organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy-3-(3-meth­oxybenzoyl)-2-[(3-meth­oxybenzoyl)methyl]-2H-1,2-benzo­thia­zine 1,1-dioxide

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore-54590, Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, cInstitute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 31 July 2010; accepted 6 August 2010; online 18 August 2010)

In the title compound, C25H21NO7S, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by −0.284 (3) and 0.411 (3) Å, respectively, from the plane formed by the remaining ring atoms; the puckering parameters are: Q = 0.4576 (13) Å, θ = 58.6 (2) and φ = 34.3 (3)°. The structure is devoid of any classical hydrogen bonds. However, intra­molecular C—H⋯N and O—H⋯O hydrogen bonds result in six-membered rings and inter­molecular C—H⋯O inter­actions stabilize the crystal structure.

Related literature

For the biological applications of benzothia­zines, see: Lombardino et al. (1972[Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848-849.]); Zinnes et al. (1982[Zinnes, H., Sircar, J. C., Lindo, N., Schwartz, M. L., Fabian, A. C., Shavel, J. Jr, Kasulanis, C. F., Genzer, J. D., Lutomski, C. & DiPasquale, G. (1982). J. Med. Chem. 25, 12-18.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Kor. Chem. Soc. 54, 1171-1175.]); Turck et al. (1996[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79-84.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C25H21NO7S

  • Mr = 479.49

  • Triclinic, [P \overline 1]

  • a = 10.3169 (2) Å

  • b = 10.6923 (3) Å

  • c = 11.6867 (3) Å

  • α = 115.5965 (11)°

  • β = 105.8041 (14)°

  • γ = 97.6128 (13)°

  • V = 1071.22 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.24 × 0.16 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.953, Tmax = 0.984

  • 9164 measured reflections

  • 4860 independent reflections

  • 4419 reflections with (I) > 2.0 σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.07

  • 4860 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25C⋯O1i 0.98 2.57 3.438 (2) 147
C17—H17B⋯O2i 0.99 2.26 3.244 (2) 174
C15—H15⋯N1 0.95 2.41 2.986 (2) 119
O3—H3O⋯O4 0.84 1.67 2.428 (2) 149
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxicams are non steroidal anti-inflammatory drugs (NSAID's) that posses benzothiazine nucleus (Lombardino et al., 1972; Zinnes et al., 1982). Versatile biological activities are associated with benzothiazine derivatives, e.g., anti-microbial (Zia-ur-Rehman et al., 2005), analgesic (Turck et al., 1996), antioxidant (Ahmad et al., 2010), etc. In this paper, we report the synthesis and crystal structure of the title compound.

The structure of the title compound contains independent molecules separated by normal van der Waals distances (Fig. 1). The heterocyclic thiazine ring adopts a half-chair conformation, with atoms S1 and N1 displaced by -0.284 (3) and 0.411 (3) Å, respectively, from the plane formed by atoms C1/C6/C7/C8; the puckering parameters (Cremer & Pople, 1975) are: Q = 0.4576 (13) Å, θ = 58.6 (2)° and φ = 34.3 (3)°. Similar conformations of the corresponding rings have been reported in some closely related compounds (Siddiqui et al., 2008). The carbon fragments C1–C15 and C17–C24 are more or less planar individually and lie at an angle 77.17 (2)° with rest to each other.

The structure is devoid of any classical hydrogen bonds. However, intramolecular interactions C15—H15···N1 and O3—H3O···O4 resulting in six membered rings and intermolecular interactions of the type C—H···O are present (Tab. 1).

Related literature top

For the biological applications of benzothiazines, see: Lombardino et al. (1972); Zinnes et al. (1982); Zia-ur-Rehman et al. (2005); Turck et al. (1996); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

4-Hydroxy-1,1-dioxido-2H-1,2-benzothiazin-3-yl)(3-methoxyphenyl) methanone (2 g, 6.0 mmol), K2CO3 (1.24 g, 9.0 mmol), 3-methoxyphenacyl bromide (1.42 g, 6.2 mmol) and acetonitrile (25 ml) were refluxed for 6 h. The completion of reaction was monitored by TLC. After cooling to room temperature, the reaction mixture was poured into ice cold water. Yellow precipitates obtained were filtered, washed with cold water and dried. The crystals suitable for crystallographic study were grown from a solution of methanol and chloroform (1:1).

Refinement top

The H-atoms were located from difference Fourier maps and were included in the refinement at geometrically idealized positions in riding-model approximation with O—H = 0.84 Å and C—H = 0.95–0.99 Å; the Uiso(H) were allowed at 1.2Ueq(C) or 1.5Ueq(O). The final difference map was essentially featurless.

Structure description top

Oxicams are non steroidal anti-inflammatory drugs (NSAID's) that posses benzothiazine nucleus (Lombardino et al., 1972; Zinnes et al., 1982). Versatile biological activities are associated with benzothiazine derivatives, e.g., anti-microbial (Zia-ur-Rehman et al., 2005), analgesic (Turck et al., 1996), antioxidant (Ahmad et al., 2010), etc. In this paper, we report the synthesis and crystal structure of the title compound.

The structure of the title compound contains independent molecules separated by normal van der Waals distances (Fig. 1). The heterocyclic thiazine ring adopts a half-chair conformation, with atoms S1 and N1 displaced by -0.284 (3) and 0.411 (3) Å, respectively, from the plane formed by atoms C1/C6/C7/C8; the puckering parameters (Cremer & Pople, 1975) are: Q = 0.4576 (13) Å, θ = 58.6 (2)° and φ = 34.3 (3)°. Similar conformations of the corresponding rings have been reported in some closely related compounds (Siddiqui et al., 2008). The carbon fragments C1–C15 and C17–C24 are more or less planar individually and lie at an angle 77.17 (2)° with rest to each other.

The structure is devoid of any classical hydrogen bonds. However, intramolecular interactions C15—H15···N1 and O3—H3O···O4 resulting in six membered rings and intermolecular interactions of the type C—H···O are present (Tab. 1).

For the biological applications of benzothiazines, see: Lombardino et al. (1972); Zinnes et al. (1982); Zia-ur-Rehman et al. (2005); Turck et al. (1996); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).
4-Hydroxy-3-(3-methoxybenzoyl)-2-[(3-methoxybenzoyl)methyl]-2H-1,2- benzothiazine 1,1-dioxide top
Crystal data top
C25H21NO7SZ = 2
Mr = 479.49F(000) = 500
Triclinic, P1Dx = 1.487 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3169 (2) ÅCell parameters from 4699 reflections
b = 10.6923 (3) Åθ = 1.0–27.5°
c = 11.6867 (3) ŵ = 0.20 mm1
α = 115.5965 (11)°T = 173 K
β = 105.8041 (14)°Prism, yellow
γ = 97.6128 (13)°0.24 × 0.16 × 0.08 mm
V = 1071.22 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
4860 independent reflections
Radiation source: fine-focus sealed tube4419 reflections with (I) > 2.0 σ(I)
Graphite monochromatorRint = 0.021
ω and φ scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1313
Tmin = 0.953, Tmax = 0.984k = 1313
9164 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.098H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.7607P]
where P = (Fo2 + 2Fc2)/3
4860 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C25H21NO7Sγ = 97.6128 (13)°
Mr = 479.49V = 1071.22 (5) Å3
Triclinic, P1Z = 2
a = 10.3169 (2) ÅMo Kα radiation
b = 10.6923 (3) ŵ = 0.20 mm1
c = 11.6867 (3) ÅT = 173 K
α = 115.5965 (11)°0.24 × 0.16 × 0.08 mm
β = 105.8041 (14)°
Data collection top
Nonius KappaCCD
diffractometer
4860 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4419 reflections with (I) > 2.0 σ(I)
Tmin = 0.953, Tmax = 0.984Rint = 0.021
9164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
4860 reflectionsΔρmin = 0.42 e Å3
310 parameters
Special details top

Experimental. Yield: 2.44 g, 85%, m.p. 434–435 K, IR (KBr, νmax): 2972, 1708, 1331, 1172 cm-1, EI—MS (m/z): 479.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29020 (4)0.27269 (4)0.29750 (3)0.01827 (10)
O10.23063 (12)0.17819 (13)0.33899 (11)0.0256 (2)
O20.33929 (12)0.42553 (12)0.39028 (11)0.0259 (2)
O30.23349 (13)0.08669 (12)0.08736 (11)0.0273 (3)
H3O0.28980.13280.07260.041*
O40.42851 (13)0.14158 (13)0.03455 (12)0.0320 (3)
O50.70078 (13)0.17729 (14)0.64535 (12)0.0310 (3)
O60.42789 (11)0.38168 (13)0.12184 (12)0.0281 (3)
O71.04913 (12)0.66025 (14)0.44194 (12)0.0313 (3)
N10.41973 (12)0.22081 (13)0.25537 (12)0.0175 (2)
C10.16599 (15)0.23577 (16)0.14140 (15)0.0195 (3)
C20.07019 (16)0.31470 (18)0.14134 (17)0.0251 (3)
H20.07730.39540.22360.030*
C30.03709 (17)0.27353 (19)0.01822 (18)0.0277 (3)
H30.10430.32610.01630.033*
C40.04588 (16)0.15639 (18)0.10117 (16)0.0260 (3)
H40.12080.12740.18420.031*
C50.05357 (16)0.08082 (17)0.10094 (15)0.0231 (3)
H50.04800.00240.18400.028*
C60.16194 (15)0.11974 (16)0.02119 (15)0.0193 (3)
C80.38133 (15)0.07832 (15)0.14093 (14)0.0185 (3)
C70.26316 (15)0.03505 (16)0.02289 (15)0.0198 (3)
C90.45739 (16)0.02239 (16)0.14564 (15)0.0219 (3)
C100.56820 (16)0.00465 (16)0.26834 (16)0.0218 (3)
C110.65958 (18)0.09010 (18)0.24566 (18)0.0278 (3)
H110.65210.15300.15520.033*
C120.76153 (19)0.0826 (2)0.35613 (19)0.0337 (4)
H120.82410.14030.34080.040*
C130.77297 (18)0.0075 (2)0.48786 (18)0.0311 (4)
H130.84310.01160.56260.037*
C140.68140 (17)0.09261 (17)0.51133 (16)0.0245 (3)
C150.57875 (16)0.08652 (16)0.40222 (16)0.0223 (3)
H150.51590.14380.41800.027*
C160.6187 (2)0.2765 (2)0.67580 (18)0.0354 (4)
H16A0.64430.33210.77490.043*
H16B0.51860.22260.63240.043*
H16C0.63700.34290.64100.043*
C170.54988 (15)0.32707 (16)0.29135 (15)0.0194 (3)
H17A0.62540.27890.28690.023*
H17B0.57740.40450.38700.023*
C180.54062 (15)0.39652 (16)0.20087 (15)0.0194 (3)
C190.67638 (15)0.48054 (16)0.21338 (15)0.0199 (3)
C200.79776 (16)0.53606 (16)0.33060 (15)0.0216 (3)
H200.79420.52580.40660.026*
C210.92400 (15)0.60661 (16)0.33434 (16)0.0222 (3)
C220.92881 (17)0.62253 (17)0.22334 (17)0.0250 (3)
H221.01540.66910.22570.030*
C230.80723 (17)0.57047 (18)0.10920 (17)0.0263 (3)
H230.81040.58390.03470.032*
C240.68086 (16)0.49892 (17)0.10313 (16)0.0233 (3)
H240.59800.46270.02450.028*
C251.04318 (18)0.7108 (2)0.57431 (17)0.0323 (4)
H25A1.13680.77080.64360.039*
H25B1.01200.62790.58590.039*
H25C0.97670.76870.58450.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01845 (17)0.01876 (18)0.01474 (17)0.00516 (13)0.00559 (13)0.00620 (14)
O10.0246 (5)0.0319 (6)0.0240 (6)0.0064 (5)0.0112 (4)0.0160 (5)
O20.0275 (6)0.0205 (6)0.0193 (5)0.0081 (4)0.0047 (4)0.0030 (4)
O30.0335 (6)0.0221 (6)0.0177 (5)0.0075 (5)0.0065 (5)0.0045 (5)
O40.0389 (7)0.0217 (6)0.0249 (6)0.0131 (5)0.0092 (5)0.0028 (5)
O50.0354 (6)0.0343 (7)0.0230 (6)0.0139 (5)0.0076 (5)0.0147 (5)
O60.0193 (5)0.0358 (7)0.0315 (6)0.0052 (5)0.0049 (5)0.0220 (5)
O70.0183 (5)0.0408 (7)0.0251 (6)0.0006 (5)0.0046 (5)0.0123 (5)
N10.0169 (6)0.0149 (6)0.0167 (6)0.0026 (4)0.0053 (5)0.0056 (5)
C10.0163 (6)0.0218 (7)0.0184 (7)0.0026 (5)0.0047 (5)0.0101 (6)
C20.0231 (7)0.0268 (8)0.0246 (8)0.0079 (6)0.0087 (6)0.0117 (7)
C30.0218 (7)0.0316 (9)0.0335 (9)0.0092 (6)0.0082 (7)0.0200 (7)
C40.0201 (7)0.0302 (8)0.0246 (8)0.0003 (6)0.0017 (6)0.0166 (7)
C50.0225 (7)0.0236 (8)0.0176 (7)0.0006 (6)0.0041 (6)0.0093 (6)
C60.0187 (7)0.0188 (7)0.0179 (7)0.0007 (5)0.0052 (5)0.0091 (6)
C80.0202 (7)0.0164 (7)0.0174 (7)0.0035 (5)0.0080 (5)0.0068 (6)
C70.0231 (7)0.0180 (7)0.0169 (7)0.0028 (6)0.0085 (6)0.0077 (6)
C90.0241 (7)0.0189 (7)0.0212 (7)0.0043 (6)0.0093 (6)0.0084 (6)
C100.0236 (7)0.0190 (7)0.0257 (8)0.0066 (6)0.0101 (6)0.0126 (6)
C110.0347 (9)0.0244 (8)0.0300 (8)0.0136 (7)0.0163 (7)0.0141 (7)
C120.0360 (9)0.0369 (10)0.0411 (10)0.0229 (8)0.0188 (8)0.0237 (8)
C130.0301 (9)0.0352 (9)0.0335 (9)0.0148 (7)0.0087 (7)0.0218 (8)
C140.0261 (8)0.0243 (8)0.0262 (8)0.0070 (6)0.0095 (6)0.0151 (7)
C150.0236 (7)0.0208 (7)0.0260 (8)0.0081 (6)0.0095 (6)0.0137 (6)
C160.0469 (11)0.0305 (9)0.0256 (8)0.0165 (8)0.0121 (8)0.0103 (7)
C170.0167 (6)0.0182 (7)0.0192 (7)0.0012 (5)0.0037 (5)0.0085 (6)
C180.0193 (7)0.0175 (7)0.0190 (7)0.0049 (5)0.0060 (5)0.0076 (6)
C190.0197 (7)0.0177 (7)0.0227 (7)0.0056 (5)0.0085 (6)0.0099 (6)
C200.0217 (7)0.0208 (7)0.0210 (7)0.0048 (6)0.0074 (6)0.0099 (6)
C210.0191 (7)0.0197 (7)0.0238 (7)0.0046 (6)0.0065 (6)0.0086 (6)
C220.0244 (8)0.0224 (7)0.0302 (8)0.0053 (6)0.0129 (6)0.0134 (7)
C230.0306 (8)0.0274 (8)0.0276 (8)0.0084 (7)0.0144 (7)0.0169 (7)
C240.0236 (7)0.0245 (8)0.0230 (7)0.0071 (6)0.0074 (6)0.0133 (6)
C250.0263 (8)0.0363 (9)0.0233 (8)0.0068 (7)0.0041 (6)0.0090 (7)
Geometric parameters (Å, º) top
S1—O21.4329 (11)C10—C151.404 (2)
S1—O11.4334 (11)C11—C121.389 (2)
S1—N11.6294 (12)C11—H110.9500
S1—C11.7597 (15)C12—C131.379 (3)
O3—C71.2956 (18)C12—H120.9500
O3—H3O0.8400C13—C141.396 (2)
O4—C91.2875 (19)C13—H130.9500
O5—C141.367 (2)C14—C151.388 (2)
O5—C161.430 (2)C15—H150.9500
O6—C181.2126 (18)C16—H16A0.9800
O7—C211.3686 (18)C16—H16B0.9800
O7—C251.424 (2)C16—H16C0.9800
N1—C81.4344 (18)C17—C181.523 (2)
N1—C171.4651 (17)C17—H17A0.9900
C1—C21.382 (2)C17—H17B0.9900
C1—C61.401 (2)C18—C191.494 (2)
C2—C31.395 (2)C19—C241.396 (2)
C2—H20.9500C19—C201.401 (2)
C3—C41.384 (2)C20—C211.396 (2)
C3—H30.9500C20—H200.9500
C4—C51.388 (2)C21—C221.392 (2)
C4—H40.9500C22—C231.387 (2)
C5—C61.398 (2)C22—H220.9500
C5—H50.9500C23—C241.389 (2)
C6—C71.472 (2)C23—H230.9500
C8—C71.409 (2)C24—H240.9500
C8—C91.425 (2)C25—H25A0.9800
C9—C101.488 (2)C25—H25B0.9800
C10—C111.396 (2)C25—H25C0.9800
O2—S1—O1118.83 (7)C12—C13—C14119.97 (16)
O2—S1—N1108.34 (7)C12—C13—H13120.0
O1—S1—N1108.04 (7)C14—C13—H13120.0
O2—S1—C1110.07 (7)O5—C14—C15124.51 (15)
O1—S1—C1107.34 (7)O5—C14—C13115.40 (14)
N1—S1—C1103.07 (7)C15—C14—C13120.08 (15)
C7—O3—H3O109.5C14—C15—C10119.71 (14)
C14—O5—C16117.64 (13)C14—C15—H15120.1
C21—O7—C25117.12 (13)C10—C15—H15120.1
C8—N1—C17119.25 (11)O5—C16—H16A109.5
C8—N1—S1115.44 (9)O5—C16—H16B109.5
C17—N1—S1120.85 (10)H16A—C16—H16B109.5
C2—C1—C6122.10 (14)O5—C16—H16C109.5
C2—C1—S1119.57 (12)H16A—C16—H16C109.5
C6—C1—S1118.19 (11)H16B—C16—H16C109.5
C1—C2—C3118.73 (15)N1—C17—C18114.76 (12)
C1—C2—H2120.6N1—C17—H17A108.6
C3—C2—H2120.6C18—C17—H17A108.6
C4—C3—C2120.18 (15)N1—C17—H17B108.6
C4—C3—H3119.9C18—C17—H17B108.6
C2—C3—H3119.9H17A—C17—H17B107.6
C3—C4—C5120.69 (14)O6—C18—C19122.43 (14)
C3—C4—H4119.7O6—C18—C17120.85 (13)
C5—C4—H4119.7C19—C18—C17116.71 (12)
C4—C5—C6120.20 (15)C24—C19—C20120.41 (14)
C4—C5—H5119.9C24—C19—C18118.28 (13)
C6—C5—H5119.9C20—C19—C18121.27 (13)
C5—C6—C1118.03 (14)C21—C20—C19119.16 (14)
C5—C6—C7120.31 (14)C21—C20—H20120.4
C1—C6—C7121.57 (13)C19—C20—H20120.4
C7—C8—C9119.14 (13)O7—C21—C22115.97 (14)
C7—C8—N1119.46 (13)O7—C21—C20123.67 (14)
C9—C8—N1121.37 (13)C22—C21—C20120.34 (14)
O3—C7—C8121.27 (14)C23—C22—C21120.02 (14)
O3—C7—C6116.54 (13)C23—C22—H22120.0
C8—C7—C6122.05 (13)C21—C22—H22120.0
O4—C9—C8118.14 (14)C22—C23—C24120.47 (15)
O4—C9—C10115.58 (14)C22—C23—H23119.8
C8—C9—C10126.27 (14)C24—C23—H23119.8
C11—C10—C15119.87 (14)C23—C24—C19119.57 (14)
C11—C10—C9116.94 (14)C23—C24—H24120.2
C15—C10—C9123.09 (14)C19—C24—H24120.2
C12—C11—C10119.58 (16)O7—C25—H25A109.5
C12—C11—H11120.2O7—C25—H25B109.5
C10—C11—H11120.2H25A—C25—H25B109.5
C13—C12—C11120.78 (16)O7—C25—H25C109.5
C13—C12—H12119.6H25A—C25—H25C109.5
C11—C12—H12119.6H25B—C25—H25C109.5
O2—S1—N1—C8166.79 (10)N1—C8—C9—C108.9 (2)
O1—S1—N1—C863.25 (12)O4—C9—C10—C1120.3 (2)
C1—S1—N1—C850.17 (12)C8—C9—C10—C11160.34 (15)
O2—S1—N1—C1710.66 (13)O4—C9—C10—C15156.17 (15)
O1—S1—N1—C17140.62 (11)C8—C9—C10—C1523.2 (2)
C1—S1—N1—C17105.97 (11)C15—C10—C11—C120.9 (2)
O2—S1—C1—C238.43 (14)C9—C10—C11—C12177.40 (15)
O1—S1—C1—C292.25 (13)C10—C11—C12—C130.4 (3)
N1—S1—C1—C2153.82 (12)C11—C12—C13—C140.0 (3)
O2—S1—C1—C6145.82 (11)C16—O5—C14—C156.3 (2)
O1—S1—C1—C683.50 (12)C16—O5—C14—C13174.28 (15)
N1—S1—C1—C630.43 (13)C12—C13—C14—O5179.53 (16)
C6—C1—C2—C32.6 (2)C12—C13—C14—C150.1 (3)
S1—C1—C2—C3172.99 (12)O5—C14—C15—C10179.92 (14)
C1—C2—C3—C40.5 (2)C13—C14—C15—C100.5 (2)
C2—C3—C4—C51.7 (2)C11—C10—C15—C140.9 (2)
C3—C4—C5—C61.9 (2)C9—C10—C15—C14177.24 (14)
C4—C5—C6—C10.2 (2)C8—N1—C17—C1877.60 (17)
C4—C5—C6—C7176.77 (13)S1—N1—C17—C1877.64 (15)
C2—C1—C6—C52.4 (2)N1—C17—C18—O611.8 (2)
S1—C1—C6—C5173.19 (11)N1—C17—C18—C19167.24 (12)
C2—C1—C6—C7178.99 (14)O6—C18—C19—C2422.8 (2)
S1—C1—C6—C73.36 (19)C17—C18—C19—C24156.26 (14)
C17—N1—C8—C7111.52 (15)O6—C18—C19—C20159.16 (15)
S1—N1—C8—C745.01 (16)C17—C18—C19—C2021.8 (2)
C17—N1—C8—C970.61 (18)C24—C19—C20—C211.7 (2)
S1—N1—C8—C9132.85 (12)C18—C19—C20—C21176.33 (14)
C9—C8—C7—O39.2 (2)C25—O7—C21—C22150.29 (15)
N1—C8—C7—O3172.85 (13)C25—O7—C21—C2031.4 (2)
C9—C8—C7—C6166.26 (13)C19—C20—C21—O7177.72 (14)
N1—C8—C7—C611.6 (2)C19—C20—C21—C220.5 (2)
C5—C6—C7—O310.3 (2)O7—C21—C22—C23179.53 (15)
C1—C6—C7—O3166.13 (13)C20—C21—C22—C231.2 (2)
C5—C6—C7—C8173.95 (13)C21—C22—C23—C241.7 (2)
C1—C6—C7—C89.6 (2)C22—C23—C24—C190.5 (2)
C7—C8—C9—O410.4 (2)C20—C19—C24—C231.2 (2)
N1—C8—C9—O4171.74 (13)C18—C19—C24—C23176.90 (14)
C7—C8—C9—C10169.00 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25C···O1i0.982.573.438 (2)147
C17—H17B···O2i0.992.263.244 (2)174
C17—H17B···O20.992.512.844 (2)100
C15—H15···N10.952.412.986 (2)119
O3—H3O···O40.841.672.428 (2)149
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H21NO7S
Mr479.49
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.3169 (2), 10.6923 (3), 11.6867 (3)
α, β, γ (°)115.5965 (11), 105.8041 (14), 97.6128 (13)
V3)1071.22 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.24 × 0.16 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.953, 0.984
No. of measured, independent and
observed [(I) > 2.0 σ(I)] reflections
9164, 4860, 4419
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.07
No. of reflections4860
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.42

Computer programs: COLLECT (Hooft, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25C···O1i0.982.573.438 (2)147
C17—H17B···O2i0.992.263.244 (2)174
C15—H15···N10.952.412.986 (2)119
O3—H3O···O40.841.672.428 (2)149
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

HLS is grateful to the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.  Google Scholar
First citationLombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848–849.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79–84.  PubMed Web of Science Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Kor. Chem. Soc. 54, 1171–1175.  Google Scholar
First citationZinnes, H., Sircar, J. C., Lindo, N., Schwartz, M. L., Fabian, A. C., Shavel, J. Jr, Kasulanis, C. F., Genzer, J. D., Lutomski, C. & DiPasquale, G. (1982). J. Med. Chem. 25, 12–18.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds