151.417 (6)
O1w—H110.8400C14—H140.9300
O1w—H120.8400C15—C161.388 (6)
O2w—O2wvii1.613 (18)C16—C171.377 (5)
O2w—H210.8400C16—H160.9300
O2w—H220.8400C17—C181.510 (4)
O5—Ba1—O2i77.01 (8)C10—O6—Ba2124.7 (2)
O5—Ba1—O295.97 (8)C10—O6—Ba2v125.3 (2)
O2i—Ba1—O264.13 (8)Ba2—O6—Ba2v107.25 (7)
O5—Ba1—O8iii126.34 (8)C10—O6—Ba1ii88.47 (18)
O2i—Ba1—O8iii127.94 (7)Ba2—O6—Ba1ii99.88 (7)
O2—Ba1—O8iii136.76 (7)Ba2v—O6—Ba1ii99.38 (7)
O5—Ba1—O5ii70.23 (8)C18—O7—Ba2vi125.1 (2)
O2i—Ba1—O5ii128.53 (7)C18—O7—Ba2121.1 (2)
O2—Ba1—O5ii80.81 (8)Ba2vi—O7—Ba2112.68 (8)
O8iii—Ba1—O5ii103.49 (7)C18—O8—Ba1iv113.3 (2)
O5—Ba1—O4i126.10 (7)C18—O8—Ba2v112.42 (19)
O2i—Ba1—O4i63.11 (7)Ba1iv—O8—Ba2v106.20 (8)
O2—Ba1—O4i97.43 (8)H11—O1w—H12110.0
O8iii—Ba1—O4i66.63 (7)O2wvii—O2w—H2166.4
O5ii—Ba1—O4i163.60 (7)O2wvii—O2w—H2251.6
O5—Ba1—O3ii68.84 (7)H21—O2w—H22109.5
O2i—Ba1—O3ii132.66 (7)H31—O3w—H32110.7
O2—Ba1—O3ii148.68 (8)H41—O4w—H42112.7
O8iii—Ba1—O3ii60.17 (7)Ba2—O5w—H51109.4
O5ii—Ba1—O3ii68.41 (8)Ba2—O5w—H52109.5
O4i—Ba1—O3ii113.72 (8)H51—O5w—H52109.5
O5—Ba1—O6ii110.03 (7)H61—O6w—H62107.7
O2i—Ba1—O6ii158.74 (6)C5—N1—C4105.7 (4)
O2—Ba1—O6ii94.83 (7)C5—N1—H1127.1
O8iii—Ba1—O6ii64.97 (7)C4—N1—H1127.1
O5ii—Ba1—O6ii44.11 (6)C5—N2—C6105.2 (4)
O4i—Ba1—O6ii120.42 (7)C14—N3—C13106.3 (4)
O3ii—Ba1—O6ii67.22 (7)C14—N4—C15105.0 (4)
O5—Ba1—O1125.39 (7)C14—N4—H4127.5
O2i—Ba1—O1103.10 (7)C15—N4—H4127.5
O2—Ba1—O143.78 (6)O1—C1—O2122.6 (3)
O8iii—Ba1—O197.04 (7)O1—C1—C2119.2 (3)
O5ii—Ba1—O168.40 (7)O2—C1—C2118.2 (3)
O4i—Ba1—O198.98 (7)C3—C2—C8120.4 (3)
O3ii—Ba1—O1123.17 (7)C3—C2—C1118.9 (3)
O6ii—Ba1—O156.15 (6)C8—C2—C1120.7 (3)
O1iv—Ba2—O7vi76.72 (8)C4—C3—C2118.0 (3)
O1iv—Ba2—O780.25 (8)C4—C3—H3A121.0
O7vi—Ba2—O767.32 (8)C2—C3—H3A121.0
O1iv—Ba2—O6125.88 (8)C3—C4—N1131.1 (4)
O7vi—Ba2—O6116.89 (7)C3—C4—C6121.1 (3)
O7—Ba2—O662.22 (7)N1—C4—C6107.7 (3)
O1iv—Ba2—O8v113.68 (8)N1—C5—N2113.9 (4)
O7vi—Ba2—O8v163.12 (8)N1—C5—H5123.1
O7—Ba2—O8v126.06 (7)N2—C5—H5123.1
O6—Ba2—O8v68.87 (7)N2—C6—C4107.4 (3)
O1iv—Ba2—O5w87.21 (9)N2—C6—C7131.1 (4)
O7vi—Ba2—O5w106.45 (9)C4—C6—C7121.4 (3)
O7—Ba2—O5w166.97 (8)C8—C7—C6117.6 (3)
O6—Ba2—O5w129.48 (9)C8—C7—H7121.2
O8v—Ba2—O5w62.57 (9)C6—C7—H7121.2
O1iv—Ba2—O3159.72 (8)C7—C8—C2121.4 (3)
O7vi—Ba2—O3104.58 (8)C7—C8—C9116.6 (3)
O7—Ba2—O3119.27 (8)C2—C8—C9121.9 (3)
O6—Ba2—O372.16 (7)O3—C9—O4123.7 (3)
O8v—Ba2—O360.90 (8)O3—C9—C8118.1 (3)
O5w—Ba2—O372.92 (9)O4—C9—C8118.0 (3)
O1iv—Ba2—O4124.90 (8)O5—C10—O6123.3 (3)
O7vi—Ba2—O463.37 (7)O5—C10—C11118.2 (3)
O7—Ba2—O4113.76 (8)O6—C10—C11118.4 (3)
O6—Ba2—O4106.09 (7)O5—C10—Ba1ii57.20 (18)
O8v—Ba2—O4100.03 (7)O6—C10—Ba1ii68.83 (18)
O5w—Ba2—O470.81 (9)C11—C10—Ba1ii159.4 (2)
O3—Ba2—O444.87 (7)C12—C11—C17120.1 (3)
O1iv—Ba2—O6v61.79 (7)C12—C11—C10118.3 (3)
O7vi—Ba2—O6v129.53 (7)C17—C11—C10121.3 (3)
O7—Ba2—O6v77.96 (7)C13—C12—C11118.3 (3)
O6—Ba2—O6v72.75 (7)C13—C12—H12A120.9
O8v—Ba2—O6v66.84 (7)C11—C12—H12A120.9
O5w—Ba2—O6v99.26 (8)C12—C13—N3133.1 (4)
O3—Ba2—O6v124.42 (7)C12—C13—C15121.7 (3)
O4—Ba2—O6v166.54 (7)N3—C13—C15105.1 (4)
C1—O1—Ba2iii171.4 (2)N4—C14—N3114.6 (4)
C1—O1—Ba182.76 (19)N4—C14—H14122.7
Ba2iii—O1—Ba1104.56 (8)N3—C14—H14122.7
C1—O2—Ba1i147.4 (2)N4—C15—C16131.3 (4)
C1—O2—Ba195.42 (19)N4—C15—C13108.9 (4)
Ba1i—O2—Ba1115.87 (8)C16—C15—C13119.9 (3)
C9—O3—Ba295.3 (2)C17—C16—C15118.4 (3)
C9—O3—Ba1ii163.6 (2)C17—C16—H16120.8
Ba2—O3—Ba1ii100.86 (8)C15—C16—H16120.8
C9—O4—Ba292.3 (2)C16—C17—C11121.5 (3)
C9—O4—Ba1i118.6 (2)C16—C17—C18117.8 (3)
Ba2—O4—Ba1i114.25 (9)C11—C17—C18120.7 (3)
C10—O5—Ba1145.3 (2)O7—C18—O8123.6 (3)
C10—O5—Ba1ii100.8 (2)O7—C18—C17120.6 (3)
Ba1—O5—Ba1ii109.77 (8)O8—C18—C17115.8 (3)
O5—Ba1—O1—C135.8 (2)O3—Ba2—O7—C1874.1 (3)
O2i—Ba1—O1—C147.5 (2)O4—Ba2—O7—C18124.3 (2)
O2—Ba1—O1—C120.40 (18)O6v—Ba2—O7—C1848.8 (2)
O8iii—Ba1—O1—C1179.1 (2)O1iv—Ba2—O7—Ba2vi79.59 (10)
O5ii—Ba1—O1—C179.1 (2)O7vi—Ba2—O7—Ba2vi0.0
O4i—Ba1—O1—C1111.8 (2)O6—Ba2—O7—Ba2vi140.71 (12)
O3ii—Ba1—O1—C1122.06 (19)O8v—Ba2—O7—Ba2vi168.15 (7)
O6ii—Ba1—O1—C1127.5 (2)O5w—Ba2—O7—Ba2vi63.6 (4)
O5—Ba1—O1—Ba2iii139.56 (8)O3—Ba2—O7—Ba2vi94.51 (10)
O2i—Ba1—O1—Ba2iii137.20 (9)O4—Ba2—O7—Ba2vi44.37 (11)
O2—Ba1—O1—Ba2iii164.28 (15)O6v—Ba2—O7—Ba2vi142.60 (10)
O8iii—Ba1—O1—Ba2iii5.53 (9)Ba1—O1—C1—O239.2 (3)
O5ii—Ba1—O1—Ba2iii96.23 (9)Ba1—O1—C1—C2138.9 (3)
O4i—Ba1—O1—Ba2iii72.88 (9)Ba1i—O2—C1—O1120.1 (4)
O3ii—Ba1—O1—Ba2iii53.27 (12)Ba1—O2—C1—O144.0 (3)
O6ii—Ba1—O1—Ba2iii47.87 (8)Ba1i—O2—C1—C261.8 (5)
O5—Ba1—O2—C1117.0 (2)Ba1—O2—C1—C2134.1 (2)
O2i—Ba1—O2—C1170.5 (3)O1—C1—C2—C322.3 (5)
O8iii—Ba1—O2—C151.7 (2)O2—C1—C2—C3159.5 (3)
O5ii—Ba1—O2—C148.2 (2)O1—C1—C2—C8156.5 (3)
O4i—Ba1—O2—C1115.3 (2)O2—C1—C2—C821.7 (5)
O3ii—Ba1—O2—C158.8 (3)C8—C2—C3—C42.7 (5)
O6ii—Ba1—O2—C16.3 (2)C1—C2—C3—C4178.5 (3)
O1—Ba1—O2—C120.05 (18)C2—C3—C4—N1179.8 (4)
O5—Ba1—O2—Ba1i72.43 (10)C2—C3—C4—C60.2 (6)
O2i—Ba1—O2—Ba1i0.0C5—N1—C4—C3179.1 (4)
O8iii—Ba1—O2—Ba1i118.81 (11)C5—N1—C4—C60.9 (5)
O5ii—Ba1—O2—Ba1i141.24 (11)C4—N1—C5—N20.8 (6)
O4i—Ba1—O2—Ba1i55.24 (10)C6—N2—C5—N10.4 (6)
O3ii—Ba1—O2—Ba1i130.67 (12)C5—N2—C6—C40.3 (5)
O6ii—Ba1—O2—Ba1i176.81 (9)C5—N2—C6—C7178.3 (5)
O1—Ba1—O2—Ba1i150.49 (16)C3—C4—C6—N2179.3 (4)
O1iv—Ba2—O3—C957.0 (4)N1—C4—C6—N20.7 (5)
O7vi—Ba2—O3—C934.1 (2)C3—C4—C6—C72.0 (6)
O7—Ba2—O3—C9106.0 (2)N1—C4—C6—C7178.0 (4)
O6—Ba2—O3—C9148.1 (2)N2—C6—C7—C8179.9 (4)
O8v—Ba2—O3—C9136.6 (2)C4—C6—C7—C81.5 (6)
O5w—Ba2—O3—C969.0 (2)C6—C7—C8—C21.1 (5)
O4—Ba2—O3—C910.7 (2)C6—C7—C8—C9175.7 (3)
O6v—Ba2—O3—C9158.6 (2)C3—C2—C8—C73.2 (5)
O1iv—Ba2—O3—Ba1ii120.0 (2)C1—C2—C8—C7178.0 (3)
O7vi—Ba2—O3—Ba1ii148.87 (8)C3—C2—C8—C9173.4 (3)
O7—Ba2—O3—Ba1ii76.98 (10)C1—C2—C8—C95.4 (5)
O6—Ba2—O3—Ba1ii34.84 (8)Ba2—O3—C9—O421.3 (4)
O8v—Ba2—O3—Ba1ii40.43 (8)Ba1ii—O3—C9—O4169.0 (7)
O5w—Ba2—O3—Ba1ii108.05 (11)Ba2—O3—C9—C8152.6 (3)
O4—Ba2—O3—Ba1ii172.25 (15)Ba1ii—O3—C9—C817.2 (11)
O6v—Ba2—O3—Ba1ii18.42 (12)Ba2—O4—C9—O320.8 (4)
O1iv—Ba2—O4—C9146.5 (2)Ba1i—O4—C9—O398.5 (4)
O7vi—Ba2—O4—C9165.0 (2)Ba2—O4—C9—C8153.0 (3)
O7—Ba2—O4—C9118.8 (2)Ba1i—O4—C9—C887.6 (3)
O6—Ba2—O4—C952.6 (2)C7—C8—C9—O391.7 (4)
O8v—Ba2—O4—C918.2 (2)C2—C8—C9—O385.1 (4)
O5w—Ba2—O4—C974.3 (2)C7—C8—C9—O482.5 (4)
O3—Ba2—O4—C910.4 (2)C2—C8—C9—O4100.7 (4)
O6v—Ba2—O4—C930.6 (4)Ba1—O5—C10—O6131.3 (3)
O1iv—Ba2—O4—Ba1i90.55 (11)Ba1ii—O5—C10—O620.4 (4)
O7vi—Ba2—O4—Ba1i42.08 (8)Ba1—O5—C10—C1151.7 (5)
O7—Ba2—O4—Ba1i4.13 (11)Ba1ii—O5—C10—C11156.6 (2)
O6—Ba2—O4—Ba1i70.37 (10)Ba1—O5—C10—Ba1ii151.7 (4)
O8v—Ba2—O4—Ba1i141.10 (9)Ba2—O6—C10—O582.7 (4)
O5w—Ba2—O4—Ba1i162.74 (12)Ba2v—O6—C10—O5118.7 (3)
O3—Ba2—O4—Ba1i112.48 (14)Ba1ii—O6—C10—O518.3 (3)
O6v—Ba2—O4—Ba1i153.5 (2)Ba2—O6—C10—C11100.4 (3)
O2i—Ba1—O5—C1010.7 (4)Ba2v—O6—C10—C1158.2 (3)
O2—Ba1—O5—C1072.3 (4)Ba1ii—O6—C10—C11158.7 (3)
O8iii—Ba1—O5—C10117.2 (4)Ba2—O6—C10—Ba1ii100.96 (18)
O5ii—Ba1—O5—C10150.3 (5)Ba2v—O6—C10—Ba1ii100.42 (18)
O4i—Ba1—O5—C1031.4 (4)O5—C10—C11—C1217.9 (5)
O3ii—Ba1—O5—C10136.0 (4)O6—C10—C11—C12159.2 (3)
O6ii—Ba1—O5—C10169.7 (4)Ba1ii—C10—C11—C1253.5 (7)
O1—Ba1—O5—C10107.6 (4)O5—C10—C11—C17167.7 (3)
O2i—Ba1—O5—Ba1ii139.66 (10)O6—C10—C11—C1715.2 (5)
O2—Ba1—O5—Ba1ii77.98 (9)Ba1ii—C10—C11—C17121.0 (5)
O8iii—Ba1—O5—Ba1ii92.48 (11)C17—C11—C12—C131.0 (5)
O5ii—Ba1—O5—Ba1ii0.0C10—C11—C12—C13173.5 (3)
O4i—Ba1—O5—Ba1ii178.30 (8)C11—C12—C13—N3179.2 (4)
O3ii—Ba1—O5—Ba1ii73.73 (10)C11—C12—C13—C152.0 (6)
O6ii—Ba1—O5—Ba1ii19.40 (11)C14—N3—C13—C12177.3 (5)
O1—Ba1—O5—Ba1ii42.68 (12)C14—N3—C13—C150.2 (5)
O1iv—Ba2—O6—C10128.5 (2)C15—N4—C14—N30.6 (6)
O7vi—Ba2—O6—C1035.7 (3)C13—N3—C14—N40.2 (6)
O7—Ba2—O6—C1076.6 (2)C14—N4—C15—C16178.2 (5)
O8v—Ba2—O6—C10126.9 (3)C14—N4—C15—C130.7 (5)
O5w—Ba2—O6—C10110.3 (3)C12—C13—C15—N4177.3 (4)
O3—Ba2—O6—C1062.0 (2)N3—C13—C15—N40.6 (5)
O4—Ba2—O6—C1032.2 (3)C12—C13—C15—C163.6 (6)
O6v—Ba2—O6—C10161.8 (3)N3—C13—C15—C16178.5 (4)
O1iv—Ba2—O6—Ba2v33.33 (12)N4—C15—C16—C17179.1 (4)
O7vi—Ba2—O6—Ba2v126.14 (8)C13—C15—C16—C172.1 (6)
O7—Ba2—O6—Ba2v85.22 (9)C15—C16—C17—C110.8 (5)
O8v—Ba2—O6—Ba2v71.25 (8)C15—C16—C17—C18179.5 (3)
O5w—Ba2—O6—Ba2v87.86 (12)C12—C11—C17—C162.4 (5)
O3—Ba2—O6—Ba2v136.20 (10)C10—C11—C17—C16171.9 (3)
O4—Ba2—O6—Ba2v165.99 (7)C12—C11—C17—C18178.9 (3)
O6v—Ba2—O6—Ba2v0.0C10—C11—C17—C186.8 (5)
O1iv—Ba2—O6—Ba1ii136.47 (8)Ba2vi—O7—C18—O8115.8 (3)
O7vi—Ba2—O6—Ba1ii130.72 (7)Ba2—O7—C18—O877.0 (4)
O7—Ba2—O6—Ba1ii171.65 (10)Ba2vi—O7—C18—C1761.7 (4)
O8v—Ba2—O6—Ba1ii31.89 (7)Ba2—O7—C18—C17105.5 (3)
O5w—Ba2—O6—Ba1ii15.28 (13)Ba1iv—O8—C18—O717.2 (4)
O3—Ba2—O6—Ba1ii33.06 (8)Ba2v—O8—C18—O7103.3 (3)
O4—Ba2—O6—Ba1ii62.86 (8)Ba1iv—O8—C18—C17160.4 (2)
O6v—Ba2—O6—Ba1ii103.13 (9)Ba2v—O8—C18—C1779.1 (3)
O1iv—Ba2—O7—C18111.8 (3)C16—C17—C18—O7112.0 (4)
O7vi—Ba2—O7—C18168.6 (3)C11—C17—C18—O769.3 (4)
O6—Ba2—O7—C1827.9 (2)C16—C17—C18—O865.7 (4)
O8v—Ba2—O7—C180.5 (3)C11—C17—C18—O8113.0 (3)
O5w—Ba2—O7—C18127.7 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y1, z; (v) x+1, y, z+1; (vi) x, y, z+1; (vii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O4wi0.841.662.49 (1)170
O1w—H12···O2wviii0.841.882.60 (1)143
O2w—H21···N20.842.002.83 (1)168
O2w—H22···N2vii0.842.282.83 (1)124
O3w—H31···N30.842.342.95 (1)129
O3w—H32···O6wiii0.841.852.68 (1)174
O4w—H41···O3wiv0.842.032.84 (2)161
O5w—H51···O1wiv0.842.312.75 (1)113
O6w—H61···O4vi0.841.992.76 (1)152
O6w—H62···O80.842.092.86 (1)152
N1—H1···O1w0.881.932.80 (1)168
N4—H4···O4w0.881.992.86 (1)167
Symmetry codes: (i) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y1, z; (vi) x, y, z+1; (vii) x+1, y+1, z+2; (viii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ba2(C9H4N2O4)2(H2O)]·4.5H2O
Mr782.05
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9331 (4), 9.5950 (4), 18.0179 (7)
α, β, γ (°)103.186 (1), 92.068 (2), 93.032 (2)
V3)1163.94 (9)
Z2
Radiation typeMo Kα
µ (mm1)3.44
Crystal size (mm)0.33 × 0.24 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.396, 0.532
No. of measured, independent and
observed [I > 2σ(I)] reflections
11398, 5246, 4749
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.07
No. of reflections5246
No. of parameters343
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.54, 0.68

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O4wi0.841.662.49 (1)170
O1w—H12···O2wii0.841.882.60 (1)143
O2w—H21···N20.842.002.83 (1)168
O2w—H22···N2iii0.842.282.83 (1)124
O3w—H31···N30.842.342.95 (1)129
O3w—H32···O6wiv0.841.852.68 (1)174
O4w—H41···O3wv0.842.032.84 (2)161
O5w—H51···O1wv0.842.312.75 (1)113
O6w—H61···O4vi0.841.992.76 (1)152
O6w—H62···O80.842.092.86 (1)152
N1—H1···O1w0.881.932.80 (1)168
N4—H4···O4w0.881.992.86 (1)167
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x+1, y+1, z+2; (iv) x, y+1, z; (v) x, y1, z; (vi) x, y, z+1.
 

Acknowledgements

We thank the Scientific Research Foundation of the Education Department of Heilongjiang Province (No. 11544005), the Scientific Research Innovation Foundation for young teachers of Zhoukou Normal University (No. zknuqn201044B) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Wang, H., Liu, J.-H., Ma, X.-T. & Ng, S. W. (2009). Acta Cryst. E65, m1643–m1644.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m671-m672
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds