metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­acetato­(N,N-di­ethyl­ethylenedi­amine)­zinc(II)

aDepartment of Chemistry Education, Interdisciplinary Program of Advanced Information and Display Materials and Center for Plastic Information Systems, Pusan National University, Busan 609-735, Republic of Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 8 July 2010; accepted 11 July 2010; online 17 July 2010)

In the title compound, [Zn(CH3COO)2(C6H16N2)], the ZnII atom is coordinated by two N atoms of one bidentate diethyl­ethylenediamine ligand and two O atoms of two acetate anions in a distorted tetra­hedral geometry. The acetate ligands are asymmetrically coordinated to the Zn atom with two different C—O distances of 1.234 (4) and 1.275 (4) Å. The dihedral angle between the N/Zn/N and O/Zn/O planes is 83.11 (8)°. There are two independent mol­ecules in the asymmetric unit. N—H⋯O hydrogen bonding links mol­ecules into a three-dimensional network.

Related literature

For general background to luminescent compounds, see: Xu et al. (2008[Xu, H., Xu, Z.-F., Yue, Z.-Y., Yan, P.-F., Wang, B., Jia, L.-W., Li, G.-M., Sun, W.-B. & Zhang, J.-W. (2008). J. Phys. Chem. C, 112, 15517-15525.]); Son et al. (2008[Son, H.-J., Han, W.-S., Chun, J.-Y., Kang, B.-K., Kwon, S.-N., Ko, J., Han, S. J., Lee, C., Kim, S. J. & Kang, S. O. (2008). Inorg. Chem. 47, 5666-5676.]). For the synthesis and structures of ZnII metal complexes, see: Kim et al. (2007a[Kim, Y.-I., Lee, Y.-S., Seo, H.-J. & Kang, S. K. (2007a). Acta Cryst. E63, m2239-m2240.],b[Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Lee, J.-Y. & Kang, S. K. (2007b). Acta Cryst. E63, m2810-m2811.]); Seo et al. (2009[Seo, H.-J., Ryu, J. S., Nam, K.-S., Kang, S. K., Park, S. Y. & Kim, Y.-I. (2009). Bull. Korean Chem. Soc. 30, 3109-3112.]); Das et al. (2006[Das, D., Chand, B. G., Sarker, K. K., Dinda, J. & Sinha, C. (2006). Polyhedron, 25, 2333-2340.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H3O2)2(C6H16N2)]

  • Mr = 299.67

  • Monoclinic, P 21 /n

  • a = 7.5495 (1) Å

  • b = 13.3244 (2) Å

  • c = 27.5543 (4) Å

  • β = 94.617 (1)°

  • V = 2762.76 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.78 mm−1

  • T = 173 K

  • 0.18 × 0.10 × 0.1 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.722, Tmax = 0.834

  • 27467 measured reflections

  • 6837 independent reflections

  • 5523 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.04

  • 6837 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 1.74 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O27i 0.9 2.02 2.904 (3) 168
N4—H4B⋯O31ii 0.9 2.16 3.032 (4) 163
N20—H20A⋯O15iii 0.9 2.01 2.911 (4) 176
N20—H20B⋯O11iv 0.9 2.06 2.925 (4) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Luminescent metal coordination compounds have attracted considerable attention for their potential applications in electroluminescent displays (Xu, et al. 2008). Among many coordination compounds, ZnII metal complexes are of great interest due to their facile synthesis, tunable emission color and good electroluminescent (EL) properties (Son, et al. 2008). Recently, we reported blue fluorescent zinc(II) complexes with nitrogen-containing ligand to develop luminescent materials (Seo, et al. 2009; Kim et al., 2007a; Kim et al., 2007b). In an extension of this study, here we prepared novel zinc(II) complex with N,N-diethylethylenediamine and structurally studied. In the title compound, the ZnII atom is coordinated by two N atoms of one bidentate diethylethylenediamine ligand and two O atoms of two acetate anions in a distorted tetrahedral geometry. The acetate ligands are asymmetrically coordinated to Zn atom with two different C—O distances of 1.234 (4) and 1.275 (4) Å. The dihedral angle between the N1/Zn1/N4 plane and O9/Zn1/O13 plane is 83.11 (8) °. N—H···O hydrogen bonding links molecules into a three-dimensional network.

The title compound shows an intense deep-blue emission at 402 nm attributed to 1(π - π*) intraligand charge transfer(ILCT) transition in CHCl3 upon 300 nm excitation and exhibits increased quantum yield of 5.47% compared with that of free ligand of 0.45%. The chelation of the ligand to ZnII increased the rigidity of the ligand and thus reduced the loss of energy by thermal vibrational decay, resulting in enhancing the quantum yield in the title coordination compound (Das, et al. 2006).

Related literature top

For general background to luminescent compounds, see: Xu et al. (2008); Son et al. (2008). For the synthesis and structures of ZnII metal complexes, see: Kim et al. (2007a,b); Seo et al. (2009); Das et al. (2006).

Experimental top

A solution of zinc acetate (2.195 g, 10.0 mmol) and N,N-diethylethylenediamine (1.14 g, 10.0 mmol) in absolute ethanol (50 ml) was stirred for 8 h at room temperature under a nitrogen atmosphere. The resulting colourless solution was allowed to stand at room temperature for two weeks to produce colorless crystals (yield 65.0%) suitable for X-ray diffraction. Anal. calcd. for C10H22N2O4Zn: C, 40.08; H, 7.40; N, 8.57. Found: C, 38.69; H, 7.18; N, 8.57.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.90 Å, and with Uiso(H) = 1.2Ueq(N) for NH2, C—H = 0.96 - 0.97 Å, and with Uiso(H) = 1.2Ueq(C) for methylene and 1.5Ueq(C) for methyl H atoms.

Structure description top

Luminescent metal coordination compounds have attracted considerable attention for their potential applications in electroluminescent displays (Xu, et al. 2008). Among many coordination compounds, ZnII metal complexes are of great interest due to their facile synthesis, tunable emission color and good electroluminescent (EL) properties (Son, et al. 2008). Recently, we reported blue fluorescent zinc(II) complexes with nitrogen-containing ligand to develop luminescent materials (Seo, et al. 2009; Kim et al., 2007a; Kim et al., 2007b). In an extension of this study, here we prepared novel zinc(II) complex with N,N-diethylethylenediamine and structurally studied. In the title compound, the ZnII atom is coordinated by two N atoms of one bidentate diethylethylenediamine ligand and two O atoms of two acetate anions in a distorted tetrahedral geometry. The acetate ligands are asymmetrically coordinated to Zn atom with two different C—O distances of 1.234 (4) and 1.275 (4) Å. The dihedral angle between the N1/Zn1/N4 plane and O9/Zn1/O13 plane is 83.11 (8) °. N—H···O hydrogen bonding links molecules into a three-dimensional network.

The title compound shows an intense deep-blue emission at 402 nm attributed to 1(π - π*) intraligand charge transfer(ILCT) transition in CHCl3 upon 300 nm excitation and exhibits increased quantum yield of 5.47% compared with that of free ligand of 0.45%. The chelation of the ligand to ZnII increased the rigidity of the ligand and thus reduced the loss of energy by thermal vibrational decay, resulting in enhancing the quantum yield in the title coordination compound (Das, et al. 2006).

For general background to luminescent compounds, see: Xu et al. (2008); Son et al. (2008). For the synthesis and structures of ZnII metal complexes, see: Kim et al. (2007a,b); Seo et al. (2009); Das et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (l), showing the atom-numbering scheme and 30% probability ellipsoids.
Diacetato(N,N-diethylethylenediamine)zinc(II) top
Crystal data top
[Zn(C2H3O2)2(C6H16N2)]F(000) = 1264
Mr = 299.67Dx = 1.441 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8610 reflections
a = 7.5495 (1) Åθ = 2.8–28.0°
b = 13.3244 (2) ŵ = 1.78 mm1
c = 27.5543 (4) ÅT = 173 K
β = 94.617 (1)°Block, colourless
V = 2762.76 (7) Å30.18 × 0.1 × 0.1 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5523 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 28.3°, θmin = 1.5°
Tmin = 0.722, Tmax = 0.834h = 1010
27467 measured reflectionsk = 1717
6837 independent reflectionsl = 3536
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.059P)2 + 4.8891P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max = 0.001
S = 1.04Δρmax = 1.74 e Å3
6837 reflectionsΔρmin = 0.95 e Å3
309 parameters
Crystal data top
[Zn(C2H3O2)2(C6H16N2)]V = 2762.76 (7) Å3
Mr = 299.67Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.5495 (1) ŵ = 1.78 mm1
b = 13.3244 (2) ÅT = 173 K
c = 27.5543 (4) Å0.18 × 0.1 × 0.1 mm
β = 94.617 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6837 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5523 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 0.834Rint = 0.033
27467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 1.74 e Å3
6837 reflectionsΔρmin = 0.95 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.16918 (4)0.56462 (3)0.137611 (12)0.02318 (10)
N10.0915 (4)0.5126 (2)0.11436 (10)0.0288 (6)
C20.2078 (5)0.5939 (4)0.13401 (16)0.0501 (11)
H2A0.21840.64910.1110.06*
H2B0.32590.5670.1370.06*
C30.1366 (5)0.6315 (3)0.18130 (15)0.0401 (9)
H3A0.14370.57920.20560.048*
H3B0.20780.68780.19070.048*
N40.0500 (3)0.6638 (2)0.18003 (9)0.0263 (6)
H4A0.10470.66420.21030.032*
H4B0.0550.72610.16750.032*
C50.1389 (5)0.4146 (3)0.13401 (18)0.0493 (10)
H5A0.12160.41650.16930.059*
H5B0.26360.40130.12510.059*
C60.0318 (7)0.3335 (4)0.1158 (2)0.0727 (16)
H6A0.0670.27070.12920.109*
H6B0.09160.34550.12530.109*
H6C0.04950.33090.08090.109*
C70.1186 (6)0.5195 (4)0.06090 (15)0.0519 (11)
H7A0.0320.47670.0470.062*
H7B0.09460.5880.05140.062*
C80.3044 (6)0.4902 (5)0.03852 (18)0.0662 (15)
H8A0.30850.49660.00370.099*
H8B0.39150.53380.05090.099*
H8C0.32930.42210.04690.099*
O90.2504 (3)0.62175 (18)0.07728 (8)0.0315 (5)
C100.3632 (4)0.6901 (3)0.08970 (13)0.0295 (7)
O110.4063 (3)0.71228 (19)0.13251 (10)0.0374 (6)
C120.4416 (5)0.7456 (3)0.04874 (16)0.0451 (10)
H12A0.38340.80930.0440.068*
H12B0.42490.70680.01940.068*
H12C0.56630.7560.05680.068*
O130.3570 (3)0.47619 (19)0.16413 (9)0.0331 (5)
C140.3221 (4)0.4350 (2)0.20440 (12)0.0281 (7)
O150.1721 (3)0.4354 (2)0.21913 (9)0.0367 (6)
C160.4745 (5)0.3854 (3)0.23375 (14)0.0402 (9)
H16A0.47350.40490.26730.06*
H16B0.58450.40590.22160.06*
H16C0.46270.31380.23110.06*
Zn20.26193 (4)0.00571 (3)0.136874 (12)0.02231 (10)
N170.5069 (4)0.0707 (2)0.12031 (10)0.0323 (6)
C180.6250 (5)0.0412 (3)0.16251 (16)0.0449 (8)
H18A0.60340.08430.18980.054*
H18B0.74730.05080.15510.054*
C190.5986 (5)0.0656 (4)0.17656 (18)0.0527 (11)
H19A0.64710.1090.15270.063*
H19B0.66370.07820.20780.063*
N200.4078 (3)0.0914 (2)0.18006 (10)0.0281 (6)
H20A0.37950.08580.21110.034*
H20B0.38650.15490.17010.034*
C210.4946 (6)0.1876 (4)0.12071 (18)0.0593 (13)
H21A0.45380.20920.15150.071*
H21B0.61220.21540.11820.071*
C220.3713 (8)0.2277 (4)0.0800 (2)0.0807 (19)
H22A0.36890.29970.08170.121*
H22B0.25380.20190.08290.121*
H22C0.41190.20730.04940.121*
C230.5562 (5)0.0365 (3)0.07219 (14)0.0371 (8)
H23A0.4610.05470.04810.045*
H23B0.56350.03620.07270.045*
C240.7298 (5)0.0772 (3)0.05540 (15)0.0408 (9)
H24A0.74850.05030.02390.061*
H24B0.82660.0580.07820.061*
H24C0.72380.14910.05350.061*
O250.0876 (3)0.08852 (18)0.16648 (8)0.0311 (5)
C260.1454 (4)0.1347 (2)0.20555 (11)0.0263 (6)
O270.3035 (3)0.1405 (2)0.21990 (8)0.0350 (6)
C280.0083 (5)0.1842 (3)0.23464 (15)0.0424 (9)
H28A0.02920.16560.26830.064*
H28B0.10830.16270.22250.064*
H28C0.0170.25580.23160.064*
O290.1591 (3)0.04624 (18)0.07437 (8)0.0291 (5)
C300.0457 (4)0.1155 (3)0.08104 (12)0.0265 (6)
O310.0095 (3)0.1432 (2)0.12188 (9)0.0390 (6)
C320.0414 (5)0.1633 (3)0.03550 (14)0.0404 (9)
H32A0.02420.22210.02770.061*
H32B0.04260.11640.0090.061*
H32C0.16110.18190.04090.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02171 (17)0.0258 (2)0.02222 (18)0.00040 (14)0.00278 (12)0.00037 (14)
N10.0260 (13)0.0326 (16)0.0278 (13)0.0040 (11)0.0014 (10)0.0028 (12)
C20.0320 (18)0.061 (3)0.057 (3)0.0071 (19)0.0044 (17)0.010 (2)
C30.0305 (17)0.042 (2)0.050 (2)0.0040 (16)0.0134 (15)0.0109 (18)
N40.0319 (13)0.0245 (14)0.0229 (12)0.0010 (11)0.0041 (10)0.0007 (11)
C50.038 (2)0.042 (2)0.066 (3)0.0063 (18)0.0084 (19)0.008 (2)
C60.052 (3)0.066 (4)0.098 (4)0.007 (2)0.007 (3)0.018 (3)
C70.041 (2)0.073 (3)0.039 (2)0.015 (2)0.0125 (17)0.010 (2)
C80.047 (2)0.093 (4)0.054 (3)0.011 (3)0.023 (2)0.003 (3)
O90.0339 (12)0.0335 (13)0.0282 (11)0.0064 (10)0.0091 (9)0.0018 (10)
C100.0259 (15)0.0251 (17)0.0385 (18)0.0060 (13)0.0090 (13)0.0050 (14)
O110.0331 (12)0.0341 (14)0.0445 (15)0.0012 (11)0.0006 (10)0.0050 (11)
C120.045 (2)0.038 (2)0.056 (2)0.0040 (17)0.0204 (18)0.0119 (19)
O130.0303 (11)0.0348 (14)0.0346 (13)0.0048 (10)0.0050 (10)0.0088 (11)
C140.0330 (16)0.0201 (16)0.0303 (16)0.0008 (13)0.0024 (13)0.0002 (13)
O150.0337 (12)0.0468 (16)0.0300 (12)0.0006 (11)0.0049 (10)0.0037 (11)
C160.0408 (19)0.038 (2)0.041 (2)0.0070 (16)0.0059 (15)0.0058 (17)
Zn20.02020 (17)0.0247 (2)0.02207 (18)0.00164 (13)0.00178 (12)0.00151 (14)
N170.0293 (13)0.0405 (17)0.0274 (14)0.0142 (13)0.0038 (11)0.0009 (12)
C180.0407 (19)0.040.054 (2)0.0093 (17)0.0030 (18)0.0051 (19)
C190.0283 (18)0.060 (3)0.067 (3)0.0067 (18)0.0128 (18)0.011 (2)
N200.0304 (13)0.0291 (15)0.0246 (13)0.0020 (11)0.0014 (10)0.0001 (11)
C210.040.076 (3)0.066 (3)0.033 (2)0.0304 (19)0.026 (3)
C220.079 (4)0.054 (3)0.116 (5)0.017 (3)0.053 (4)0.020 (3)
C230.0349 (17)0.038 (2)0.0410 (19)0.0088 (15)0.0162 (15)0.0122 (16)
C240.0322 (17)0.046 (2)0.046 (2)0.0000 (16)0.0165 (15)0.0023 (18)
O250.0262 (11)0.0336 (13)0.0335 (12)0.0022 (10)0.0019 (9)0.0097 (10)
C260.0290 (15)0.0232 (16)0.0271 (15)0.0001 (13)0.0048 (12)0.0016 (12)
O270.0296 (12)0.0475 (16)0.0278 (11)0.0012 (11)0.0015 (9)0.0052 (11)
C280.0360 (18)0.049 (2)0.043 (2)0.0029 (17)0.0077 (16)0.0154 (18)
O290.0261 (11)0.0342 (13)0.0267 (11)0.0065 (10)0.0008 (9)0.0048 (10)
C300.0211 (13)0.0266 (17)0.0319 (16)0.0024 (12)0.0030 (12)0.0031 (13)
O310.0446 (14)0.0352 (14)0.0381 (14)0.0001 (12)0.0085 (11)0.0066 (11)
C320.0325 (17)0.043 (2)0.045 (2)0.0111 (16)0.0002 (15)0.0105 (17)
Geometric parameters (Å, º) top
Zn1—O131.941 (2)Zn2—O251.946 (2)
Zn1—O91.971 (2)Zn2—O291.958 (2)
Zn1—N42.023 (3)Zn2—N202.023 (3)
Zn1—N12.136 (3)Zn2—N172.124 (3)
N1—C51.468 (5)N17—C181.461 (5)
N1—C71.474 (5)N17—C231.478 (4)
N1—C21.522 (5)N17—C211.560 (6)
C2—C31.458 (6)C18—C191.493 (6)
C2—H2A0.97C18—H18A0.97
C2—H2B0.97C18—H18B0.97
C3—N41.476 (4)C19—N201.491 (5)
C3—H3A0.97C19—H19A0.97
C3—H3B0.97C19—H19B0.97
N4—H4A0.9N20—H20A0.9
N4—H4B0.9N20—H20B0.9
C5—C61.464 (7)C21—C221.497 (8)
C5—H5A0.97C21—H21A0.97
C5—H5B0.97C21—H21B0.97
C6—H6A0.96C22—H22A0.96
C6—H6B0.96C22—H22B0.96
C6—H6C0.96C22—H22C0.96
C7—C81.536 (5)C23—C241.524 (5)
C7—H7A0.97C23—H23A0.97
C7—H7B0.97C23—H23B0.97
C8—H8A0.96C24—H24A0.96
C8—H8B0.96C24—H24B0.96
C8—H8C0.96C24—H24C0.96
O9—C101.275 (4)O25—C261.285 (4)
C10—O111.234 (4)C26—O271.229 (4)
C10—C121.509 (5)C26—C281.510 (5)
C12—H12A0.96C28—H28A0.96
C12—H12B0.96C28—H28B0.96
C12—H12C0.96C28—H28C0.96
O13—C141.284 (4)O29—C301.282 (4)
C14—O151.233 (4)C30—O311.236 (4)
C14—C161.505 (5)C30—C321.510 (5)
C16—H16A0.96C32—H32A0.96
C16—H16B0.96C32—H32B0.96
C16—H16C0.96C32—H32C0.96
O13—Zn1—O9106.53 (10)O25—Zn2—O29109.61 (10)
O13—Zn1—N4121.65 (11)O25—Zn2—N20118.07 (11)
O9—Zn1—N4114.72 (11)O29—Zn2—N20116.73 (11)
O13—Zn1—N1122.93 (11)O25—Zn2—N17119.27 (11)
O9—Zn1—N1102.37 (10)O29—Zn2—N17104.20 (10)
N4—Zn1—N186.76 (11)N20—Zn2—N1786.84 (11)
C5—N1—C7114.0 (3)C18—N17—C23116.7 (3)
C5—N1—C2109.7 (3)C18—N17—C21107.2 (3)
C7—N1—C2105.9 (3)C23—N17—C21109.5 (3)
C5—N1—Zn1115.1 (2)C18—N17—Zn2101.9 (2)
C7—N1—Zn1109.3 (2)C23—N17—Zn2110.7 (2)
C2—N1—Zn1101.9 (2)C21—N17—Zn2110.6 (2)
C3—C2—N1112.4 (3)N17—C18—C19112.1 (3)
C3—C2—H2A109.1N17—C18—H18A109.2
N1—C2—H2A109.1C19—C18—H18A109.2
C3—C2—H2B109.1N17—C18—H18B109.2
N1—C2—H2B109.1C19—C18—H18B109.2
H2A—C2—H2B107.9H18A—C18—H18B107.9
C2—C3—N4111.3 (3)N20—C19—C18112.7 (3)
C2—C3—H3A109.4N20—C19—H19A109
N4—C3—H3A109.4C18—C19—H19A109
C2—C3—H3B109.4N20—C19—H19B109
N4—C3—H3B109.4C18—C19—H19B109
H3A—C3—H3B108H19A—C19—H19B107.8
C3—N4—Zn1107.0 (2)C19—N20—Zn2107.3 (2)
C3—N4—H4A110.3C19—N20—H20A110.3
Zn1—N4—H4A110.3Zn2—N20—H20A110.3
C3—N4—H4B110.3C19—N20—H20B110.3
Zn1—N4—H4B110.3Zn2—N20—H20B110.3
H4A—N4—H4B108.6H20A—N20—H20B108.5
C6—C5—N1111.9 (4)C22—C21—N17112.6 (4)
C6—C5—H5A109.2C22—C21—H21A109.1
N1—C5—H5A109.2N17—C21—H21A109.1
C6—C5—H5B109.2C22—C21—H21B109.1
N1—C5—H5B109.2N17—C21—H21B109.1
H5A—C5—H5B107.9H21A—C21—H21B107.8
C5—C6—H6A109.5C21—C22—H22A109.5
C5—C6—H6B109.5C21—C22—H22B109.5
H6A—C6—H6B109.5H22A—C22—H22B109.5
C5—C6—H6C109.5C21—C22—H22C109.5
H6A—C6—H6C109.5H22A—C22—H22C109.5
H6B—C6—H6C109.5H22B—C22—H22C109.5
N1—C7—C8115.7 (4)N17—C23—C24116.6 (3)
N1—C7—H7A108.3N17—C23—H23A108.1
C8—C7—H7A108.3C24—C23—H23A108.1
N1—C7—H7B108.3N17—C23—H23B108.1
C8—C7—H7B108.3C24—C23—H23B108.1
H7A—C7—H7B107.4H23A—C23—H23B107.3
C7—C8—H8A109.5C23—C24—H24A109.5
C7—C8—H8B109.5C23—C24—H24B109.5
H8A—C8—H8B109.5H24A—C24—H24B109.5
C7—C8—H8C109.5C23—C24—H24C109.5
H8A—C8—H8C109.5H24A—C24—H24C109.5
H8B—C8—H8C109.5H24B—C24—H24C109.5
C10—O9—Zn1107.2 (2)C26—O25—Zn2115.3 (2)
O11—C10—O9123.1 (3)O27—C26—O25123.7 (3)
O11—C10—C12120.6 (3)O27—C26—C28119.4 (3)
O9—C10—C12116.3 (3)O25—C26—C28116.9 (3)
C10—C12—H12A109.5C26—C28—H28A109.5
C10—C12—H12B109.5C26—C28—H28B109.5
H12A—C12—H12B109.5H28A—C28—H28B109.5
C10—C12—H12C109.5C26—C28—H28C109.5
H12A—C12—H12C109.5H28A—C28—H28C109.5
H12B—C12—H12C109.5H28B—C28—H28C109.5
C14—O13—Zn1112.9 (2)C30—O29—Zn2110.5 (2)
O15—C14—O13122.7 (3)O31—C30—O29123.0 (3)
O15—C14—C16120.5 (3)O31—C30—C32121.1 (3)
O13—C14—C16116.8 (3)O29—C30—C32115.8 (3)
C14—C16—H16A109.5C30—C32—H32A109.5
C14—C16—H16B109.5C30—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C14—C16—H16C109.5C30—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O27i0.92.022.904 (3)168
N4—H4B···O31ii0.92.163.032 (4)163
N20—H20A···O15iii0.92.012.911 (4)176
N20—H20B···O11iv0.92.062.925 (4)160
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C2H3O2)2(C6H16N2)]
Mr299.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.5495 (1), 13.3244 (2), 27.5543 (4)
β (°) 94.617 (1)
V3)2762.76 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.78
Crystal size (mm)0.18 × 0.1 × 0.1
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.722, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
27467, 6837, 5523
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.04
No. of reflections6837
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.74, 0.95

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O27i0.92.022.904 (3)168.4
N4—H4B···O31ii0.92.163.032 (4)163
N20—H20A···O15iii0.92.012.911 (4)175.8
N20—H20B···O11iv0.92.062.925 (4)160.4
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y1, z.
 

Acknowledgements

This work was supported for two years by Pusan National University Research Grant. The X-ray data were collected at the Center for Research Facilities at Chungnam National University.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, D., Chand, B. G., Sarker, K. K., Dinda, J. & Sinha, C. (2006). Polyhedron, 25, 2333–2340.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKim, Y.-I., Lee, Y.-S., Seo, H.-J. & Kang, S. K. (2007a). Acta Cryst. E63, m2239–m2240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y.-I., Lee, Y.-S., Seo, H.-J., Lee, J.-Y. & Kang, S. K. (2007b). Acta Cryst. E63, m2810–m2811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeo, H.-J., Ryu, J. S., Nam, K.-S., Kang, S. K., Park, S. Y. & Kim, Y.-I. (2009). Bull. Korean Chem. Soc. 30, 3109–3112.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSon, H.-J., Han, W.-S., Chun, J.-Y., Kang, B.-K., Kwon, S.-N., Ko, J., Han, S. J., Lee, C., Kim, S. J. & Kang, S. O. (2008). Inorg. Chem. 47, 5666–5676.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, H., Xu, Z.-F., Yue, Z.-Y., Yan, P.-F., Wang, B., Jia, L.-W., Li, G.-M., Sun, W.-B. & Zhang, J.-W. (2008). J. Phys. Chem. C, 112, 15517–15525.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds