Download citation
Download citation
link to html
This paper reports the hydro­thermal synthesis and crystal structure refinement of diiron(II) phosphate hydroxide, FeII2(PO4)(OH), obtained at 1063 K and 2.5 GPa. This phosphate is the synthetic analogue of the mineral wolfeite, and has a crystal structure topologically identical to those of minerals of the triplite-triploidite group. The complex framework contains edge- and corner-sharing FeO4(OH) and FeO4(OH)2 polyhedra, linked via corner-sharing to the PO4 tetra­hedra (average P-O distances are between 1.537 and 1.544 Å). Four five-coordinated Fe sites are at the centers of distorted trigonal bipyramids (average Fe-O distances are between 2.070 and 2.105 Å), whereas the coordination environments of the remaining Fe sites are distorted octa­hedra (average Fe-O distances are between 2.146 and 2.180 Å). The Fe-O distances are similar to those observed in natural Mg-rich wolfeite, except for two Fe-O bond distances, which are significantly longer in synthetic Fe2+2(PO4)(OH).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107053462/iz3034sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107053462/iz3034Isup2.hkl
Contains datablock I

Comment top

Wolfeite, (Fe,Mn)2+2(PO4)(OH), is a rare phosphate mineral which has been reported in granitic pegmatites (Smeds et al., 1998; Roda et al., 2004) and in metamorphosed phosphatic ironstones (Robinson et al., 1992; Stalder & Rozendaal, 2002). Wolfeite belongs to the triplite–triploidite group of minerals (Strunz & Nickel, 2001; Chopin et al., 2003), which also includes the following phosphates: triplite [(Mn,Fe)2+2(PO4)F; Waldrop, 1969], zwieselite [(Fe,Mn)2+2(PO4)F; Yakubovich et al., 1978], triploidite [(Mn,Fe)2+2(PO4)(OH); Waldrop, 1970], wagnerite [(Mg,Fe2+)2(PO4)F; Coda et al., 1967], staněkite [(Mn,Fe2+,Mg)Fe3+(PO4)O; Keller et al., 2006] and joosteite [Mn2+(Mn3+,Fe3+)(PO4)O; Keller et al., 2007].

The crystal structures of these phosphates are topologically identical, but owing to the periodic ordering of the F atoms along the b axis, several polytypes have been observed for the F-rich compositions, such as, for example, wagnerite-Ma2bc (P21/a, b 13 Å), wagnerite-Ma5bc (Ia, b 32 Å), wagnerite-Ma7bc (P21, b 45 Å) and wagnerite-Ma9bc (Ia, b 57 Å) (Chopin et al., 2003; Ren et al., 2003). The crystal structure of wolfeite has been solved on a natural Mg-rich sample with composition (Fe1.84Mg0.16)(PO4)(OH), collected in the Big Fish River area, Yukon Territory, Canada (Kolitsch, 2003). The b unit-cell parameter, 13.169 (3) Å, indicates that this sample corresponds to the polytype Ma2bc, with space group P21/a.

During an extensive investigation of the stability of Na—Fe—Mn-bearing phosphates at high pressure, we performed a hydrothermal experiment at 1063 K and 2.5 GPa, starting from the composition NaFe2+(PO4). This experiment produced small brown isometric crystals, associated with a white powder identified as a marićite-type compound, NaFe2+(PO4). An electron-microprobe analysis of the brown crystals (see below), coupled with a single-crystal structure determination, indicated that they correspond to the synthetic analogue of wolfeite, Fe2+2(PO4)(OH), which was never previously synthesized. The crystal structure of this pure end-member is reported here and compared with the structure of natural Mg-rich wolfeite (Kolitsch, 2003).

The crystal structure of Fe2+2(PO4)(OH) has been refined in the monoclinic space group P21/a, and shows a complex framework based on edge- and corner-sharing FeO4(OH) and FeO4(OH)2 polyhedra, linked via corner-sharing to the PO4 tetrahedra (Figs. 1 and 2). The four PO4 tetrahedra show regular topologies, with average P—O distances of 1.541 (P1), 1.537 (P2), 1.542 (P3) and 1.544 (P4) Å. The five-coordinated Fe1, Fe4, Fe6 and Fe8 sites are at the centers of distorted trigonal bipyramids, with average Fe—O distances of 2.102 (Fe1), 2.105 (Fe4), 2.070 (Fe6) and 2.080 Å (Fe8), whereas the coordination environments of the Fe2, Fe3, Fe5 and Fe7 sites are distorted octahedra, with average Fe—O distances of 2.180 (Fe2), 2.178 (Fe3), 2.152 (Fe5) and 2.146 Å (Fe7). These Fe—O distances are similar to those observed in natural Mg-rich wolfeite (Kolitsch, 2003), except the Fe6—O and Fe7—O bond distances, which are significantly longer in synthetic Fe2+2(PO4)(OH) (Fe6—O = 2.062 and Fe7—O = 2.139 Å in natural Mg-rich wolfeite). This feature can be explained by the smaller effective ionic radius of Mg2+ (0.720 Å; Shannon, 1976), which replaces Fe 2+ (0.780 Å; Shannon, 1976) on the Fe6 (24% Mg) and Fe7 (19% Mg) crystallographic sites of natural wolfeite (Kolitsch, 2003).

Bond-valence sums were calculated for each ion using the parameters of Brown & Altermatt (1985). The P bond-valence sums range from 4.88 to 4.96 valence units (v.u.), and the O-atom bond valence sums are within the normal acceptable range (1.78–2.01 v.u.). Atoms O17–O20 have bond-valence sums of 1.04–1.20 v.u., thus indicating that they correspond to the four OH groups of the wolfeite structure (Kolitsch, 2003). For the Fe sites, the bond-valence sums are between 1.84 and 2.04 v.u., thus confirming that iron is essentially divalent. The brown colour of the crystals is probably a result of the presence of small amounts of Fe3+.

The hydrogen-bonding scheme of Fe2+2(PO4)(OH) (Table 1) is similar to that observed in natural Mg-rich wolfeite (Kolitsch, 2003), with weak hydrogen bonds showing O···O distances between 2.72 and ca 3.2 Å. Three of the four OH groups are involved in bifurcated or trifurcated hydrogen bonds, whereas the bond donated by the O20—H4 group has a single acceptor (Table 1).

Related literature top

For related literature, see: Boyd & England (1960); Brown & Altermatt (1985); Chopin et al. (2003); Coda et al. (1967); Fransolet (1975); Keller et al. (2006, 2007); Kolitsch (2003); Ren et al. (2003); Robinson et al. (1992); Roda et al. (2004); Shannon (1976); Smeds et al. (1998); Stalder & Rozendaal (2002); Strunz & Nickel (2001); Waldrop (1969, 1970); Yakubovich et al. (1978).

Experimental top

The title compound was synthesized under hydrothermal conditions. The starting material was prepared by mixing NaH2PO4·H2O, Fe and Fe2O3 in proportions 1:1/3:1/3. About 25 mg of the homogenized mixture was sealed into a gold tube with an outer diameter of 2 mm and a length of 15 mm, containing 2 mg of distilled water. The gold capsule was then inserted in a piston-cylinder apparatus of the type described by Boyd & England (1960), using a pressure cell consisting of rock salt and fired pyrophyllite, with a graphite cylinder as resistance furnace. The sample was maintained for 3 d at 1063 K and 2.5 GPa. The synthesized products consisted of a mixture of small brown isometric crystals of wolfeite, associated with a white powder identified as marićite, NaFe2+(PO4). A chemical analysis of the title compound has been performed. The average of ten point analyses gives P2O5 31.32, FeO 64.52, H2O 3.97 (calculated value), total 99.81 wt%. The chemical composition, calculated on the basis of one P atom, corresponds to Fe2+2O4(PO4)(OH).

Refinement top

All non-H atoms were refined anisotropically in the monoclinic P21/a space group. In early refinement cycles, H atoms were refined freely and isotropically, but atom H3 was localized at only 0.54 Å from O19. The O—H distances were then restrained to 0.82 (5) Å with the DFIX instruction of SHELXL97 (Sheldrick, 1997). The relatively large isotropic displacement parameter of atom H1 probably corresponds to an artefact. In the final refinement cycle, atomic coordinates identical to those used by Kolitsch (2003) were used.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS for Windows (Dowty, 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A polyhedral representation of the crystal structure of Fe2+2(PO4)(OH), projected along [010] (perspective view). The P tetrahedra are dark grey, the FeO4(OH)2 octahedra are light grey, and the FeO4(OH) trigonal bipyramids are white. The small grey circles represent H atoms.
[Figure 2] Fig. 2. The crystal structure of Fe2+2(PO4)(OH), projected along [001] (perspective view). For key see Fig. 1.
diiron(II) phosphate hydroxide top
Crystal data top
Fe2(PO4)(OH)F(000) = 1728
Mr = 223.67Dx = 3.978 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 7779 reflections
a = 12.265 (1) Åθ = 3.1–39.6°
b = 13.197 (1) ŵ = 8.09 mm1
c = 9.7385 (9) ÅT = 293 K
β = 108.63 (1)°Small isometric crystal, brown
V = 1493.8 (2) Å30.09 × 0.07 × 0.05 mm
Z = 16
Data collection top
Xcalibur with Sapphire2 CCD-area detector
diffractometer
8936 independent reflections
Radiation source: fine-focus sealed tube4515 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 39.6°, θmin = 2.8°
Absorption correction: numerical
after shape optimization (CrysAlis RED; Oxford Diffraction, 2002)
h = 2122
Tmin = 0.399, Tmax = 0.476k = 2323
23682 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065All H-atom parameters refined
S = 0.86 w = 1/[σ2(Fo2) + (0.0211P)2]
where P = (Fo2 + 2Fc2)/3
8936 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
Fe2(PO4)(OH)V = 1493.8 (2) Å3
Mr = 223.67Z = 16
Monoclinic, P21/aMo Kα radiation
a = 12.265 (1) ŵ = 8.09 mm1
b = 13.197 (1) ÅT = 293 K
c = 9.7385 (9) Å0.09 × 0.07 × 0.05 mm
β = 108.63 (1)°
Data collection top
Xcalibur with Sapphire2 CCD-area detector
diffractometer
8936 independent reflections
Absorption correction: numerical
after shape optimization (CrysAlis RED; Oxford Diffraction, 2002)
4515 reflections with I > 2σ(I)
Tmin = 0.399, Tmax = 0.476Rint = 0.031
23682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.065All H-atom parameters refined
S = 0.86Δρmax = 0.86 e Å3
8936 reflectionsΔρmin = 0.74 e Å3
305 parameters
Special details top

Experimental. A chemical analysis of the title compound has been performed with a CAMEBAX SX-50 electron microprobe (15 kV acceleration voltage, 20?nA beam current, analyst H.-J. Bernhardt, Ruhr-Universität Bochum, Germany). The standard used was graftonite from Kabira [sample KF16, Fransolet (1975). Unpublished PhD thesis, University of Liège, Belgium] (P, Fe). The average of 10 point analyses gives P2O5 31.32, FeO 64.52, H2O 3.97*, total 99.81 wt. % (*calculated value). The chemical composition, calculated on the basis of 1 P, corresponds to Fe2 + 2.04(PO4)(OH).

654 data frames and 14 reference frames were collected with a framewidth of 0.50 and an exposure time of 20 s resulting in a coverage of 92.5% at a resolution of 0.80 Å and an average redundancy of 8.2. The sample-to-detector distance was 44.35 mm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The reported coordinates were chosen to match those of Kolitsch (2003), in order to facilitate comparisons with the previous literature. This has resulted in the asymmetric unit having P1, P2 and P3 only being directly bonded to three oxygen atoms in each case and P4 only being directly bonded to two oxygen atoms.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.18617 (3)0.47901 (3)0.19376 (4)0.01071 (8)
Fe20.19694 (3)0.99592 (3)0.21291 (4)0.01149 (8)
Fe30.30513 (3)0.75256 (3)0.29273 (4)0.01123 (8)
Fe40.31951 (3)0.26973 (3)0.30345 (4)0.01105 (8)
Fe50.09624 (3)0.07077 (3)0.46901 (4)0.00972 (8)
Fe60.08583 (3)0.57379 (3)0.45225 (4)0.01027 (8)
Fe70.39418 (3)0.67471 (3)0.03055 (4)0.00993 (8)
Fe80.42078 (3)0.17817 (3)0.03819 (4)0.00997 (8)
P10.07905 (5)0.82099 (5)0.38026 (7)0.00676 (12)
P20.07602 (5)0.32635 (5)0.38299 (7)0.00686 (12)
P30.42315 (5)0.42210 (5)0.11279 (7)0.00687 (12)
P40.42299 (5)0.92823 (5)0.11949 (7)0.00710 (12)
O10.04820 (15)0.41441 (13)0.4692 (2)0.0119 (4)
O20.06179 (15)0.90778 (13)0.4786 (2)0.0106 (3)
O30.43109 (15)0.84131 (13)0.01601 (19)0.0109 (3)
O40.45629 (15)0.33759 (13)0.02469 (19)0.0106 (3)
O50.02660 (15)0.04732 (14)0.24280 (19)0.0124 (4)
O60.04222 (15)0.55422 (14)0.2321 (2)0.0128 (4)
O70.46693 (15)0.70339 (13)0.25990 (19)0.0105 (4)
O80.46736 (15)0.20329 (13)0.25925 (19)0.0117 (4)
O90.17370 (15)0.84765 (13)0.31467 (19)0.0105 (3)
O100.17260 (15)0.36039 (13)0.3235 (2)0.0114 (4)
O110.32383 (14)0.38410 (13)0.16570 (19)0.0106 (4)
O120.33438 (15)0.90383 (13)0.19549 (19)0.0104 (3)
O130.11945 (15)0.72824 (13)0.48136 (19)0.0100 (4)
O140.11844 (15)0.23468 (13)0.48289 (19)0.0099 (4)
O150.38401 (15)0.02293 (13)0.02153 (19)0.0111 (4)
O160.37744 (15)0.51319 (13)0.01106 (19)0.0105 (4)
O170.25267 (15)0.03010 (14)0.4355 (2)0.0127 (3)
O180.20709 (16)0.16164 (13)0.1946 (2)0.0138 (4)
O190.24270 (15)0.71909 (14)0.0681 (2)0.0115 (3)
O200.30206 (15)0.58279 (13)0.3086 (2)0.0136 (4)
H10.264 (4)0.026 (3)0.453 (5)0.081 (16)*
H20.152 (3)0.169 (2)0.215 (3)0.031 (10)*
H30.234 (3)0.769 (2)0.055 (4)0.054 (14)*
H40.361 (2)0.573 (2)0.279 (3)0.022 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01085 (16)0.01028 (16)0.0115 (2)0.00162 (13)0.00421 (14)0.00201 (14)
Fe20.01351 (17)0.01112 (17)0.0101 (2)0.00264 (13)0.00419 (15)0.00019 (14)
Fe30.01163 (16)0.01179 (17)0.0103 (2)0.00277 (13)0.00360 (15)0.00060 (14)
Fe40.01120 (16)0.01042 (17)0.0117 (2)0.00139 (13)0.00393 (15)0.00247 (14)
Fe50.01012 (15)0.00916 (17)0.0101 (2)0.00001 (12)0.00349 (14)0.00089 (14)
Fe60.01072 (16)0.00859 (16)0.0119 (2)0.00026 (12)0.00411 (14)0.00101 (14)
Fe70.01016 (15)0.00952 (16)0.01050 (19)0.00028 (13)0.00384 (14)0.00084 (14)
Fe80.00924 (15)0.00860 (16)0.0117 (2)0.00014 (13)0.00278 (14)0.00057 (14)
P10.0066 (2)0.0063 (3)0.0075 (3)0.0002 (2)0.0024 (2)0.0003 (2)
P20.0074 (2)0.0061 (3)0.0076 (3)0.0002 (2)0.0031 (2)0.0002 (2)
P30.0068 (2)0.0061 (3)0.0080 (3)0.0003 (2)0.0027 (2)0.0003 (2)
P40.0071 (2)0.0065 (3)0.0081 (3)0.0004 (2)0.0031 (2)0.0001 (2)
O10.0148 (8)0.0079 (8)0.0156 (10)0.0011 (7)0.0087 (7)0.0026 (7)
O20.0135 (8)0.0078 (8)0.0126 (9)0.0012 (6)0.0072 (7)0.0030 (7)
O30.0123 (8)0.0096 (8)0.0116 (9)0.0009 (6)0.0050 (7)0.0020 (7)
O40.0128 (8)0.0075 (8)0.0137 (9)0.0009 (6)0.0070 (7)0.0018 (7)
O50.0098 (8)0.0164 (10)0.0098 (10)0.0012 (7)0.0013 (7)0.0007 (7)
O60.0088 (8)0.0158 (9)0.0128 (10)0.0031 (7)0.0020 (7)0.0003 (7)
O70.0097 (7)0.0125 (9)0.0086 (9)0.0017 (6)0.0019 (7)0.0006 (7)
O80.0130 (8)0.0131 (9)0.0075 (9)0.0031 (7)0.0013 (7)0.0002 (7)
O90.0107 (7)0.0086 (8)0.0143 (9)0.0019 (6)0.0068 (7)0.0017 (7)
O100.0113 (8)0.0100 (8)0.0152 (10)0.0023 (6)0.0075 (7)0.0026 (7)
O110.0101 (8)0.0102 (8)0.0139 (10)0.0004 (6)0.0071 (7)0.0026 (7)
O120.0108 (7)0.0106 (8)0.0124 (9)0.0001 (6)0.0075 (7)0.0006 (7)
O130.0124 (8)0.0067 (8)0.0101 (9)0.0015 (6)0.0026 (7)0.0015 (7)
O140.0110 (8)0.0080 (8)0.0100 (9)0.0002 (6)0.0023 (7)0.0026 (7)
O150.0131 (8)0.0076 (8)0.0123 (10)0.0004 (7)0.0037 (7)0.0012 (7)
O160.0113 (8)0.0083 (8)0.0115 (9)0.0000 (6)0.0031 (7)0.0016 (7)
O170.0122 (8)0.0097 (8)0.0151 (10)0.0010 (7)0.0030 (7)0.0007 (7)
O180.0158 (9)0.0117 (8)0.0153 (10)0.0029 (7)0.0069 (8)0.0023 (7)
O190.0109 (8)0.0092 (8)0.0136 (10)0.0004 (6)0.0025 (7)0.0015 (7)
O200.0131 (8)0.0134 (8)0.0157 (10)0.0025 (7)0.0067 (8)0.0016 (7)
Geometric parameters (Å, º) top
Fe1—O202.0326 (18)Fe6—O62.0539 (19)
Fe1—O102.0517 (18)Fe6—O132.0811 (18)
Fe1—O15i2.0785 (18)Fe6—O12.1710 (18)
Fe1—O62.1592 (17)Fe7—O4vii2.0760 (17)
Fe1—O112.1883 (17)Fe7—O192.0886 (18)
Fe2—O16i2.0906 (18)Fe7—O162.1441 (18)
Fe2—O17ii2.1030 (19)Fe7—O18i2.1545 (19)
Fe2—O122.1284 (17)Fe7—O72.1575 (18)
Fe2—O18ii2.2010 (18)Fe7—O32.2584 (18)
Fe2—O92.2522 (18)Fe8—O19viii2.0144 (18)
Fe2—O5ii2.3018 (18)Fe8—O3vii2.0634 (18)
Fe3—O14iii2.0978 (18)Fe8—O82.0701 (18)
Fe3—O92.1069 (17)Fe8—O152.0929 (18)
Fe3—O192.1206 (19)Fe8—O42.1610 (18)
Fe3—O72.2061 (17)P1—O7ix1.5294 (18)
Fe3—O202.2469 (17)P1—O91.5340 (18)
Fe3—O122.2865 (18)P1—O131.5497 (18)
Fe4—O182.0312 (18)P1—O21.5503 (18)
Fe4—O112.0313 (18)P2—O8x1.5348 (19)
Fe4—O13iv2.0615 (18)P2—O11.5348 (19)
Fe4—O82.1774 (18)P2—O141.5354 (18)
Fe4—O102.2230 (18)P2—O101.5423 (18)
Fe5—O172.1156 (18)P3—O5xi1.5329 (19)
Fe5—O52.1158 (18)P3—O41.5388 (18)
Fe5—O20iv2.1322 (19)P3—O161.5448 (19)
Fe5—O2v2.1746 (17)P3—O111.5498 (17)
Fe5—O142.1790 (18)P4—O121.5318 (17)
Fe5—O2vi2.1998 (18)P4—O6xii1.5395 (18)
Fe6—O17iii2.0170 (18)P4—O31.5509 (19)
Fe6—O1v2.0283 (18)P4—O15ii1.5521 (19)
O20—Fe1—O10110.81 (8)O20iv—Fe5—O2vi95.03 (7)
O20—Fe1—O15i111.02 (7)O2v—Fe5—O2vi85.39 (7)
O10—Fe1—O15i138.17 (7)O14—Fe5—O2vi171.86 (7)
O20—Fe1—O693.55 (7)O17iii—Fe6—O1v126.26 (8)
O10—Fe1—O690.73 (7)O17iii—Fe6—O6114.40 (7)
O15i—Fe1—O687.02 (7)O1v—Fe6—O6115.53 (7)
O20—Fe1—O1191.29 (7)O17iii—Fe6—O1395.08 (7)
O10—Fe1—O1181.82 (7)O1v—Fe6—O1391.30 (7)
O15i—Fe1—O1196.96 (7)O6—Fe6—O13103.86 (7)
O6—Fe1—O11172.19 (7)O17iii—Fe6—O182.97 (7)
O16i—Fe2—O17ii160.36 (7)O1v—Fe6—O180.10 (7)
O16i—Fe2—O1294.13 (7)O6—Fe6—O188.11 (7)
O17ii—Fe2—O12101.52 (7)O13—Fe6—O1167.50 (7)
O16i—Fe2—O18ii79.89 (7)O4vii—Fe7—O19167.46 (7)
O17ii—Fe2—O18ii82.07 (7)O4vii—Fe7—O1688.10 (7)
O12—Fe2—O18ii119.62 (7)O19—Fe7—O16103.23 (7)
O16i—Fe2—O9118.65 (7)O4vii—Fe7—O18i89.99 (7)
O17ii—Fe2—O977.17 (7)O19—Fe7—O18i86.83 (7)
O12—Fe2—O975.74 (6)O16—Fe7—O18i79.78 (7)
O18ii—Fe2—O9156.52 (7)O4vii—Fe7—O7100.05 (7)
O16i—Fe2—O5ii89.34 (7)O19—Fe7—O782.33 (7)
O17ii—Fe2—O5ii79.38 (7)O16—Fe7—O7105.21 (7)
O12—Fe2—O5ii162.23 (7)O18i—Fe7—O7168.85 (7)
O18ii—Fe2—O5ii78.14 (7)O4vii—Fe7—O381.28 (7)
O9—Fe2—O5ii87.30 (6)O19—Fe7—O386.87 (7)
O14iii—Fe3—O993.62 (7)O16—Fe7—O3167.90 (7)
O14iii—Fe3—O19160.93 (7)O18i—Fe7—O394.36 (7)
O9—Fe3—O19101.12 (7)O7—Fe7—O382.48 (7)
O14iii—Fe3—O789.68 (7)O19viii—Fe8—O3vii135.66 (8)
O9—Fe3—O7160.50 (7)O19viii—Fe8—O8112.97 (7)
O19—Fe3—O780.47 (7)O3vii—Fe8—O8108.23 (7)
O14iii—Fe3—O2080.09 (7)O19viii—Fe8—O1593.90 (7)
O9—Fe3—O20123.84 (7)O3vii—Fe8—O1592.51 (7)
O19—Fe3—O2081.65 (7)O8—Fe8—O15102.62 (7)
O7—Fe3—O2075.66 (6)O19viii—Fe8—O483.95 (7)
O14iii—Fe3—O12116.91 (7)O3vii—Fe8—O483.96 (7)
O9—Fe3—O1275.42 (6)O8—Fe8—O485.03 (7)
O19—Fe3—O1278.89 (7)O15—Fe8—O4172.28 (7)
O7—Fe3—O1285.95 (6)O7ix—P1—O9110.12 (10)
O20—Fe3—O12155.14 (7)O7ix—P1—O13110.34 (10)
O18—Fe4—O11109.50 (8)O9—P1—O13108.35 (10)
O18—Fe4—O13iv108.03 (7)O7ix—P1—O2111.23 (10)
O11—Fe4—O13iv142.29 (7)O9—P1—O2111.01 (10)
O18—Fe4—O894.79 (7)O13—P1—O2105.67 (10)
O11—Fe4—O888.26 (7)O8x—P2—O1109.49 (10)
O13iv—Fe4—O892.24 (7)O8x—P2—O14109.28 (11)
O18—Fe4—O1089.40 (7)O1—P2—O14109.84 (10)
O11—Fe4—O1081.42 (7)O8x—P2—O10110.97 (10)
O13iv—Fe4—O1095.45 (7)O1—P2—O10108.46 (10)
O8—Fe4—O10169.66 (7)O14—P2—O10108.78 (10)
O17—Fe5—O583.49 (7)O5xi—P3—O4110.79 (10)
O17—Fe5—O20iv84.86 (7)O5xi—P3—O16111.10 (11)
O5—Fe5—O20iv168.29 (7)O4—P3—O16108.23 (10)
O17—Fe5—O2v171.66 (7)O5xi—P3—O11109.98 (10)
O5—Fe5—O2v99.77 (7)O4—P3—O11109.06 (10)
O20iv—Fe5—O2v91.61 (7)O16—P3—O11107.59 (10)
O17—Fe5—O1499.20 (7)O12—P4—O6xii110.29 (10)
O5—Fe5—O14102.16 (7)O12—P4—O3111.16 (10)
O20iv—Fe5—O1480.92 (7)O6xii—P4—O3109.30 (10)
O2v—Fe5—O1487.67 (7)O12—P4—O15ii109.84 (10)
O17—Fe5—O2vi87.39 (7)O6xii—P4—O15ii110.65 (11)
O5—Fe5—O2vi83.22 (7)O3—P4—O15ii105.50 (10)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y1/2, z+1; (v) x, y+1, z+1; (vi) x, y1, z; (vii) x+1, y+1, z; (viii) x+1/2, y1/2, z; (ix) x1/2, y+3/2, z; (x) x1/2, y+1/2, z; (xi) x+1/2, y+1/2, z; (xii) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H1···O9vi0.77 (3)2.20 (4)2.719 (3)126 (4)
O17—H1···O1iv0.77 (3)2.32 (4)2.777 (3)119 (4)
O17—H1···O10iv0.77 (3)2.55 (4)3.161 (3)138 (4)
O18—H2···O50.77 (3)2.30 (3)2.839 (2)128 (3)
O18—H2···O4x0.77 (3)2.52 (3)2.992 (3)121 (3)
O19—H3···O120.67 (3)2.34 (4)2.803 (3)127 (4)
O19—H3···O4i0.67 (3)2.39 (4)2.795 (2)121 (4)
O19—H3···O11i0.67 (3)2.54 (4)3.067 (3)137 (4)
O20—H4···O70.87 (3)2.19 (3)2.731 (2)120 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (iv) x+1/2, y1/2, z+1; (vi) x, y1, z; (x) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaFe2(PO4)(OH)
Mr223.67
Crystal system, space groupMonoclinic, P21/a
Temperature (K)293
a, b, c (Å)12.265 (1), 13.197 (1), 9.7385 (9)
β (°) 108.63 (1)
V3)1493.8 (2)
Z16
Radiation typeMo Kα
µ (mm1)8.09
Crystal size (mm)0.09 × 0.07 × 0.05
Data collection
DiffractometerXcalibur with Sapphire2 CCD-area detector
diffractometer
Absorption correctionNumerical
after shape optimization (CrysAlis RED; Oxford Diffraction, 2002)
Tmin, Tmax0.399, 0.476
No. of measured, independent and
observed [I > 2σ(I)] reflections
23682, 8936, 4515
Rint0.031
(sin θ/λ)max1)0.896
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.065, 0.86
No. of reflections8936
No. of parameters305
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.86, 0.74

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ATOMS for Windows (Dowty, 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H1···O9i0.77 (3)2.20 (4)2.719 (3)126 (4)
O17—H1···O1ii0.77 (3)2.32 (4)2.777 (3)119 (4)
O17—H1···O10ii0.77 (3)2.55 (4)3.161 (3)138 (4)
O18—H2···O50.77 (3)2.30 (3)2.839 (2)128 (3)
O18—H2···O4iii0.77 (3)2.52 (3)2.992 (3)121 (3)
O19—H3···O120.67 (3)2.34 (4)2.803 (3)127 (4)
O19—H3···O4iv0.67 (3)2.39 (4)2.795 (2)121 (4)
O19—H3···O11iv0.67 (3)2.54 (4)3.067 (3)137 (4)
O20—H4···O70.87 (3)2.19 (3)2.731 (2)120 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds