Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of dipotassium μ3-oxido-tris[sulfitomercur­ate(II)], K2[O(HgSO3)3], is characterized by segregation of the K+ cations and complex [O(HgSO3)3]2− anions into layers parallel to (010). The anion has m symmetry and is a new example of a μ3-oxido-trimercurate complex with a central [OHg3] core. This unit adopts the shape of a flat, almost trigonal, pyramid (mean O—Hg = 2.072 Å and mean Hg—O—Hg = 110.8°). The two independent Hg—S bonds have nearly the same length (mean Hg—S = 2.335 Å). Due to inter­molecular O...Hg donor–acceptor inter­actions greater than 2.65 Å, the O—Hg—S fragments are slightly bent. The [KO9] coordination polyhedron of the K+ cation approaches a distorted tricapped trigonal prism with a [6+1+2] coordination.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108005179/iz3045sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108005179/iz3045Isup2.hkl
Contains datablock I

Comment top

In a recent project we have studied the formation conditions and crystal structures of (NH4)[Hg(SO3)Cl] and (NH4)2[Hg(SO3)2] (Weil et al., 2007). Continuing our work on sulfite complexes of mercury, we have also investigated in some detail the systems K2SO3–HgX2 (X = Cl or Br) in aqueous solutions and the solid phases formed therein. Depending on the molar ratios of the components and on the conditions, several phases with the general formula xK[XHgSO3].yHgX2.zKX were obtained. A characteristic of all phases structurally studied so far is the segregation of the K+ cations and of the anions and HgX2 molecules into layers (Weil et al., 2008). On heating solid HgO in an aqueous K2SO3 solution, a related phase was obtained, viz. a formally basic salt of composition K2SO3·2HgSO3·HgO, or, with respect to the crystal structure determination presented here, K2[O(HgSO3)3].

The asymmetric unit of the title compound contains one K, two Hg, two S and six O sites. As in the above-mentioned xK[XHgSO3].yHgX2.zKX structures, a segregation of cations (K+) and anions {[O(HgSO3)3]2-} into layers is a characteristic feature of the structure, here with a stacking of the layers parallel to (010) (Fig. 1). The cationic and anionic layers adopt the symmetries (a:c).21:α-p1121/a and (a:c).m.21-p21ma, respectively (Shubnikov & Koptsik, 1974). The [O(HgSO3)3]2- complex anion has site symmetry m, with the mirror plane running through atoms O5/Hg2/S2/O6 (Fig. 2). The anion is related to the [O(HgCl)3]+ and [O(HgI)2(HgOH)]+ cationic complexes which are present in the structures of 2HgCl2·HgO {or, in a more detailed formula, [O(HgCl)3]Cl} (Aurivillius, 1964) and [O(HgI)2(HgOH)]ClO4 (Köhler et al., 1974, 1975). Both the anionic and the two cationic complexes contain flat nearly trigonal–pyramidal [OHg3] cores, i.e. they are all trimercurio–oxonium complexes which are representatives of metallo complexes, and thus they exhibit similar bonding parameters. In the anionic complex, the average O—Hg bond length is 2.07 Å (Table 1), compared with 2.04 and 2.05 Å, respectively, in the cationic complexes. The slight difference may be due to the strong trans-influence of the sulfite ligands and to the different charges, which is also mirrored in the different average Hg—O—Hg bond angles of 110.8° for the anionic complex and of 118.9 and 119.8° for the cationic complexes.

In the title compound, the average Hg—S bond length is 2.335 Å (Table 1), and the O—Hg—S structural fragments are slightly bent with only a minor deviation from linearity (mean O—Hg—S angle = 174.7°), due to the intermolecular donor–acceptor interactions with S—O····Hg > 2.65 Å. These interactions cause linking of the anions to the above-mentioned layers and the remote O atoms expand the coordination spheres of the Hg2+ cations to five- and six-coordination if Hg—O distances > 3.0 Å are neglected. The average Hg—S bond length is similar to the average Hg—Cl distance of 2.31 Å in [O(HgCl)3]Cl and in good agreement with the Hg—S bond lengths in the sulfitomercurates (NH4)[Hg(SO3)Cl], (NH4)2[Hg(SO3)2] (Weil et al., 2007) and Na2[Hg(SO3)2]·H2O (Nyberg & Cynkier, 1972), with average values of 2.394, 2.364 and 2.406 Å, respectively. In contrast with K2[O(HgSO3)3], in the latter structures Cl—Hg—SO3 and O3S—Hg—SO3 moieties are present. Nevertheless, in agreement with the preference of mercury for linear coordination, the Cl—Hg—S and S—Hg—S angles are close to 180 °, viz. 165.5, 174.4 and 172.8 °, respectively.

The S—O bond lengths of the two independent SO3 groups in K2[O(HgSO3)3] differ slightly (mean S—O = 1.460 and 1.473 Å) because of their different roles in the linking within and between the cationic and anionic layers. Not all of the O atoms of the SO3 groups are involved in donor–acceptor interactions within the anionic layers, and only some of the O atoms are coordinated to the K+ cation, and thus contribute to the linking of the cationic and anionic layers. The K+ cation has nine O neighbours with a [6 + 1+2] coordination and with K—O distances ranging from 2.801 (4) to 3.276 (5) Å (Table 1). The resulting coordination polyhedron may be described as a distorted tricapped trigonal prism.

Results from bond-valence sum calculations (Brown, 2002), using the parameters of Brese & O'Keeffe (1991), are in good agreement with the expected values for K, Hg and O (expected 1, 2 and 2): Hg1, Hg2 (including all distances < 3.0 Å) 1.99 and 2.10; K 1.07; O1 [coordination number (CN) = 5; 1 S, 2 Hg, 2 K] 1.94, O2 (CN = 4; 1 S, 3 K) 1.97, O3 (CN = 4; 1 S, 3 K) 2.11, O4 (CN = 4; 1 S, 1 Hg, 2 K) 1.90, O5 (CN = 3; 3 Hg) 2.29 and O6 (CN = 4; 1 S, 3 Hg) 2.04. Following this concept, the S atoms are considerably `overbonded', with valence units of 5.87 for S1 and 5.75 for S2. This behaviour is attributed to the additional metal–sulfur coordination via the lone-pair electrons of the S atoms, which leads to enhanced S—O π-bonding as a consequence (Cruickshank, 1961), and thus to shorter S—O bond lengths. So, in comparison with other sulfates(IV) of the formula type MSIVO3 (M is a divalent metal) where the S atom is not coordinated to the metal centres, the overall S—O distance is significantly shorter here (1.47 versus 1.54 Å). Nevertheless, the bonding situation in the title compound is in agreement with the HSAB (hard and soft acids and bases) concept, where the soft acid Hg2+ prefers bonding to the soft base SIV with its lone-pair electrons.

Related literature top

For related literature, see: Aurivillius (1964); Brese & O'Keeffe (1991); Brown (2002); Cruickshank (1961); Gelato & Parthé (1987); Köhler et al. (1974, 1975); Nyberg & Cynkier (1972); Shubnikov & Koptsik (1974); Weil et al. (2007, 2008).

Experimental top

All chemicals used were of analytical grade (Merck) and employed without further purification. The title compound was obtained on dissolution of freshly precipitated HgO (25 mg, 0.115 mmol) in a boiling aqueous solution of K2SO3 (50 ml, 180 mg, 1.1 mmol). After cooling to ambient temperature, aggregated yellowish crystals with a lancet-like habit and of up to 2 mm in length were formed within 2 d. The crystals were not stable over a long period and decomposed within a few days under formation of elemental mercury and SO2. However, when the crystals were embedded in perfluorinated ether, collection of a complete data set with high redundancy was possible without difficulty.

Refinement top

Structure data were standardized using STRUCTURETIDY (Gelato & Parthé, 1987). The highest remaining peak in the final difference Fourier map is 0.76 Å from atom Hg2 and the deepest hole is 0.90 Å from atom Hg1.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of K2[O(HgSO3)3] in projection along [100], showing the layered character of the cationic and anionic moieties.
[Figure 2] Fig. 2. The [O(HgSO3)3]2- anion with the atom-labelling scheme. Displacement ellipsoids are drawn at the 90% probability level. [Symmetry codes: (i) x - 1/2, -y + 1/2, -z + 1/2; (ii) x - 1/2, y, -z + 1/2; (iii) -x + 1/2, -y + 1/2, z + 1/2; (iv) -x + 1/2, y - 1/2, z + 1/2; (v) x + 1/2, -y + 1/2, -z + 3/2; (vi) x + 1/2, y, -z + 3/2; (vii) x, -y + 1/2, z + 1; (viii) x, y, z + 1.]
dipotassium µ3-oxido-tris[sulfitomercury(II)] top
Crystal data top
K2[O(HgSO3)3]F(000) = 1624
Mr = 936.15Dx = 5.243 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4956 reflections
a = 7.352 (4) Åθ = 2.8–30.0°
b = 20.734 (11) ŵ = 40.01 mm1
c = 7.780 (4) ÅT = 298 K
V = 1185.9 (11) Å3Plate, light yellow
Z = 40.12 × 0.11 × 0.04 mm
Data collection top
Bruke SMART APEX CCD area-detector
diffractometer
1763 independent reflections
Radiation source: fine-focus sealed tube1612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 30.0°, θmin = 2.8°
Absorption correction: numerical
(HABITUS; Herrendorf, 1997)
h = 1010
Tmin = 0.086, Tmax = 0.327k = 2825
12066 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.023Secondary atom site location: difference Fourier map
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0284P)2 + 1.2995P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
1763 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
89 parametersExtinction coefficient: 0.00048 (6)
Crystal data top
K2[O(HgSO3)3]V = 1185.9 (11) Å3
Mr = 936.15Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.352 (4) ŵ = 40.01 mm1
b = 20.734 (11) ÅT = 298 K
c = 7.780 (4) Å0.12 × 0.11 × 0.04 mm
Data collection top
Bruke SMART APEX CCD area-detector
diffractometer
1763 independent reflections
Absorption correction: numerical
(HABITUS; Herrendorf, 1997)
1612 reflections with I > 2σ(I)
Tmin = 0.086, Tmax = 0.327Rint = 0.046
12066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0231763 reflections
wR(F2) = 0.05589 parameters
S = 1.060 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.22565 (3)0.170861 (10)0.76734 (3)0.01824 (8)
Hg20.05090 (3)0.25000.41045 (3)0.01651 (9)
K0.13687 (15)0.05982 (6)0.13114 (18)0.0265 (3)
S10.36893 (15)0.08535 (6)0.90930 (16)0.0168 (2)
S20.0100 (2)0.25000.1142 (2)0.0141 (3)
O10.5250 (5)0.1127 (2)1.0028 (6)0.0271 (9)
O20.4237 (6)0.0389 (2)0.7793 (6)0.0331 (10)
O30.2341 (5)0.0593 (2)1.0274 (6)0.0285 (9)
O40.0900 (5)0.1915 (2)0.0636 (5)0.0260 (8)
O50.0828 (6)0.25000.6721 (6)0.0157 (9)
O60.1939 (7)0.25000.0394 (6)0.0260 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02221 (11)0.01385 (12)0.01866 (12)0.00044 (6)0.00345 (7)0.00189 (7)
Hg20.01677 (12)0.02136 (15)0.01138 (14)0.0000.00022 (8)0.000
K0.0250 (5)0.0191 (6)0.0355 (7)0.0009 (4)0.0020 (5)0.0037 (5)
S10.0179 (5)0.0125 (6)0.0200 (6)0.0001 (4)0.0002 (4)0.0015 (5)
S20.0137 (6)0.0163 (8)0.0125 (7)0.0000.0007 (6)0.000
O10.0254 (17)0.021 (2)0.035 (2)0.0024 (15)0.0121 (16)0.0002 (19)
O20.036 (2)0.024 (2)0.039 (3)0.0090 (19)0.0039 (18)0.009 (2)
O30.0230 (17)0.034 (2)0.029 (2)0.0062 (15)0.0020 (15)0.0122 (19)
O40.0320 (19)0.019 (2)0.027 (2)0.0062 (16)0.0086 (16)0.0024 (17)
O50.025 (2)0.011 (2)0.011 (2)0.0000.0010 (18)0.000
O60.015 (2)0.052 (4)0.011 (2)0.0000.0027 (19)0.000
Geometric parameters (Å, º) top
Hg1—O52.084 (3)K—O2ix3.021 (5)
Hg1—S12.3395 (15)K—O2iv3.253 (5)
Hg1—O6i2.688 (4)K—O1ii3.276 (5)
Hg1—O1ii2.837 (5)K—S1ix3.474 (2)
Hg1—O4iii2.941 (4)K—S1ii3.614 (3)
Hg1—O33.074 (4)S1—O21.453 (4)
Hg2—O52.049 (5)S1—O31.455 (4)
Hg2—S22.325 (2)S1—O11.472 (4)
Hg2—O6iv2.654 (5)S1—Hg1xi3.4512 (17)
Hg2—O4v2.913 (4)S2—O61.472 (5)
Hg2—O4iii2.913 (4)S2—O41.473 (4)
Hg2—O1vi2.932 (5)S2—O4xii1.473 (4)
K—O42.801 (4)S2—Hg2iv3.381 (2)
K—O3ii2.821 (5)S2—Hg1xiii3.533 (2)
K—O2vii2.824 (4)S2—Hg1viii3.533 (2)
K—O3viii2.845 (4)S2—Hg2iii3.981 (3)
K—O3ix2.852 (5)S2—Hg1iv3.984 (2)
K—O1x2.895 (4)S2—Hg1xiv3.984 (2)
O5—Hg1—S1172.45 (14)Hg1xiii—S2—Hg2iii61.00 (3)
O5—Hg1—O6i75.84 (15)Hg1viii—S2—Hg2iii61.00 (3)
S1—Hg1—O6i97.48 (9)O6—S2—Hg1iv100.8 (2)
O5—Hg1—O1ii79.00 (14)O4—S2—Hg1iv36.83 (17)
S1—Hg1—O1ii105.18 (10)O4xii—S2—Hg1iv83.02 (17)
O6i—Hg1—O1ii142.89 (13)Hg2—S2—Hg1iv143.76 (5)
O5—Hg1—O4iii78.86 (16)Hg2iv—S2—Hg1iv55.52 (3)
S1—Hg1—O4iii108.41 (9)Hg1xiii—S2—Hg1iv81.83 (5)
O6i—Hg1—O4iii129.84 (11)Hg1viii—S2—Hg1iv58.36 (4)
O1ii—Hg1—O4iii69.68 (12)Hg2iii—S2—Hg1iv119.24 (4)
O5—Hg1—O3146.78 (15)O6—S2—Hg1xiv100.8 (2)
S1—Hg1—O327.10 (7)O4—S2—Hg1xiv83.02 (17)
O6i—Hg1—O386.73 (12)O4xii—S2—Hg1xiv36.83 (17)
O1ii—Hg1—O3100.28 (12)Hg2—S2—Hg1xiv143.76 (5)
O4iii—Hg1—O3132.55 (12)Hg2iv—S2—Hg1xiv55.52 (3)
O5—Hg2—S2179.14 (14)Hg1xiii—S2—Hg1xiv58.36 (4)
O5—Hg2—O6iv88.11 (17)Hg1viii—S2—Hg1xiv81.83 (5)
S2—Hg2—O6iv91.03 (12)Hg2iii—S2—Hg1xiv119.24 (4)
O5—Hg2—O4v80.07 (14)Hg1iv—S2—Hg1xiv48.64 (3)
S2—Hg2—O4v100.71 (9)S1—O1—Hg1xi101.7 (2)
O6iv—Hg2—O4v152.41 (9)S1—O1—Kxv133.9 (2)
O5—Hg2—O4iii80.07 (14)Hg1xi—O1—Kxv88.27 (11)
S2—Hg2—O4iii100.71 (9)S1—O1—Hg2xi122.6 (2)
O6iv—Hg2—O4iii152.41 (9)Hg1xi—O1—Hg2xi73.99 (11)
O4v—Hg2—O4iii49.26 (16)Kxv—O1—Hg2xi103.45 (12)
O5—Hg2—O1vi77.21 (9)S1—O1—Hg146.07 (13)
S2—Hg2—O1vi102.70 (9)Hg1xi—O1—Hg176.51 (11)
O6iv—Hg2—O1vi84.37 (7)Kxv—O1—Hg1163.48 (17)
O4v—Hg2—O1vi68.79 (11)Hg2xi—O1—Hg178.76 (10)
O4iii—Hg2—O1vi116.59 (11)S1—O1—Kxi90.99 (19)
O4—K—O3ii102.80 (13)Hg1xi—O1—Kxi167.26 (14)
O4—K—O2vii135.63 (13)Kxv—O1—Kxi83.41 (11)
O3ii—K—O2vii78.43 (13)Hg2xi—O1—Kxi98.54 (13)
O4—K—O3viii80.36 (13)Hg1—O1—Kxi112.65 (12)
O3ii—K—O3viii126.13 (11)S1—O2—Kxvi156.6 (3)
O2vii—K—O3viii65.23 (13)S1—O2—Kix95.4 (2)
O4—K—O3ix142.54 (13)Kxvi—O2—Kix89.43 (14)
O3ii—K—O3ix108.64 (10)S1—O2—Hg146.08 (15)
O2vii—K—O3ix71.81 (13)Kxvi—O2—Hg1152.62 (18)
O3viii—K—O3ix96.58 (11)Kix—O2—Hg1106.08 (14)
O4—K—O1x70.83 (12)S1—O2—Kiii123.9 (2)
O3ii—K—O1x92.15 (13)Kxvi—O2—Kiii76.81 (11)
O2vii—K—O1x153.12 (14)Kix—O2—Kiii102.76 (14)
O3viii—K—O1x136.64 (14)Hg1—O2—Kiii77.81 (11)
O3ix—K—O1x87.91 (12)S1—O2—Hg1xi74.6 (2)
O4—K—O2ix142.15 (13)Kxvi—O2—Hg1xi99.81 (13)
O3ii—K—O2ix62.97 (12)Kix—O2—Hg1xi169.99 (15)
O2vii—K—O2ix78.57 (12)Hg1—O2—Hg1xi67.04 (10)
O3viii—K—O2ix137.08 (13)Kiii—O2—Hg1xi83.25 (11)
O3ix—K—O2ix48.52 (12)S1—O3—Kxi111.4 (2)
O1x—K—O2ix74.74 (13)S1—O3—Ki146.2 (2)
O4—K—O2iv85.91 (12)Kxi—O3—Ki93.16 (13)
O3ii—K—O2iv165.93 (12)S1—O3—Kix102.7 (2)
O2vii—K—O2iv103.19 (11)Kxi—O3—Kix119.66 (15)
O3viii—K—O2iv65.78 (12)Ki—O3—Kix83.42 (11)
O3ix—K—O2iv59.64 (12)S1—O3—Hg147.08 (14)
O1x—K—O2iv80.18 (13)Kxi—O3—Hg1128.60 (16)
O2ix—K—O2iv103.40 (12)Ki—O3—Hg199.47 (12)
O4—K—O1ii78.00 (12)Kix—O3—Hg1111.22 (15)
O3ii—K—O1ii45.94 (10)S2—O4—K144.5 (2)
O2vii—K—O1ii71.72 (13)S2—O4—Hg2iv95.2 (2)
O3viii—K—O1ii84.23 (12)K—O4—Hg2iv106.36 (13)
O3ix—K—O1ii139.21 (12)S2—O4—Hg1iv125.7 (2)
O1x—K—O1ii119.01 (14)K—O4—Hg1iv88.05 (11)
O2ix—K—O1ii106.27 (12)Hg2iv—O4—Hg1iv72.75 (9)
O2iv—K—O1ii148.02 (11)S2—O4—Hg244.44 (13)
O2—S1—O3112.5 (3)K—O4—Hg2104.87 (13)
O2—S1—O1112.5 (3)Hg2iv—O4—Hg294.51 (12)
O3—S1—O1111.2 (3)Hg1iv—O4—Hg2164.18 (16)
O2—S1—Hg1107.4 (2)S2—O4—Hg1viii86.66 (18)
O3—S1—Hg1105.82 (17)K—O4—Hg1viii95.24 (12)
O1—S1—Hg1106.98 (18)Hg2iv—O4—Hg1viii137.74 (14)
O2—S1—Hg1xi81.5 (2)Hg1iv—O4—Hg1viii72.16 (10)
O3—S1—Hg1xi163.6 (2)Hg2—O4—Hg1viii114.77 (12)
O1—S1—Hg1xi53.59 (19)S2—O4—Hg1xiv75.96 (17)
Hg1—S1—Hg1xi76.40 (5)K—O4—Hg1xiv139.47 (12)
O2—S1—Hg2xi136.9 (2)Hg2iv—O4—Hg1xiv56.67 (7)
O3—S1—Hg2xi109.2 (2)Hg1iv—O4—Hg1xiv52.80 (7)
O1—S1—Hg2xi38.99 (17)Hg2—O4—Hg1xiv112.48 (12)
Hg1—S1—Hg2xi70.31 (5)Hg1viii—O4—Hg1xiv83.29 (9)
Hg1xi—S1—Hg2xi55.70 (3)S2—O4—Hg1xiii48.14 (15)
O6—S2—O4110.7 (2)K—O4—Hg1xiii143.72 (14)
O6—S2—O4xii110.7 (2)Hg2iv—O4—Hg1xiii104.32 (11)
O4—S2—O4xii111.0 (3)Hg1iv—O4—Hg1xiii82.94 (10)
O6—S2—Hg2105.9 (2)Hg2—O4—Hg1xiii91.47 (9)
O4—S2—Hg2109.22 (18)Hg1viii—O4—Hg1xiii48.55 (6)
O4xii—S2—Hg2109.22 (18)Hg1xiv—O4—Hg1xiii51.82 (6)
O6—S2—Hg2iv153.5 (2)Hg2—O5—Hg1xii114.25 (16)
O4—S2—Hg2iv59.08 (17)Hg2—O5—Hg1114.25 (16)
O4xii—S2—Hg2iv59.08 (17)Hg1xii—O5—Hg1103.9 (2)
Hg2—S2—Hg2iv100.67 (5)Hg2—O5—Hg1ii93.07 (14)
O6—S2—Hg1xiii44.44 (15)Hg1xii—O5—Hg1ii141.4 (2)
O4—S2—Hg1xiii113.77 (18)Hg1—O5—Hg1ii87.51 (9)
O4xii—S2—Hg1xiii68.75 (18)Hg2—O5—Hg1vi93.07 (14)
Hg2—S2—Hg1xiii134.36 (5)Hg1xii—O5—Hg1vi87.51 (9)
Hg2iv—S2—Hg1xiii113.87 (5)Hg1—O5—Hg1vi141.4 (2)
O6—S2—Hg1viii44.44 (15)Hg1ii—O5—Hg1vi63.19 (10)
O4—S2—Hg1viii68.75 (18)S2—O6—Hg2iii148.3 (3)
O4xii—S2—Hg1viii113.77 (18)S2—O6—Hg1viii113.0 (2)
Hg2—S2—Hg1viii134.36 (5)Hg2iii—O6—Hg1viii91.71 (13)
Hg2iv—S2—Hg1viii113.87 (5)S2—O6—Hg1xiii113.0 (2)
Hg1xiii—S2—Hg1viii55.34 (4)Hg2iii—O6—Hg1xiii91.71 (13)
O6—S2—Hg2iii20.5 (2)Hg1viii—O6—Hg1xiii75.24 (14)
O4—S2—Hg2iii119.08 (17)S2—O6—Hg246.70 (16)
O4xii—S2—Hg2iii119.08 (17)Hg2iii—O6—Hg2101.55 (16)
Hg2—S2—Hg2iii85.33 (4)Hg1viii—O6—Hg2140.31 (9)
Hg2iv—S2—Hg2iii174.00 (5)Hg1xiii—O6—Hg2140.31 (9)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y, z+3/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z+3/2; (vii) x+1/2, y, z1/2; (viii) x, y, z1; (ix) x, y, z+1; (x) x1, y, z1; (xi) x+1/2, y, z+3/2; (xii) x, y+1/2, z; (xiii) x, y+1/2, z1; (xiv) x1/2, y+1/2, z+1/2; (xv) x+1, y, z+1; (xvi) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaK2[O(HgSO3)3]
Mr936.15
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)7.352 (4), 20.734 (11), 7.780 (4)
V3)1185.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)40.01
Crystal size (mm)0.12 × 0.11 × 0.04
Data collection
DiffractometerBruke SMART APEX CCD area-detector
diffractometer
Absorption correctionNumerical
(HABITUS; Herrendorf, 1997)
Tmin, Tmax0.086, 0.327
No. of measured, independent and
observed [I > 2σ(I)] reflections
12066, 1763, 1612
Rint0.046
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.06
No. of reflections1763
No. of parameters89
Δρmax, Δρmin (e Å3)?, ?

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2006).

Selected geometric parameters (Å, º) top
Hg1—O52.084 (3)K—O2vii2.824 (4)
Hg1—S12.3395 (15)K—O3viii2.845 (4)
Hg1—O6i2.688 (4)K—O3ix2.852 (5)
Hg1—O1ii2.837 (5)K—O1x2.895 (4)
Hg1—O4iii2.941 (4)K—O2ix3.021 (5)
Hg1—O33.074 (4)K—O2iv3.253 (5)
Hg2—O52.049 (5)K—O1ii3.276 (5)
Hg2—S22.325 (2)S1—O21.453 (4)
Hg2—O6iv2.654 (5)S1—O31.455 (4)
Hg2—O4v2.913 (4)S1—O11.472 (4)
Hg2—O4iii2.913 (4)S2—O61.472 (5)
Hg2—O1vi2.932 (5)S2—O41.473 (4)
K—O42.801 (4)S2—O4xi1.473 (4)
K—O3ii2.821 (5)
O5—Hg1—S1172.45 (14)O6—S2—O4xi110.7 (2)
O5—Hg2—S2179.14 (14)O4—S2—O4xi111.0 (3)
O2—S1—O3112.5 (3)O6—S2—Hg2105.9 (2)
O2—S1—O1112.5 (3)O4—S2—Hg2109.22 (18)
O3—S1—O1111.2 (3)O4xi—S2—Hg2109.22 (18)
O2—S1—Hg1107.4 (2)Hg2—O5—Hg1xi114.25 (16)
O3—S1—Hg1105.82 (17)Hg2—O5—Hg1114.25 (16)
O1—S1—Hg1106.98 (18)Hg1xi—O5—Hg1103.9 (2)
O6—S2—O4110.7 (2)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y, z+3/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z+3/2; (vii) x+1/2, y, z1/2; (viii) x, y, z1; (ix) x, y, z+1; (x) x1, y, z1; (xi) x, y+1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds