organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(Di­methyl­amino)­benzyl­­idene]-3,4-di­methyl­isoxazol-5-amine

aChemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 June 2010; accepted 19 June 2010; online 26 June 2010)

The aromatic rings attached to the azomethine double bond in the title compound, C14H17N3O, are trans to each other [C—C=N—C torsion angle = 179.5 (1)°], and they are approximately coplanar [dihedral angle between the five- and six-membered rings = 13.7 (1)°].

Related literature

For the spectroscopic characterization of a related Schiff base, see: Asiri et al. (2010[Asiri, A. M., Khan, S. A. & Rasul, M. G. (2010). Molbank, M684, 3 pp.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N3O

  • Mr = 243.31

  • Triclinic, [P \overline 1]

  • a = 6.5772 (6) Å

  • b = 9.1246 (9) Å

  • c = 10.538 (1) Å

  • α = 92.995 (1)°

  • β = 95.183 (1)°

  • γ = 90.873 (1)°

  • V = 628.86 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 6092 measured reflections

  • 2866 independent reflections

  • 2401 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.04

  • 2866 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Although there is a large number of crystal structure studies of Schiff bases derived by condensing an aromatic aldehyde and an aromatic amine, there has not been any structural report on the condensation product involving 5-amino-3,4-dimethylisoxazole, a commerically available chemical. We have recently reported the spectroscopic characterization of the N-ethylcarbazole-3-aldehyde condensation product of this amine (Asiri et al., 2010). The 4-dimethylaminobenzaldehyde condensation product (Scheme I, Fig. 1) features an azomethine double-bond whose aromatic substituents are located in trans positions. The rings are coplanar [C–CN–C torsion angle 179.5 (1) °].

Related literature top

For the spectroscopic characterization of a related Schiff base, see: Asiri et al. (2010).

Experimental top

5-Amino-3,4-dimethylisoxazole (0.36 g, 3.2 mol) and N,N-dimethylaminobenzaldehyde (0.5 g, 3.2 mol) were heated in methanol (15 ml) for 5 h. The solvent was removed and the solid material recrystallized from methanol to give the crystalline Schiff base.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, U(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C14H13N3O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
N-[4-(Dimethylamino)benzylidene]-3,4-dimethylisoxazol-5-amine top
Crystal data top
C14H17N3OZ = 2
Mr = 243.31F(000) = 260
Triclinic, P1Dx = 1.285 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5772 (6) ÅCell parameters from 2610 reflections
b = 9.1246 (9) Åθ = 2.2–28.3°
c = 10.538 (1) ŵ = 0.08 mm1
α = 92.995 (1)°T = 100 K
β = 95.183 (1)°Prism, yellow
γ = 90.873 (1)°0.35 × 0.15 × 0.10 mm
V = 628.86 (10) Å3
Data collection top
Bruker SMART APEX
diffractometer
2401 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ω scansh = 88
6092 measured reflectionsk = 1111
2866 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.0819P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2866 reflectionsΔρmax = 0.25 e Å3
168 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (5)
Crystal data top
C14H17N3Oγ = 90.873 (1)°
Mr = 243.31V = 628.86 (10) Å3
Triclinic, P1Z = 2
a = 6.5772 (6) ÅMo Kα radiation
b = 9.1246 (9) ŵ = 0.08 mm1
c = 10.538 (1) ÅT = 100 K
α = 92.995 (1)°0.35 × 0.15 × 0.10 mm
β = 95.183 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2401 reflections with I > 2σ(I)
6092 measured reflectionsRint = 0.023
2866 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
2866 reflectionsΔρmin = 0.24 e Å3
168 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34307 (12)0.64426 (8)0.20359 (7)0.0212 (2)
N20.46514 (14)0.43648 (10)0.31374 (9)0.0188 (2)
N30.41200 (15)0.73832 (10)0.11248 (9)0.0229 (2)
N10.13966 (15)0.02064 (10)0.73244 (9)0.0214 (2)
C10.06808 (18)0.00795 (14)0.76262 (12)0.0275 (3)
H1A0.12580.08310.79590.041*
H1B0.06730.08160.82710.041*
H1C0.15110.04460.68520.041*
C30.17610 (17)0.11519 (11)0.64040 (10)0.0175 (2)
C20.29986 (19)0.07284 (12)0.78465 (12)0.0251 (3)
H2A0.32700.14990.72040.038*
H2B0.25610.11790.86040.038*
H2C0.42450.01380.80840.038*
C40.37269 (17)0.13022 (12)0.59705 (10)0.0189 (2)
H40.47970.06990.62930.023*
C50.41094 (17)0.23055 (12)0.50920 (10)0.0184 (2)
H50.54470.23910.48270.022*
C60.25736 (16)0.32079 (12)0.45762 (10)0.0176 (2)
C70.06149 (17)0.30343 (12)0.49799 (11)0.0194 (2)
H70.04570.36220.46340.023*
C80.01988 (17)0.20356 (12)0.58643 (11)0.0201 (2)
H80.11480.19410.61130.024*
C90.29510 (17)0.42739 (12)0.36576 (10)0.0185 (2)
H90.19030.49390.34240.022*
C100.49005 (17)0.54187 (12)0.22757 (10)0.0180 (2)
C110.64745 (16)0.56405 (11)0.15557 (10)0.0180 (2)
C120.83736 (17)0.47749 (13)0.14888 (11)0.0237 (3)
H12A0.84860.40970.21820.036*
H12B0.95640.54440.15740.036*
H12C0.83180.42150.06670.036*
C130.58994 (17)0.68813 (12)0.08652 (10)0.0197 (2)
C140.71023 (19)0.76199 (13)0.00676 (11)0.0245 (3)
H14A0.71540.69720.08350.037*
H14B0.84930.78330.03200.037*
H14C0.64480.85380.02990.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0190 (4)0.0238 (4)0.0218 (4)0.0006 (3)0.0047 (3)0.0072 (3)
N20.0200 (5)0.0196 (5)0.0168 (5)0.0031 (4)0.0033 (4)0.0010 (3)
N30.0236 (5)0.0256 (5)0.0203 (5)0.0034 (4)0.0033 (4)0.0088 (4)
N10.0200 (5)0.0231 (5)0.0224 (5)0.0003 (4)0.0047 (4)0.0078 (4)
C10.0240 (6)0.0296 (6)0.0311 (7)0.0021 (5)0.0093 (5)0.0117 (5)
C30.0197 (6)0.0169 (5)0.0160 (5)0.0017 (4)0.0026 (4)0.0006 (4)
C20.0285 (6)0.0216 (6)0.0267 (6)0.0039 (5)0.0053 (5)0.0092 (5)
C40.0176 (5)0.0198 (5)0.0193 (5)0.0015 (4)0.0022 (4)0.0015 (4)
C50.0157 (5)0.0208 (5)0.0190 (5)0.0020 (4)0.0039 (4)0.0001 (4)
C60.0179 (5)0.0188 (5)0.0159 (5)0.0020 (4)0.0018 (4)0.0001 (4)
C70.0165 (5)0.0224 (5)0.0197 (5)0.0010 (4)0.0015 (4)0.0034 (4)
C80.0160 (5)0.0241 (6)0.0207 (6)0.0013 (4)0.0038 (4)0.0026 (4)
C90.0173 (5)0.0211 (5)0.0168 (5)0.0012 (4)0.0007 (4)0.0012 (4)
C100.0182 (5)0.0189 (5)0.0165 (5)0.0020 (4)0.0000 (4)0.0003 (4)
C110.0184 (5)0.0206 (5)0.0146 (5)0.0047 (4)0.0010 (4)0.0004 (4)
C120.0197 (6)0.0280 (6)0.0242 (6)0.0016 (4)0.0045 (5)0.0038 (5)
C130.0205 (6)0.0227 (5)0.0156 (5)0.0052 (4)0.0003 (4)0.0006 (4)
C140.0267 (6)0.0273 (6)0.0201 (6)0.0054 (5)0.0039 (5)0.0046 (5)
Geometric parameters (Å, º) top
O1—C101.3709 (13)C5—C61.4025 (15)
O1—N31.4201 (11)C5—H50.9500
N2—C91.2926 (14)C6—C71.4020 (15)
N2—C101.3745 (14)C6—C91.4419 (15)
N3—C131.3097 (15)C7—C81.3788 (15)
N1—C31.3659 (14)C7—H70.9500
N1—C21.4533 (14)C8—H80.9500
N1—C11.4534 (14)C9—H90.9500
C1—H1A0.9800C10—C111.3565 (15)
C1—H1B0.9800C11—C131.4155 (15)
C1—H1C0.9800C11—C121.4930 (15)
C3—C81.4132 (15)C12—H12A0.9800
C3—C41.4168 (15)C12—H12B0.9800
C2—H2A0.9800C12—H12C0.9800
C2—H2B0.9800C13—C141.4966 (15)
C2—H2C0.9800C14—H14A0.9800
C4—C51.3718 (15)C14—H14B0.9800
C4—H40.9500C14—H14C0.9800
C10—O1—N3107.86 (8)C8—C7—C6121.91 (10)
C9—N2—C10119.52 (10)C8—C7—H7119.0
C13—N3—O1105.28 (9)C6—C7—H7119.0
C3—N1—C2120.76 (9)C7—C8—C3120.48 (10)
C3—N1—C1120.12 (9)C7—C8—H8119.8
C2—N1—C1118.15 (9)C3—C8—H8119.8
N1—C1—H1A109.5N2—C9—C6122.97 (10)
N1—C1—H1B109.5N2—C9—H9118.5
H1A—C1—H1B109.5C6—C9—H9118.5
N1—C1—H1C109.5C11—C10—O1109.95 (10)
H1A—C1—H1C109.5C11—C10—N2129.32 (10)
H1B—C1—H1C109.5O1—C10—N2120.73 (9)
N1—C3—C8121.22 (10)C10—C11—C13104.10 (10)
N1—C3—C4121.27 (10)C10—C11—C12128.36 (10)
C8—C3—C4117.50 (10)C13—C11—C12127.54 (10)
N1—C2—H2A109.5C11—C12—H12A109.5
N1—C2—H2B109.5C11—C12—H12B109.5
H2A—C2—H2B109.5H12A—C12—H12B109.5
N1—C2—H2C109.5C11—C12—H12C109.5
H2A—C2—H2C109.5H12A—C12—H12C109.5
H2B—C2—H2C109.5H12B—C12—H12C109.5
C5—C4—C3121.04 (10)N3—C13—C11112.81 (10)
C5—C4—H4119.5N3—C13—C14120.31 (10)
C3—C4—H4119.5C11—C13—C14126.88 (11)
C4—C5—C6121.58 (10)C13—C14—H14A109.5
C4—C5—H5119.2C13—C14—H14B109.5
C6—C5—H5119.2H14A—C14—H14B109.5
C7—C6—C5117.44 (10)C13—C14—H14C109.5
C7—C6—C9120.23 (10)H14A—C14—H14C109.5
C5—C6—C9122.33 (10)H14B—C14—H14C109.5
C10—O1—N3—C130.59 (11)C7—C6—C9—N2171.57 (10)
C2—N1—C3—C8178.20 (10)C5—C6—C9—N27.97 (17)
C1—N1—C3—C89.66 (16)N3—O1—C10—C110.86 (11)
C2—N1—C3—C42.91 (16)N3—O1—C10—N2179.38 (9)
C1—N1—C3—C4171.45 (10)C9—N2—C10—C11174.71 (11)
N1—C3—C4—C5176.74 (10)C9—N2—C10—O15.00 (15)
C8—C3—C4—C52.19 (16)O1—C10—C11—C130.75 (12)
C3—C4—C5—C60.80 (17)N2—C10—C11—C13179.51 (10)
C4—C5—C6—C70.81 (16)O1—C10—C11—C12178.70 (10)
C4—C5—C6—C9179.64 (9)N2—C10—C11—C121.03 (19)
C5—C6—C7—C81.00 (16)O1—N3—C13—C110.13 (12)
C9—C6—C7—C8179.45 (10)O1—N3—C13—C14179.61 (9)
C6—C7—C8—C30.44 (17)C10—C11—C13—N30.38 (13)
N1—C3—C8—C7176.93 (10)C12—C11—C13—N3179.08 (10)
C4—C3—C8—C72.01 (16)C10—C11—C13—C14179.06 (10)
C10—N2—C9—C6179.54 (9)C12—C11—C13—C141.47 (18)

Experimental details

Crystal data
Chemical formulaC14H17N3O
Mr243.31
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.5772 (6), 9.1246 (9), 10.538 (1)
α, β, γ (°)92.995 (1), 95.183 (1), 90.873 (1)
V3)628.86 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6092, 2866, 2401
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.04
No. of reflections2866
No. of parameters168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

References

First citationAsiri, A. M., Khan, S. A. & Rasul, M. G. (2010). Molbank, M684, 3 pp.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds