metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,1-(Butane-1,4-diyl)-2,3-di­cyclo­hexylguanidinato]di­methylaluminum(III)

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: hhf_2222@yahoo.com.cn

(Received 17 October 2010; accepted 12 November 2010; online 20 November 2010)

In the crystal structure of the title complex, [Al(CH3)2(C17H30N3)], the AlIII cation is coordinated by two methyl ligands and two N atoms from the guanidinato ligand in a distorted tetra­hedral geometry. The dihedral angle between the CN2 and AlC2 planes is 85.37 (2)°. The two N atoms of the guanidinato ligand exhibit an almost uniform affinity to the metal atom.

Related literature

For related guanidinato compounds, see: Chandra et al. (1970[Chandra, G., Jenkins, A. D., Lappert, M. F. & Srivastava, R. C. (1970). J. Chem. Soc. pp. 2550-2558.]); Coles & Hitchcock (2004[Coles, M. P. & Hitchcock, P. B. (2004). Eur. J. Inorg. Chem. 13, 2662-2672.]); Corey et al. (2006[Corey, B. W., Laurel, L. R., Khalil, A. A. & Lisa, M. W. (2006). Inorg. Chem. 45, 263-268.]); Zhou et al. (2007[Zhou, M. S., Tong, H. B., Wei, X. H. & Liu, D. S. (2007). J. Organomet. Chem. 692, 5195-5202.]). For related ortho metalation reactions, see: Kondo et al. (2007[Kondo, Y., Morey, J. V., Morgan, J. C., Naka, H., Nobuto, D., Raithby, P. R., Uchiyama, M. & Wheatley, A. E. H. (2007). J. Am. Chem. Soc. 129, 12734-12738.]).

[Scheme 1]

Experimental

Crystal data
  • [Al(CH3)2(C17H30N3)]

  • Mr = 333.49

  • Orthorhombic, P b c n

  • a = 18.263 (4) Å

  • b = 10.596 (2) Å

  • c = 10.449 (2) Å

  • V = 2022.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.969

  • 7156 measured reflections

  • 1772 independent reflections

  • 1630 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.095

  • wR(F2) = 0.232

  • S = 1.42

  • 1772 reflections

  • 107 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

Al—N1 1.922 (4)
Al—C18 1.961 (6)
N1—Al—N1i 69.8 (2)
C18i—Al—C18 114.2 (4)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Since the first guanidinato complexes have been reported in 1970 by Lappert et al. (Chandra et al., 1970), guanidinato ligands have been used extensively in the coordination chemistry of transition, f-block, and main-group metals (Corey et al., 2006). Moreover many guanidinato complexes were reported showing good performance in ethylene polymerization (Zhou et al., 2007) and in Ring-Opening Polymerisation (Coles & Hitchcock, 2004). It implied that the guanidinato complex would behave better in catalysis application.

There has been a great deal of research in directed ortho metalation reactions (Kondo et al., 2007). We had expected guanidinato lithium, the result of the addition of N,N'-dicyclohexyl carbodiimide with N-tetrahydropyrrolyl lithium, when reacting with trimethyl aluminum, to produced a new kind of complex containing Al and Li atoms. However, X-ray diffraction on the complex obtained in the reaction revealed that the Li atom was replaced by Al atom surprisingly. Its molecular structure is shown in Fig. 1. In the molecular structure of the complex, the metal atom is chelated with the guanidinato ligand. The four-coordinate Al(III) center demonstrates a highly distorted tetrahedral geometry. The distances from the two N atoms to Al atom are almost equal [N1-Al: 1.918 (4) Å, N2-Al: 1.925 (4) Å]. It indicates that the two N atoms of guanidinato ligand exhibit almost uniform affinity to the metal center.

Related literature top

For related guanidinato compounds, see: Chandra et al. (1970); Coles et al. (2004); Corey et al. (2006); Zhou et al. (2007). For related ortho metalation reactions, see: Kondo et al. (2007).

Experimental top

A solution of N-tetrahydropyrrolyl lithium in diethylether (0.232g, 3mmol) was added dropwise with stirring at 273K to a solution of 0.619g (3mmol) of N, N'-dicyclohexyl carbodiimide in ether. The mixture was warmed to room temperature and stirred for 2h. A 2M solution of trimethylaluminum in heaxene (1.5mL, 3mmol) was added at 195K to the mixed solution. The mixture was warmed to room temperature and stirred for 12h. Concentration of the filtrate under reduced pressure produced the colorless crystals suitable for X-ray analysis 3 days later (yield 0.620g, 62%).

Refinement top

Positional parameters of all H atoms were calculated geometrically.

Structure description top

Since the first guanidinato complexes have been reported in 1970 by Lappert et al. (Chandra et al., 1970), guanidinato ligands have been used extensively in the coordination chemistry of transition, f-block, and main-group metals (Corey et al., 2006). Moreover many guanidinato complexes were reported showing good performance in ethylene polymerization (Zhou et al., 2007) and in Ring-Opening Polymerisation (Coles & Hitchcock, 2004). It implied that the guanidinato complex would behave better in catalysis application.

There has been a great deal of research in directed ortho metalation reactions (Kondo et al., 2007). We had expected guanidinato lithium, the result of the addition of N,N'-dicyclohexyl carbodiimide with N-tetrahydropyrrolyl lithium, when reacting with trimethyl aluminum, to produced a new kind of complex containing Al and Li atoms. However, X-ray diffraction on the complex obtained in the reaction revealed that the Li atom was replaced by Al atom surprisingly. Its molecular structure is shown in Fig. 1. In the molecular structure of the complex, the metal atom is chelated with the guanidinato ligand. The four-coordinate Al(III) center demonstrates a highly distorted tetrahedral geometry. The distances from the two N atoms to Al atom are almost equal [N1-Al: 1.918 (4) Å, N2-Al: 1.925 (4) Å]. It indicates that the two N atoms of guanidinato ligand exhibit almost uniform affinity to the metal center.

For related guanidinato compounds, see: Chandra et al. (1970); Coles et al. (2004); Corey et al. (2006); Zhou et al. (2007). For related ortho metalation reactions, see: Kondo et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[1,1-(Butane-1,4-diyl)-2,3-dicyclohexylguanidinato]dimethylaluminum(III) top
Crystal data top
[Al(CH3)2(C17H30N3)]Dx = 1.095 Mg m3
Mr = 333.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 4606 reflections
a = 18.263 (4) Åθ = 3.0–27.0°
b = 10.596 (2) ŵ = 0.11 mm1
c = 10.449 (2) ÅT = 293 K
V = 2022.0 (7) Å3Block, colorless
Z = 40.40 × 0.30 × 0.30 mm
F(000) = 736
Data collection top
Bruker SMART CCD area-detector
diffractometer
1772 independent reflections
Radiation source: fine-focus sealed tube1630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.959, Tmax = 0.969k = 127
7156 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.095Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 1.42 w = 1/[σ2(Fo2) + (0.P)2 + 5.155P]
where P = (Fo2 + 2Fc2)/3
1772 reflections(Δ/σ)max = 0.005
107 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Al(CH3)2(C17H30N3)]V = 2022.0 (7) Å3
Mr = 333.49Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 18.263 (4) ŵ = 0.11 mm1
b = 10.596 (2) ÅT = 293 K
c = 10.449 (2) Å0.40 × 0.30 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1772 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1630 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.969Rint = 0.059
7156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0950 restraints
wR(F2) = 0.232H-atom parameters constrained
S = 1.42Δρmax = 0.31 e Å3
1772 reflectionsΔρmin = 0.43 e Å3
107 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al0.50000.29276 (18)0.25000.0381 (6)
N10.45266 (19)0.1440 (3)0.1850 (3)0.0310 (8)
N30.50000.0569 (5)0.25000.0397 (13)
C10.50000.0706 (6)0.25000.0318 (13)
C20.3760 (2)0.1118 (4)0.1598 (4)0.0334 (10)
H20.37440.04150.09890.040*
C30.3350 (3)0.0733 (5)0.2815 (5)0.0418 (12)
H3A0.35750.00190.31700.050*
H3B0.33920.14020.34440.050*
C40.2546 (3)0.0474 (5)0.2557 (7)0.0611 (15)
H4A0.23020.02700.33550.073*
H4B0.25010.02470.19910.073*
C50.2177 (3)0.1614 (6)0.1948 (6)0.0569 (15)
H5A0.16730.14070.17430.068*
H5B0.21750.23090.25510.068*
C60.2573 (3)0.2010 (6)0.0742 (5)0.0539 (14)
H6A0.23490.27700.04050.065*
H6B0.25250.13520.01020.065*
C70.3384 (2)0.2255 (5)0.1001 (5)0.0435 (12)
H7A0.36260.24650.02030.052*
H7B0.34320.29720.15710.052*
C140.4666 (3)0.1349 (4)0.1484 (5)0.0473 (13)
H14A0.48150.10660.06410.057*
H14B0.41360.13380.15380.057*
C150.4971 (3)0.2657 (5)0.1782 (6)0.0613 (16)
H15A0.46420.33140.14860.074*
H15B0.54470.27770.13880.074*
C180.4388 (3)0.3932 (5)0.3656 (6)0.0586 (16)
H18A0.40760.33820.41410.088*
H18B0.40930.45050.31650.088*
H18C0.46950.44030.42290.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al0.0304 (10)0.0312 (10)0.0526 (12)0.0000.0093 (9)0.000
N10.0254 (17)0.0324 (18)0.0351 (19)0.0015 (15)0.0006 (15)0.0007 (16)
N30.037 (3)0.033 (3)0.049 (3)0.0000.007 (3)0.000
C10.032 (3)0.032 (3)0.032 (3)0.0000.010 (3)0.000
C20.029 (2)0.037 (2)0.034 (2)0.0060 (18)0.0002 (18)0.0059 (19)
C30.036 (2)0.043 (3)0.047 (3)0.004 (2)0.006 (2)0.009 (2)
C40.033 (2)0.057 (3)0.094 (4)0.005 (2)0.011 (3)0.020 (3)
C50.026 (2)0.061 (3)0.084 (4)0.002 (2)0.001 (3)0.006 (3)
C60.037 (3)0.070 (4)0.055 (3)0.001 (3)0.014 (2)0.000 (3)
C70.032 (2)0.056 (3)0.042 (2)0.000 (2)0.006 (2)0.013 (2)
C140.051 (3)0.037 (3)0.054 (3)0.009 (2)0.018 (2)0.012 (2)
C150.057 (3)0.036 (2)0.091 (4)0.006 (3)0.035 (3)0.012 (3)
C180.049 (3)0.048 (3)0.079 (4)0.011 (3)0.019 (3)0.025 (3)
Geometric parameters (Å, º) top
Al—N11.922 (4)C4—H4B0.9700
Al—N1i1.922 (4)C5—C61.512 (8)
Al—C18i1.961 (6)C5—H5A0.9700
Al—C181.961 (6)C5—H5B0.9700
N1—C11.346 (5)C6—C71.528 (7)
N1—C21.465 (5)C6—H6A0.9700
N3—C11.351 (8)C6—H6B0.9700
N3—C141.477 (6)C7—H7A0.9700
N3—C14i1.477 (6)C7—H7B0.9700
C1—N1i1.346 (5)C14—C151.526 (7)
C2—C71.520 (6)C14—H14A0.9700
C2—C31.531 (6)C14—H14B0.9700
C2—H20.9800C15—C15i1.505 (13)
C3—C41.517 (7)C15—H15A0.9700
C3—H3A0.9700C15—H15B0.9700
C3—H3B0.9700C18—H18A0.9600
C4—C51.522 (7)C18—H18B0.9600
C4—H4A0.9700C18—H18C0.9600
N1—Al—N1i69.8 (2)C4—C5—H5A109.5
N1—Al—C18i119.0 (2)C6—C5—H5B109.5
N1i—Al—C18i114.0 (2)C4—C5—H5B109.5
N1—Al—C18114.0 (2)H5A—C5—H5B108.0
N1i—Al—C18119.0 (2)C5—C6—C7111.3 (4)
C18i—Al—C18114.2 (4)C5—C6—H6A109.4
C1—N1—C2124.8 (3)C7—C6—H6A109.4
C1—N1—Al90.4 (3)C5—C6—H6B109.4
C2—N1—Al133.2 (3)C7—C6—H6B109.4
C1—N3—C14124.0 (3)H6A—C6—H6B108.0
C1—N3—C14i124.0 (3)C2—C7—C6112.1 (4)
C14—N3—C14i112.0 (5)C2—C7—H7A109.2
N1i—C1—N1109.4 (5)C6—C7—H7A109.2
N1i—C1—N3125.3 (3)C2—C7—H7B109.2
N1—C1—N3125.3 (3)C6—C7—H7B109.2
N1—C2—C7108.7 (3)H7A—C7—H7B107.9
N1—C2—C3112.3 (4)N3—C14—C15102.2 (5)
C7—C2—C3109.3 (4)N3—C14—H14A111.3
N1—C2—H2108.8C15—C14—H14A111.3
C7—C2—H2108.8N3—C14—H14B111.3
C3—C2—H2108.8C15—C14—H14B111.3
C4—C3—C2111.9 (4)H14A—C14—H14B109.2
C4—C3—H3A109.2C15i—C15—C14103.2 (3)
C2—C3—H3A109.2C15i—C15—H15A111.1
C4—C3—H3B109.2C14—C15—H15A111.1
C2—C3—H3B109.2C15i—C15—H15B111.1
H3A—C3—H3B107.9C14—C15—H15B111.1
C3—C4—C5111.0 (4)H15A—C15—H15B109.1
C3—C4—H4A109.4Al—C18—H18A109.5
C5—C4—H4A109.4Al—C18—H18B109.5
C3—C4—H4B109.4H18A—C18—H18B109.5
C5—C4—H4B109.4Al—C18—H18C109.5
H4A—C4—H4B108.0H18A—C18—H18C109.5
C6—C5—C4110.9 (5)H18B—C18—H18C109.5
C6—C5—H5A109.5
N1i—Al—N1—C10.0Al—N1—C2—C740.9 (5)
C18i—Al—N1—C1106.9 (2)C1—N1—C2—C351.3 (5)
C18—Al—N1—C1113.6 (2)Al—N1—C2—C380.2 (5)
N1i—Al—N1—C2142.0 (5)N1—C2—C3—C4176.7 (4)
C18i—Al—N1—C2111.0 (4)C7—C2—C3—C455.9 (5)
C18—Al—N1—C228.4 (5)C2—C3—C4—C556.6 (6)
C2—N1—C1—N1i146.9 (4)C3—C4—C5—C655.6 (7)
Al—N1—C1—N1i0.0C4—C5—C6—C755.1 (6)
C2—N1—C1—N333.1 (4)N1—C2—C7—C6178.3 (4)
Al—N1—C1—N3180.0C3—C2—C7—C655.4 (5)
C14—N3—C1—N1i158.0 (3)C5—C6—C7—C256.0 (6)
C14i—N3—C1—N1i22.0 (3)C1—N3—C14—C15167.3 (2)
C14—N3—C1—N122.0 (3)C14i—N3—C14—C1512.7 (2)
C14i—N3—C1—N1158.0 (3)N3—C14—C15—C15i33.5 (6)
C1—N1—C2—C7172.4 (4)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Al(CH3)2(C17H30N3)]
Mr333.49
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)18.263 (4), 10.596 (2), 10.449 (2)
V3)2022.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
7156, 1772, 1630
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.232, 1.42
No. of reflections1772
No. of parameters107
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.43

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected geometric parameters (Å, º) top
Al—N11.922 (4)Al—C181.961 (6)
N1—Al—N1i69.8 (2)C18i—Al—C18114.2 (4)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

This work was carried out under the sponsorship of the Nature Science Foundation of Shanxi Province (2008012013-2).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, G., Jenkins, A. D., Lappert, M. F. & Srivastava, R. C. (1970). J. Chem. Soc. pp. 2550–2558.  CrossRef Google Scholar
First citationColes, M. P. & Hitchcock, P. B. (2004). Eur. J. Inorg. Chem. 13, 2662–2672.  Web of Science CSD CrossRef Google Scholar
First citationCorey, B. W., Laurel, L. R., Khalil, A. A. & Lisa, M. W. (2006). Inorg. Chem. 45, 263–268.  Web of Science PubMed Google Scholar
First citationKondo, Y., Morey, J. V., Morgan, J. C., Naka, H., Nobuto, D., Raithby, P. R., Uchiyama, M. & Wheatley, A. E. H. (2007). J. Am. Chem. Soc. 129, 12734–12738.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, M. S., Tong, H. B., Wei, X. H. & Liu, D. S. (2007). J. Organomet. Chem. 692, 5195–5202.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds