metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m915-m916

catena-Poly[[[μ-aqua-penta­aqua­dizinc(II)]-μ4-benzene-1,2,4,5-tetra­carboxyl­ato] dihydrate]

aDipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universitá di Messina, Salita Sperone, 31-98166-Messina, Italy, and bITCGC Ferraris, Reggio Calabria, Italy
*Correspondence e-mail: arotondo@unime.it

(Received 15 June 2009; accepted 8 July 2009; online 11 July 2009)

The asymmetric unit of the title compound, {[Zn2(C10H2O8)(H2O)6]·2H2O}n, contains two distinct Zn atoms joined by a bridging water molecule and two bridging carboxyl­ate groups belonging to distinct halves of benzene-1,2,4,5-tetra­carboxyl­ate (tbec) tetra­anionic ligands, both lying on crystallographic inversion centres. The structure of this new isopolymorphic one-dimensional coordination polymer features asymmetric bimetallic octa­hedral knots. O—H⋯O hydrogen bonds between water molecules and carboxylate O atoms help to consolidate the crystal packing.

Related literature

For background to 1,2,4,5,-benzene­tetra­carboxylate anions, see: Robl (1987[Robl, C. (1987). Z. Anorg. Allg. Chem. 554, 79-86.]); Wei et al. (1991[Wei, G.-C., Jin, Z.-S., Duan, Z.-B., Yang, K.-Y. & Ni, J.-Z. (1991). Chin. J. Struct. Chem. 10, 106-109.]). For their use in constructing stable metal-organic frameworks, see: Du et al. (2007[Du, Z.-X., Li, J.-X., Zhang, G.-Y. & Hou, H.-W. (2007). Z. Kristallogr. 222, 107-108.]); Rochon & Massarweh (2000[Rochon, F. D. & Massarweh, G. (2000). Inorg. Chim. Acta, 304, 190-198.]); Wang et al. (2007[Wang, J., Lu, L., Yang, B., Zhao, B.-Z. & Ng, S. W. (2007). Acta Cryst. E63, m2986.]); Wen et al. (2007[Wen, Y.-H., Zhang, Q.-W., He, Y.-H. & Feng, Y.-L. (2007). Inorg. Chem. Commun. 10, 543-546.]); Yang et al. (2003[Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m921-m923.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C10H2O8)(H2O)6]·2H2O

  • Mr = 525.02

  • Triclinic, [P \overline 1]

  • a = 6.8429 (1) Å

  • b = 8.0167 (1) Å

  • c = 16.6700 (2) Å

  • α = 101.620 (1)°

  • β = 92.555 (1)°

  • γ = 93.439 (1)°

  • V = 892.62 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.77 mm−1

  • T = 296 K

  • 0.50 × 0.40 × 0.12 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.300, Tmax = 0.717

  • 17507 measured reflections

  • 3632 independent reflections

  • 3506 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.083

  • S = 1.04

  • 3632 reflections

  • 279 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1W 2.0374 (15)
Zn1—O5W 2.0464 (16)
Zn1—O2 2.0484 (14)
Zn1—O2W 2.0550 (16)
Zn1—O6 2.1462 (14)
Zn1—O1B 2.2540 (14)
Zn2—O4W 1.9886 (16)
Zn2—O1 2.0065 (13)
Zn2—O3W 2.0525 (17)
Zn2—O5 2.0868 (13)
Zn2—O1B 2.1693 (14)
Zn2—O6 2.4325 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1BA⋯O4i 0.85 1.82 2.667 (2) 178
O1B—H1BB⋯O7i 0.85 1.79 2.638 (2) 175
O1W—H1WA⋯O8i 0.85 1.90 2.721 (2) 163
O1W—H1WB⋯O8ii 0.85 1.97 2.770 (2) 156
O2W—H2WA⋯O3i 0.85 1.85 2.689 (2) 171
O2W—H2WB⋯O5iii 0.85 1.90 2.724 (2) 163
O3W—H3WB⋯O6Wiv 0.85 1.89 2.737 (2) 174
O3W—H3WA⋯O7W 0.85 1.98 2.829 (3) 178
O4W—H4WA⋯O3v 0.85 1.81 2.661 (2) 176
O4W—H4WB⋯O6W 0.85 1.80 2.649 (2) 175
O5W—H5WA⋯O7Wiii 0.85 1.93 2.768 (2) 170
O5W—H5WB⋯O8 0.85 2.01 2.855 (2) 171
O6W—H6WA⋯O1vi 0.85 1.94 2.774 (2) 167
O6W—H6WB⋯O4i 0.85 1.91 2.687 (2) 152
O7W—H7WA⋯O3vii 0.85 2.15 2.995 (3) 171
O7W—H7WB⋯O7 0.85 1.89 2.721 (2) 167
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z; (iii) x, y-1, z; (iv) x-1, y, z; (v) x+1, y+1, z; (vi) -x+1, -y+2, -z+1; (vii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WingGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There are many crystallogaraphic studies of 1,2,4,5,-benzenetetracarboxylic ions (btec) coordinated to zinc in the Cambridge Structural Database (Allen, 2002). The previous studies (Robl, 1987; Wei et al., 1991) were followed by others aimed at building stable metal-organic frameworks even exploiting hydrothermal conditions (Wen et al. 2007; Wang et al., 2007; Rochon & Massarweh 2000; Yang et al. 2003; Du et al. 2007). The polymorph presented here is obtained from a simple water solution containing the sodium dicarboxylate, zinc nitrate and melamine. The two metal centers of (I) display a skewed octahedral geometry (Figure 1, Table 1) with water molecules supplementing the organic ligands. Beyond the mono-dimensional scaffold running along the long diagonal of the b and c crystallographic axes (Figure 2), a close hydrogen bonding network supports the crystal packing (Table 2). Similar syntheses with different amines demonstrate that the btec coordination modes and packing strongly depend on the nature of the metal and the ancillary amines used (Bruno & Rotondo, to be published)

Related literature top

For background to 1,2,4,5,-benzenetetracarboxylic ions, see: Robl (1987); Wei et al. (1991). For their use in constructing stable metal-organic frameworks, see: Du et al. (2007); Rochon & Massarweh (2000); Wang et al. (2007); Wen et al. (2007); Yang et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A water solution of 5 ml of Zn(NO3)2 50mM with an equimolar solution of melamine were aded to 10 ml of a 25mM disodium-dihydrogen 1,2,4,5-benzenetetracarboxylate solution. The resulting clear solution with pH= 5.15 was left covered at room temperature Colourless crystals could be separated from the solution after five days.

Refinement top

All hydrogen atoms were located in the difference map and refined in ideal positions with the 'riding and rigid model' technique. Temperature factors are always related to the parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WingGX (Farrugia, 1999), PARST (Nardelli, 1995), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of I. Displacement ellipsoids are drawn at the 40% probability level and dashed atoms are obtained by symmetry transformations. Symmetry codes #: -x, -y + 1, -z + 1; *: -x, -y + 2, -z.
[Figure 2] Fig. 2. Monodimensional framework running along the long diagonal of b and c crystallographic axes. Dashed lines indicate intermolecular hydrogen bonds also reported in the tables.
catena-Poly[[[µ-aqua-pentaaquadizinc(II)]- µ4-benzene-1,2,4,5-tetracarboxylato- 1:2:1':2'κ6O1,O1':O1':O4:O4,O4'] dihydrate] top
Crystal data top
[Zn2(C10H2O8)(H2O)6]·2H2OZ = 2
Mr = 525.02F(000) = 532
Triclinic, P1Dx = 1.953 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8429 (1) ÅCell parameters from 3632 reflections
b = 8.0167 (1) Åθ = 4.1–26.4°
c = 16.6700 (2) ŵ = 2.77 mm1
α = 101.620 (1)°T = 296 K
β = 92.555 (1)°Laminar, colourless
γ = 93.439 (1)°0.5 × 0.4 × 0.12 mm
V = 892.62 (2) Å3
Data collection top
Bruker APEXII
diffractometer
3506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 26.4°, θmin = 4.1°
Absorption correction: ψ scan
(North et al., 1968)
h = 88
Tmin = 0.3, Tmax = 0.717k = 1010
17507 measured reflectionsl = 2020
3632 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.4217P]
where P = (Fo2 + 2Fc2)/3
3632 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Zn2(C10H2O8)(H2O)6]·2H2Oγ = 93.439 (1)°
Mr = 525.02V = 892.62 (2) Å3
Triclinic, P1Z = 2
a = 6.8429 (1) ÅMo Kα radiation
b = 8.0167 (1) ŵ = 2.77 mm1
c = 16.6700 (2) ÅT = 296 K
α = 101.620 (1)°0.5 × 0.4 × 0.12 mm
β = 92.555 (1)°
Data collection top
Bruker APEXII
diffractometer
3632 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
3506 reflections with I > 2σ(I)
Tmin = 0.3, Tmax = 0.717Rint = 0.051
17507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.04Δρmax = 0.80 e Å3
3632 reflectionsΔρmin = 0.72 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.19779 (3)0.58919 (3)0.188584 (13)0.02614 (10)
Zn20.26320 (3)0.96925 (3)0.309777 (13)0.02578 (9)
C10.0467 (3)0.5880 (2)0.43868 (11)0.0224 (3)
C20.1459 (3)0.5219 (2)0.44205 (11)0.0221 (3)
C30.1898 (3)0.4336 (2)0.50353 (11)0.0236 (3)
H30.31730.38840.50590.028*
C40.1070 (3)0.6707 (2)0.36925 (11)0.0235 (3)
C50.3060 (3)0.5493 (2)0.38211 (11)0.0250 (4)
O10.1889 (2)0.82096 (17)0.38882 (8)0.0292 (3)
O20.0801 (2)0.58438 (19)0.29902 (8)0.0333 (3)
O30.4229 (3)0.4248 (2)0.35058 (12)0.0491 (5)
O40.3135 (2)0.69436 (19)0.36674 (10)0.0365 (4)
C60.0639 (3)0.9763 (2)0.07689 (11)0.0238 (3)
C70.1212 (3)0.9066 (2)0.04319 (11)0.0240 (4)
C80.1827 (3)0.9309 (2)0.03354 (12)0.0260 (4)
H90.30530.88440.05650.031*
C90.1354 (3)0.9520 (2)0.15918 (11)0.0244 (4)
C100.2624 (3)0.8139 (2)0.08949 (12)0.0249 (4)
O50.2597 (2)1.06218 (18)0.20148 (8)0.0293 (3)
O60.0691 (2)0.82610 (18)0.18669 (9)0.0292 (3)
O70.3423 (2)0.90212 (19)0.14747 (9)0.0330 (3)
O80.2988 (2)0.65586 (18)0.06365 (9)0.0325 (3)
O1B0.4460 (2)0.77301 (17)0.25175 (8)0.0258 (3)
H1BA0.52010.74590.28870.039*
H1BB0.5190.81010.21830.039*
O1W0.3101 (2)0.5950 (2)0.07794 (9)0.0350 (3)
H1WA0.43470.60280.08110.052*
H1WB0.27240.51350.03820.052*
O2W0.3691 (3)0.39693 (19)0.20722 (11)0.0391 (4)
H2WA0.4290.41520.25430.055 (9)*
H2WB0.32070.29420.19680.062 (10)*
O3W0.0456 (3)1.1285 (2)0.34625 (11)0.0429 (4)
H3WB0.02811.09290.37990.064*
H3WA0.02781.15380.30860.064*
O4W0.4683 (3)1.1212 (2)0.38193 (13)0.0457 (4)
H4WA0.49711.21940.37210.069*
H4WB0.57261.08570.40020.069*
O5W0.0407 (2)0.4428 (2)0.12882 (10)0.0361 (3)
H5WA0.10.38070.15710.054*
H5WB0.12240.50860.11440.054*
O6W0.7863 (3)1.0157 (2)0.44733 (9)0.0365 (3)
H6WA0.7931.05010.49910.055*
H6WB0.76830.90750.43730.055*
O7W0.1929 (3)1.2210 (2)0.22149 (12)0.0436 (4)
H7WA0.2681.27840.2540.065*
H7WB0.25681.12850.19810.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03275 (15)0.02292 (14)0.02313 (14)0.00024 (10)0.00215 (10)0.00610 (9)
Zn20.03256 (15)0.02316 (14)0.02257 (14)0.00172 (10)0.00053 (10)0.00829 (9)
C10.0280 (9)0.0191 (8)0.0207 (8)0.0007 (7)0.0026 (7)0.0060 (6)
C20.0258 (8)0.0203 (8)0.0199 (8)0.0002 (6)0.0015 (6)0.0044 (6)
C30.0240 (8)0.0239 (8)0.0232 (8)0.0020 (7)0.0009 (7)0.0068 (7)
C40.0243 (8)0.0237 (8)0.0243 (9)0.0005 (7)0.0001 (7)0.0096 (7)
C50.0268 (9)0.0267 (9)0.0225 (8)0.0007 (7)0.0013 (7)0.0084 (7)
O10.0401 (8)0.0230 (6)0.0250 (6)0.0055 (5)0.0033 (6)0.0081 (5)
O20.0456 (8)0.0312 (7)0.0224 (7)0.0100 (6)0.0034 (6)0.0070 (5)
O30.0503 (10)0.0357 (8)0.0617 (11)0.0184 (7)0.0307 (9)0.0244 (8)
O40.0439 (9)0.0244 (7)0.0411 (8)0.0001 (6)0.0145 (7)0.0105 (6)
C60.0278 (9)0.0233 (8)0.0211 (8)0.0005 (7)0.0009 (7)0.0068 (6)
C70.0263 (9)0.0222 (8)0.0246 (9)0.0003 (7)0.0036 (7)0.0070 (7)
C80.0257 (9)0.0272 (9)0.0251 (9)0.0033 (7)0.0004 (7)0.0072 (7)
C90.0262 (9)0.0251 (8)0.0242 (9)0.0049 (7)0.0035 (7)0.0086 (7)
C100.0256 (9)0.0275 (9)0.0230 (9)0.0017 (7)0.0004 (7)0.0096 (7)
O50.0349 (7)0.0284 (7)0.0246 (6)0.0025 (6)0.0049 (6)0.0083 (5)
O60.0315 (7)0.0286 (7)0.0313 (7)0.0028 (5)0.0038 (6)0.0149 (6)
O70.0371 (8)0.0303 (7)0.0322 (7)0.0014 (6)0.0125 (6)0.0069 (6)
O80.0361 (8)0.0274 (7)0.0326 (7)0.0079 (6)0.0045 (6)0.0052 (6)
O1B0.0254 (6)0.0278 (7)0.0264 (7)0.0008 (5)0.0028 (5)0.0106 (5)
O1W0.0358 (8)0.0386 (8)0.0274 (7)0.0063 (6)0.0053 (6)0.0013 (6)
O2W0.0450 (9)0.0261 (7)0.0447 (9)0.0010 (6)0.0083 (7)0.0071 (6)
O3W0.0494 (10)0.0450 (9)0.0390 (9)0.0158 (8)0.0111 (7)0.0144 (7)
O4W0.0499 (10)0.0279 (8)0.0581 (11)0.0095 (7)0.0232 (8)0.0149 (7)
O5W0.0387 (8)0.0319 (8)0.0370 (8)0.0044 (6)0.0034 (7)0.0091 (6)
O6W0.0466 (9)0.0305 (7)0.0312 (7)0.0025 (7)0.0010 (7)0.0045 (6)
O7W0.0473 (10)0.0316 (8)0.0506 (10)0.0004 (7)0.0074 (8)0.0055 (7)
Geometric parameters (Å, º) top
Zn1—O1W2.0374 (15)C6—C91.489 (2)
Zn1—O5W2.0464 (16)C7—C81.383 (3)
Zn1—O22.0484 (14)C7—C101.514 (2)
Zn1—O2W2.0550 (16)C8—C6ii1.390 (3)
Zn1—O62.1462 (14)C8—H90.93
Zn1—O1B2.2540 (14)C9—O61.259 (2)
Zn2—O4W1.9886 (16)C9—O51.268 (2)
Zn2—O12.0065 (13)C10—O71.245 (3)
Zn2—O3W2.0525 (17)C10—O81.259 (2)
Zn2—O52.0868 (13)O1B—H1BA0.85
Zn2—O1B2.1693 (14)O1B—H1BB0.8499
Zn2—O62.4325 (15)O1W—H1WA0.85
Zn2—C92.5955 (19)O1W—H1WB0.8499
C1—C3i1.386 (3)O2W—H2WA0.85
C1—C21.398 (3)O2W—H2WB0.8499
C1—C41.506 (2)O3W—H3WB0.85
C2—C31.391 (3)O3W—H3WA0.8499
C2—C51.506 (2)O4W—H4WA0.85
C3—C1i1.386 (3)O4W—H4WB0.8499
C3—H30.93O5W—H5WA0.85
C4—O21.234 (2)O5W—H5WB0.8499
C4—O11.271 (2)O6W—H6WA0.85
C5—O41.243 (2)O6W—H6WB0.8499
C5—O31.252 (2)O7W—H7WA0.85
C6—C8ii1.390 (3)O7W—H7WB0.8499
C6—C71.399 (3)
O1W—Zn1—O5W89.16 (6)O4—C5—C2117.88 (17)
O1W—Zn1—O2178.96 (7)O3—C5—C2118.09 (17)
O5W—Zn1—O290.13 (6)C4—O1—Zn2125.40 (12)
O1W—Zn1—O2W92.28 (7)C4—O2—Zn1135.19 (13)
O5W—Zn1—O2W98.80 (6)C8ii—C6—C7120.02 (17)
O2—Zn1—O2W88.58 (7)C8ii—C6—C9119.49 (17)
O1W—Zn1—O689.74 (6)C7—C6—C9120.50 (16)
O5W—Zn1—O693.96 (6)C8—C7—C6119.02 (17)
O2—Zn1—O689.55 (6)C8—C7—C10118.37 (17)
O2W—Zn1—O6167.10 (6)C6—C7—C10122.52 (17)
O1W—Zn1—O1B90.00 (5)C7—C8—C6ii120.96 (17)
O5W—Zn1—O1B174.33 (6)C7—C8—H9119.5
O2—Zn1—O1B90.63 (5)C6ii—C8—H9119.5
O2W—Zn1—O1B86.83 (6)O6—C9—O5120.91 (17)
O6—Zn1—O1B80.43 (5)O6—C9—C6120.18 (17)
O4W—Zn2—O197.62 (7)O5—C9—C6118.89 (16)
O4W—Zn2—O3W93.08 (8)O6—C9—Zn268.41 (10)
O1—Zn2—O3W91.65 (7)O5—C9—Zn252.68 (9)
O4W—Zn2—O5103.69 (7)C6—C9—Zn2169.69 (13)
O1—Zn2—O5158.69 (6)O7—C10—O8124.97 (18)
O3W—Zn2—O587.18 (6)O7—C10—C7117.16 (17)
O4W—Zn2—O1B98.94 (7)O8—C10—C7117.73 (17)
O1—Zn2—O1B88.79 (6)C9—O5—Zn298.43 (11)
O3W—Zn2—O1B167.80 (7)C9—O6—Zn1128.94 (12)
O5—Zn2—O1B87.99 (5)C9—O6—Zn282.82 (11)
O4W—Zn2—O6160.35 (7)Zn1—O6—Zn291.75 (5)
O1—Zn2—O6101.22 (5)Zn2—O1B—Zn196.19 (5)
O3W—Zn2—O691.92 (6)Zn2—O1B—H1BA108.5
O5—Zn2—O657.60 (5)Zn1—O1B—H1BA120
O1B—Zn2—O676.05 (5)Zn2—O1B—H1BB110.8
O4W—Zn2—C9132.49 (7)Zn1—O1B—H1BB112.9
O1—Zn2—C9129.83 (6)H1BA—O1B—H1BB107.7
O3W—Zn2—C988.13 (6)Zn1—O1W—H1WA112
O5—Zn2—C928.89 (6)Zn1—O1W—H1WB117.1
O1B—Zn2—C982.25 (5)H1WA—O1W—H1WB107.7
O6—Zn2—C928.77 (5)Zn1—O2W—H2WA114.1
C3i—C1—C2119.98 (17)Zn1—O2W—H2WB119.7
C3i—C1—C4118.49 (16)H2WA—O2W—H2WB107.7
C2—C1—C4121.35 (17)Zn2—O3W—H3WB113
C3—C2—C1118.96 (17)Zn2—O3W—H3WA116.9
C3—C2—C5119.88 (17)H3WB—O3W—H3WA107.7
C1—C2—C5121.13 (16)Zn2—O4W—H4WA118.5
C1i—C3—C2121.06 (17)Zn2—O4W—H4WB123.4
C1i—C3—H3119.5H4WA—O4W—H4WB107.7
C2—C3—H3119.5Zn1—O5W—H5WA114.7
O2—C4—O1125.95 (17)Zn1—O5W—H5WB108.5
O2—C4—C1117.27 (16)H5WA—O5W—H5WB107.7
O1—C4—C1116.71 (16)H6WA—O6W—H6WB107.7
O4—C5—O3124.03 (18)H7WA—O7W—H7WB107.7
C3i—C1—C2—C30.5 (3)O3W—Zn2—C9—C650.3 (7)
C4—C1—C2—C3174.41 (16)O5—Zn2—C9—C637.3 (7)
C3i—C1—C2—C5177.60 (17)O1B—Zn2—C9—C6137.2 (7)
C4—C1—C2—C57.5 (3)O6—Zn2—C9—C6147.7 (8)
C1—C2—C3—C1i0.5 (3)C8—C7—C10—O7104.6 (2)
C5—C2—C3—C1i177.61 (17)C6—C7—C10—O771.8 (2)
C3i—C1—C4—O2117.8 (2)C8—C7—C10—O871.4 (2)
C2—C1—C4—O257.2 (3)C6—C7—C10—O8112.2 (2)
C3i—C1—C4—O159.3 (2)O6—C9—O5—Zn25.4 (2)
C2—C1—C4—O1125.70 (19)C6—C9—O5—Zn2172.89 (14)
C3—C2—C5—O4134.3 (2)O4W—Zn2—O5—C9176.27 (12)
C1—C2—C5—O443.8 (3)O1—Zn2—O5—C93.9 (2)
C3—C2—C5—O346.0 (3)O3W—Zn2—O5—C991.24 (13)
C1—C2—C5—O3135.9 (2)O1B—Zn2—O5—C977.56 (12)
O2—C4—O1—Zn28.8 (3)O6—Zn2—O5—C92.83 (10)
C1—C4—O1—Zn2174.40 (12)O5—C9—O6—Zn181.8 (2)
O4W—Zn2—O1—C4157.51 (16)C6—C9—O6—Zn199.93 (19)
O3W—Zn2—O1—C4109.16 (16)Zn2—C9—O6—Zn186.43 (13)
O5—Zn2—O1—C422.7 (3)O5—C9—O6—Zn24.61 (17)
O1B—Zn2—O1—C458.65 (16)C6—C9—O6—Zn2173.65 (16)
O6—Zn2—O1—C416.87 (16)O1W—Zn1—O6—C935.77 (16)
C9—Zn2—O1—C420.22 (19)O5W—Zn1—O6—C9124.92 (16)
O1—C4—O2—Zn119.5 (3)O2—Zn1—O6—C9144.99 (16)
C1—C4—O2—Zn1157.33 (15)O2W—Zn1—O6—C963.3 (3)
O5W—Zn1—O2—C4161.3 (2)O1B—Zn1—O6—C954.27 (16)
O2W—Zn1—O2—C499.9 (2)O1W—Zn1—O6—Zn2117.95 (5)
O6—Zn1—O2—C467.4 (2)O5W—Zn1—O6—Zn2152.91 (6)
O1B—Zn1—O2—C413.1 (2)O2—Zn1—O6—Zn262.81 (5)
C8ii—C6—C7—C80.4 (3)O2W—Zn1—O6—Zn218.8 (3)
C9—C6—C7—C8179.71 (17)O1B—Zn1—O6—Zn227.91 (4)
C8ii—C6—C7—C10176.03 (18)O4W—Zn2—O6—C922.1 (2)
C9—C6—C7—C103.9 (3)O1—Zn2—O6—C9174.66 (11)
C6—C7—C8—C6ii0.4 (3)O3W—Zn2—O6—C982.59 (11)
C10—C7—C8—C6ii176.18 (18)O5—Zn2—O6—C92.84 (10)
C8ii—C6—C9—O6155.20 (18)O1B—Zn2—O6—C999.44 (11)
C7—C6—C9—O624.9 (3)O4W—Zn2—O6—Zn1106.93 (19)
C8ii—C6—C9—O526.5 (3)O1—Zn2—O6—Zn156.30 (6)
C7—C6—C9—O5153.42 (18)O3W—Zn2—O6—Zn1148.36 (6)
C8ii—C6—C9—Zn259.9 (8)O5—Zn2—O6—Zn1126.20 (7)
C7—C6—C9—Zn2120.0 (7)O1B—Zn2—O6—Zn129.61 (5)
O4W—Zn2—C9—O6170.11 (11)C9—Zn2—O6—Zn1129.05 (12)
O1—Zn2—C9—O66.83 (14)O4W—Zn2—O1B—Zn1171.17 (6)
O3W—Zn2—C9—O697.42 (11)O1—Zn2—O1B—Zn173.64 (6)
O5—Zn2—C9—O6175.03 (18)O3W—Zn2—O1B—Zn118.6 (3)
O1B—Zn2—C9—O675.05 (11)O5—Zn2—O1B—Zn185.29 (5)
O4W—Zn2—C9—O54.91 (16)O6—Zn2—O1B—Zn128.23 (4)
O1—Zn2—C9—O5178.14 (11)C9—Zn2—O1B—Zn156.86 (5)
O3W—Zn2—C9—O587.55 (13)O1W—Zn1—O1B—Zn2121.58 (6)
O1B—Zn2—C9—O599.97 (12)O2—Zn1—O1B—Zn257.59 (6)
O6—Zn2—C9—O5175.03 (18)O2W—Zn1—O1B—Zn2146.14 (7)
O4W—Zn2—C9—C642.2 (8)O6—Zn1—O1B—Zn231.84 (5)
O1—Zn2—C9—C6140.9 (7)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1BA···O4iii0.851.822.667 (2)178
O1B—H1BB···O7iii0.851.792.638 (2)175
O1W—H1WA···O8iii0.851.902.721 (2)163
O1W—H1WB···O8iv0.851.972.770 (2)156
O2W—H2WA···O3iii0.851.852.689 (2)171
O2W—H2WB···O5v0.851.902.724 (2)163
O3W—H3WB···O6Wvi0.851.892.737 (2)174
O3W—H3WA···O7W0.851.982.829 (3)178
O4W—H4WA···O3vii0.851.812.661 (2)176
O4W—H4WB···O6W0.851.802.649 (2)175
O5W—H5WA···O7Wv0.851.932.768 (2)170
O5W—H5WB···O80.852.012.855 (2)171
O6W—H6WA···O1viii0.851.942.774 (2)167
O6W—H6WB···O4iii0.851.912.687 (2)152
O7W—H7WA···O3ix0.852.152.995 (3)171
O7W—H7WB···O70.851.892.721 (2)167
Symmetry codes: (iii) x+1, y, z; (iv) x, y+1, z; (v) x, y1, z; (vi) x1, y, z; (vii) x+1, y+1, z; (viii) x+1, y+2, z+1; (ix) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn2(C10H2O8)(H2O)6]·2H2O
Mr525.02
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8429 (1), 8.0167 (1), 16.6700 (2)
α, β, γ (°)101.620 (1), 92.555 (1), 93.439 (1)
V3)892.62 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.77
Crystal size (mm)0.5 × 0.4 × 0.12
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.3, 0.717
No. of measured, independent and
observed [I > 2σ(I)] reflections
17507, 3632, 3506
Rint0.051
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.083, 1.04
No. of reflections3632
No. of parameters279
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.72

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WingGX (Farrugia, 1999), PARST (Nardelli, 1995), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Zn1—O1W2.0374 (15)Zn2—O4W1.9886 (16)
Zn1—O5W2.0464 (16)Zn2—O12.0065 (13)
Zn1—O22.0484 (14)Zn2—O3W2.0525 (17)
Zn1—O2W2.0550 (16)Zn2—O52.0868 (13)
Zn1—O62.1462 (14)Zn2—O1B2.1693 (14)
Zn1—O1B2.2540 (14)Zn2—O62.4325 (15)
O1W—Zn1—O5W89.16 (6)O4W—Zn2—O197.62 (7)
O1W—Zn1—O2178.96 (7)O4W—Zn2—O3W93.08 (8)
O5W—Zn1—O290.13 (6)O1—Zn2—O3W91.65 (7)
O1W—Zn1—O2W92.28 (7)O4W—Zn2—O5103.69 (7)
O5W—Zn1—O2W98.80 (6)O1—Zn2—O5158.69 (6)
O2—Zn1—O2W88.58 (7)O3W—Zn2—O587.18 (6)
O1W—Zn1—O689.74 (6)O4W—Zn2—O1B98.94 (7)
O5W—Zn1—O693.96 (6)O1—Zn2—O1B88.79 (6)
O2—Zn1—O689.55 (6)O3W—Zn2—O1B167.80 (7)
O2W—Zn1—O6167.10 (6)O5—Zn2—O1B87.99 (5)
O1W—Zn1—O1B90.00 (5)O4W—Zn2—O6160.35 (7)
O5W—Zn1—O1B174.33 (6)O1—Zn2—O6101.22 (5)
O2—Zn1—O1B90.63 (5)O3W—Zn2—O691.92 (6)
O2W—Zn1—O1B86.83 (6)O5—Zn2—O657.60 (5)
O6—Zn1—O1B80.43 (5)O1B—Zn2—O676.05 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1BA···O4i0.851.822.667 (2)178
O1B—H1BB···O7i0.851.792.638 (2)175
O1W—H1WA···O8i0.851.902.721 (2)163
O1W—H1WB···O8ii0.851.972.770 (2)156
O2W—H2WA···O3i0.851.852.689 (2)171
O2W—H2WB···O5iii0.851.902.724 (2)163
O3W—H3WB···O6Wiv0.851.892.737 (2)174
O3W—H3WA···O7W0.851.982.829 (3)178
O4W—H4WA···O3v0.851.812.661 (2)176
O4W—H4WB···O6W0.851.802.649 (2)175
O5W—H5WA···O7Wiii0.851.932.768 (2)170
O5W—H5WB···O80.852.012.855 (2)171
O6W—H6WA···O1vi0.851.942.774 (2)167
O6W—H6WB···O4i0.851.912.687 (2)152
O7W—H7WA···O3vii0.852.152.995 (3)171
O7W—H7WB···O70.851.892.721 (2)167
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x1, y, z; (v) x+1, y+1, z; (vi) x+1, y+2, z+1; (vii) x, y+1, z.
 

Acknowledgements

We are grateful to the Centro Interdipartimentale della Diffrazione dei Raggi X.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, Z.-X., Li, J.-X., Zhang, G.-Y. & Hou, H.-W. (2007). Z. Kristallogr. 222, 107–108.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRobl, C. (1987). Z. Anorg. Allg. Chem. 554, 79–86.  CSD CrossRef CAS Web of Science Google Scholar
First citationRochon, F. D. & Massarweh, G. (2000). Inorg. Chim. Acta, 304, 190–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Lu, L., Yang, B., Zhao, B.-Z. & Ng, S. W. (2007). Acta Cryst. E63, m2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, G.-C., Jin, Z.-S., Duan, Z.-B., Yang, K.-Y. & Ni, J.-Z. (1991). Chin. J. Struct. Chem. 10, 106–109.  CAS Google Scholar
First citationWen, Y.-H., Zhang, Q.-W., He, Y.-H. & Feng, Y.-L. (2007). Inorg. Chem. Commun. 10, 543–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m921–m923.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m915-m916
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds