Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the hexa­fluorido­iridates(IV) of calcium, Ca[IrF6]·2H2O [calcium hexa­fluorido­iridate(IV) dihydrate], strontium, Sr[IrF6]·2H2O [strontium hexa­fluorido­iridate(IV) dihydrate], and barium, Ba[IrF6] [barium hexa­fluorido­iridate(IV)], have been determined by single-crystal X-ray analysis. The first two compounds are isomorphous. Their metal cations are eight-coordinated in a distorted square-anti­prismatic coordination environment, and their anions are represented by an almost ideal octa­hedron. These two structures can be described as frameworks in which all atoms occupy general positions. Sr[RhF6] and Ba[RhF6] have a different space group (R\overline{3}m, from powder diffraction data) but similar cell dimensions. The structures are very close to that of Ba[IrF6]. The cation is in a cubocta­hedral coordination. The metal atoms are located on special positions of \overline{3} symmetry, while the F atoms are in general positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107044046/iz3025sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107044046/iz3025Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107044046/iz3025IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107044046/iz3025IIIsup4.hkl
Contains datablock III

Comment top

Fluorine-containing complexes of noble metals attract attention in various areas of chemistry, such as chemical analysis, electrochemistry and applied chemistry (Mitkin, 2001). In particular, this concerns hexafluorometallates. However, structure determination using single-crystal X-ray analysis for many of these compounds has not been carried out yet. Among the complexes of IrIV, several have been characterized by X-ray powder diffraction (Babel, 1967) but only one structure solved by the single-crystal method (K2[IrF6]; Fitz et al., 2002) is currently available. A new contribution to the crystal chemistry of these compounds seemed useful. We focused our attention on the investigation of alkali and alkaline earth metal hexafluoroiridates. In this paper, the syntheses and structures of three complexes, namely Ca[IrF6]·2H2O, (I), Sr[IrF6]·2H2O, (II), and Ba[IrF6], (III), are reported.

The first two title compounds, (I) and (II), are isostructural. The coordination environment of the alkaline earth metal cations includes five F atoms and three H2O molecules, forming a distorted square-antiprism (Fig. 1). The complex anion, [IrF6]2−, has the shape of an almost ideal octahedron, with average Ir—F distances of 1.934 (7) and 1.913 (10) Å for the Ca and Sr compounds, respectively. In each anion, five F atoms coordinate to the metal cation and one is involved in hydrogen bonding. There are two types of H2O molecules, each with a different function. The molecules of one type bridge two cations, while the others coordinate only to single cations. Both types also form strong hydrogen bonds with each other and with the F atoms. In addition, there are longer O—H···F contacts, with distances of about 3.4 Å.

The barium compound, (III), is isostructural with the Sr[RhF6] and Ba[RhF6] complexes (Wilhelm & Hoppe, 1974). They all belong to the Ba[GeF6] structural type. The coordination environment of the Ba2+ cation includes 12 equidistant F atoms, forming a slightly distorted cuboctahedron. Each F atom is shared between two cuboctahedra and forms one vertex of the [IrF6]2− octahedron. Thus, the anion interconnects eight Ba2+ cations. The Ba and Ir atoms form two rhombohedral sublattices separated by c/2 (Fig. 2).

Experimental top

The title compounds were synthesized by the following method. Firstly, K2[IrCl6] was obtained by reaction between IrCl4·4H2O dissolved in concentrated HCl and KCl solution in the ratio K:Ir = 2:1. In the second stage, K2[IrF6] was obtained by the interaction of K2[IrCl6] with gaseous F2 at atmospheric pressure and 573 K in a flow reactor. An aqueous solution of K2[IrF6] was then treated with ion-exchange resin in the H form for one day. The mixture was filtered and a solution of H2[IrF6] acid was collected. Concentration by evaporation at room temperature yielded a solution of 0.11 M. Ca[IrF6]·2H2O, Sr[IrF6]·2H2O and Ba[IrF6] were prepared by the reaction between 0.11 M H2[IrF6] (5 ml) and the corresponding reagent, CaO (56 mg), SrCO3 (74 mg) or BaCO3 (99 mg). Crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement top

The H atoms were located in difference electron-density maps and refined with O—H distances restrained to 0.82 (5) Å and H···H distances restrained to 1.30 (5) Å (to obtain H—O—H angles of about 105°).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Bruker, 2004); program(s) used to refine structure: SHELXTL (Bruker, 2004); molecular graphics: BS (Ozawa & Kang, 2004); software used to prepare material for publication: SHELXTL (Bruker, 2004).

Figures top
[Figure 1] Fig. 1. A packing diagram for the Ca[IrF6]·2H2O and Sr[IrF6]·2H2O structures, viewed along [100]. Hydrogen bonds have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram for the Ba[IrF6] structure, viewed along [110].
(I) calcium hexafluoroiridate(IV) dihydrate top
Crystal data top
Ca[IrF6]·2H2OF(000) = 684
Mr = 382.31Dx = 4.148 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3691 reflections
a = 5.9055 (2) Åθ = 3.7–30.0°
b = 9.5369 (3) ŵ = 22.72 mm1
c = 11.0140 (3) ÅT = 296 K
β = 99.262 (1)°Needle, light pink
V = 612.22 (3) Å30.10 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
1790 independent reflections
Radiation source: fine-focus sealed tube1688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 25 pixels mm-1θmax = 30.0°, θmin = 2.8°
ϕ scansh = 78
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1113
Tmin = 0.210, Tmax = 0.464l = 1115
5426 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: difference Fourier map
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.0253P)2]
where P = (Fo2 + 2Fc2)/3
1790 reflections(Δ/σ)max = 0.001
107 parametersΔρmax = 0.94 e Å3
6 restraintsΔρmin = 2.84 e Å3
Crystal data top
Ca[IrF6]·2H2OV = 612.22 (3) Å3
Mr = 382.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.9055 (2) ŵ = 22.72 mm1
b = 9.5369 (3) ÅT = 296 K
c = 11.0140 (3) Å0.10 × 0.06 × 0.04 mm
β = 99.262 (1)°
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
1790 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1688 reflections with I > 2σ(I)
Tmin = 0.210, Tmax = 0.464Rint = 0.028
5426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0216 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.25Δρmax = 0.94 e Å3
1790 reflectionsΔρmin = 2.84 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.40499 (2)0.539327 (15)0.265398 (13)0.00857 (7)
Ca10.66063 (14)0.18588 (9)0.45306 (8)0.01119 (16)
F20.6581 (4)0.6440 (3)0.2159 (2)0.0184 (5)
F10.6254 (4)0.4059 (3)0.3455 (2)0.0199 (5)
F40.1480 (5)0.4431 (3)0.3160 (3)0.0211 (6)
F30.1815 (4)0.6693 (3)0.1806 (2)0.0198 (5)
F60.3794 (5)0.4293 (3)0.1160 (2)0.0208 (6)
F50.4356 (5)0.6502 (3)0.4133 (2)0.0210 (6)
O11.0353 (6)0.3009 (4)0.5137 (4)0.0247 (7)
O20.3779 (6)0.0763 (4)0.5856 (3)0.0167 (6)
H1A1.065 (11)0.362 (6)0.563 (5)0.04 (2)*
H1B1.095 (13)0.328 (8)0.457 (5)0.07 (3)*
H2A0.280 (8)0.136 (5)0.561 (4)0.015 (14)*
H2B0.423 (10)0.092 (7)0.655 (4)0.033 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01050 (9)0.00778 (10)0.00746 (10)0.00010 (5)0.00158 (6)0.00031 (4)
Ca10.0131 (4)0.0109 (4)0.0095 (4)0.0003 (3)0.0015 (3)0.0000 (3)
F20.0194 (12)0.0188 (14)0.0191 (13)0.0046 (10)0.0097 (11)0.0033 (10)
F10.0208 (12)0.0166 (13)0.0208 (14)0.0043 (11)0.0010 (10)0.0061 (11)
F40.0193 (13)0.0226 (15)0.0225 (15)0.0081 (11)0.0063 (11)0.0044 (11)
F30.0184 (12)0.0140 (12)0.0248 (14)0.0045 (10)0.0037 (11)0.0032 (10)
F60.0231 (13)0.0231 (14)0.0151 (14)0.0004 (11)0.0004 (11)0.0100 (11)
F50.0288 (14)0.0217 (14)0.0139 (13)0.0008 (11)0.0078 (11)0.0099 (10)
O10.0251 (17)0.0260 (19)0.0227 (19)0.0078 (15)0.0031 (15)0.0036 (16)
O20.0175 (15)0.0173 (16)0.0142 (16)0.0036 (13)0.0009 (12)0.0008 (13)
Geometric parameters (Å, º) top
Ir1—F51.926 (2)Ca1—O22.607 (3)
Ir1—F11.929 (3)Ca1—Ca1v4.2273 (17)
Ir1—F41.931 (3)Ca1—H2A2.75 (5)
Ir1—F61.937 (3)F2—Ca1vi2.326 (3)
Ir1—F31.937 (2)F3—Ca1vii2.306 (3)
Ir1—F21.947 (2)F6—Ca1viii2.313 (3)
Ca1—F5i2.281 (3)F5—Ca1i2.281 (3)
Ca1—F3ii2.306 (3)O1—H1A0.79 (4)
Ca1—F6iii2.313 (3)O1—H1B0.81 (4)
Ca1—F2iv2.326 (3)O2—Ca1v2.540 (4)
Ca1—F12.402 (3)O2—H2A0.83 (4)
Ca1—O12.464 (4)O2—H2B0.78 (4)
Ca1—O2v2.540 (4)
F5—Ir1—F190.62 (12)F3ii—Ca1—O275.88 (10)
F5—Ir1—F489.31 (12)F6iii—Ca1—O272.72 (10)
F1—Ir1—F493.33 (12)F2iv—Ca1—O2142.93 (11)
F5—Ir1—F6178.94 (11)F1—Ca1—O2127.87 (10)
F1—Ir1—F689.19 (12)O1—Ca1—O2130.91 (12)
F4—Ir1—F691.74 (13)O2v—Ca1—O269.58 (12)
F5—Ir1—F391.15 (11)F5i—Ca1—Ca1v104.40 (8)
F1—Ir1—F3178.21 (12)F3ii—Ca1—Ca1v73.57 (7)
F4—Ir1—F386.39 (12)F6iii—Ca1—Ca1v68.19 (7)
F6—Ir1—F389.05 (12)F2iv—Ca1—Ca1v109.52 (7)
F5—Ir1—F289.05 (11)F1—Ca1—Ca1v147.84 (7)
F1—Ir1—F288.54 (11)O1—Ca1—Ca1v136.56 (10)
F4—Ir1—F2177.53 (11)O2v—Ca1—Ca1v35.31 (7)
F6—Ir1—F289.90 (12)O2—Ca1—Ca1v34.28 (8)
F3—Ir1—F291.79 (11)F5i—Ca1—H2A62.2 (11)
F5i—Ca1—F3ii100.10 (10)F3ii—Ca1—H2A64.6 (9)
F5i—Ca1—F6iii89.47 (11)F6iii—Ca1—H2A88.6 (8)
F3ii—Ca1—F6iii141.76 (11)F2iv—Ca1—H2A146.1 (11)
F5i—Ca1—F2iv145.96 (10)F1—Ca1—H2A110.7 (8)
F3ii—Ca1—F2iv86.90 (10)O1—Ca1—H2A136.2 (10)
F6iii—Ca1—F2iv105.53 (10)O2v—Ca1—H2A81.1 (10)
F5i—Ca1—F173.07 (10)O2—Ca1—H2A17.5 (8)
F3ii—Ca1—F175.37 (10)Ca1v—Ca1—H2A47.0 (10)
F6iii—Ca1—F1142.25 (11)Ir1—F2—Ca1vi141.72 (14)
F2iv—Ca1—F176.70 (9)Ir1—F1—Ca1143.17 (14)
F5i—Ca1—O179.99 (12)Ir1—F3—Ca1vii144.14 (14)
F3ii—Ca1—O1149.31 (12)Ir1—F6—Ca1viii150.91 (15)
F6iii—Ca1—O168.66 (11)Ir1—F5—Ca1i157.35 (15)
F2iv—Ca1—O177.55 (12)Ca1—O1—H1A127 (5)
F1—Ca1—O175.37 (11)Ca1—O1—H1B114 (5)
F5i—Ca1—O2v139.27 (11)H1A—O1—H1B103 (6)
F3ii—Ca1—O2v77.27 (11)Ca1v—O2—Ca1110.42 (12)
F6iii—Ca1—O2v71.74 (11)Ca1v—O2—H2A126 (4)
F2iv—Ca1—O2v74.76 (10)Ca1—O2—H2A91 (4)
F1—Ca1—O2v141.14 (11)Ca1v—O2—H2B111 (5)
O1—Ca1—O2v122.42 (12)Ca1—O2—H2B109 (5)
F5i—Ca1—O270.41 (10)H2A—O2—H2B107 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+1, y, z+1; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···F4ix0.81 (4)1.96 (5)2.736 (4)159 (8)
O2—H2B···F4iii0.78 (4)2.07 (4)2.777 (5)152 (6)
O2—H2A···O1x0.83 (4)2.14 (4)2.966 (5)175 (5)
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (ix) x+1, y, z; (x) x1, y, z.
(II) strontium hexafluoroiridate(IV) dihydrate top
Crystal data top
Sr[IrF6]·2H2OF(000) = 756
Mr = 429.85Dx = 4.354 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3998 reflections
a = 6.0328 (2) Åθ = 2.8–30.0°
b = 9.8264 (4) ŵ = 28.47 mm1
c = 11.2123 (5) ÅT = 296 K
β = 99.363 (1)°Needle, light pink
V = 655.82 (5) Å30.18 × 0.08 × 0.04 mm
Z = 4
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
1895 independent reflections
Radiation source: fine-focus sealed tube1753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 25 pixels mm-1θmax = 30.0°, θmin = 2.8°
ϕ scansh = 48
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1313
Tmin = 0.080, Tmax = 0.336l = 1515
5732 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: difference Fourier map
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0251P)2 + 3.0724P]
where P = (Fo2 + 2Fc2)/3
1895 reflections(Δ/σ)max = 0.003
107 parametersΔρmax = 2.33 e Å3
6 restraintsΔρmin = 1.25 e Å3
Crystal data top
Sr[IrF6]·2H2OV = 655.82 (5) Å3
Mr = 429.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.0328 (2) ŵ = 28.47 mm1
b = 9.8264 (4) ÅT = 296 K
c = 11.2123 (5) Å0.18 × 0.08 × 0.04 mm
β = 99.363 (1)°
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
1895 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1753 reflections with I > 2σ(I)
Tmin = 0.080, Tmax = 0.336Rint = 0.018
5732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0196 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 2.33 e Å3
1895 reflectionsΔρmin = 1.25 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.40999 (3)0.536839 (17)0.267134 (15)0.01472 (6)
Sr10.66440 (7)0.18841 (4)0.45219 (4)0.01520 (9)
F20.6486 (5)0.6473 (3)0.2231 (3)0.0263 (7)
F10.6320 (6)0.4104 (3)0.3390 (3)0.0269 (7)
F40.1699 (6)0.4326 (3)0.3126 (3)0.0291 (7)
F30.1867 (6)0.6603 (3)0.1904 (3)0.0319 (7)
F60.3908 (6)0.4395 (4)0.1175 (3)0.0287 (7)
F50.4344 (6)0.6358 (3)0.4146 (3)0.0290 (7)
O11.0533 (8)0.3064 (5)0.5159 (4)0.0328 (9)
O20.3823 (6)0.0811 (4)0.5915 (4)0.0205 (7)
H1B1.095 (11)0.344 (6)0.459 (4)0.022 (16)*
H2A0.263 (7)0.118 (6)0.580 (5)0.016 (15)*
H2B0.426 (9)0.089 (6)0.656 (4)0.011 (14)*
H1A1.016 (16)0.364 (7)0.557 (7)0.06 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01644 (10)0.01326 (9)0.01493 (9)0.00037 (6)0.00393 (6)0.00003 (6)
Sr10.01645 (19)0.01469 (19)0.01464 (18)0.00055 (14)0.00308 (14)0.00093 (14)
F20.0276 (15)0.0283 (16)0.0258 (16)0.0048 (13)0.0123 (13)0.0043 (12)
F10.0275 (16)0.0221 (15)0.0294 (16)0.0040 (12)0.0003 (13)0.0072 (13)
F40.0280 (16)0.0305 (16)0.0305 (17)0.0123 (13)0.0097 (13)0.0018 (13)
F30.0254 (16)0.0227 (15)0.044 (2)0.0043 (13)0.0048 (14)0.0040 (14)
F60.0291 (17)0.0340 (17)0.0216 (15)0.0007 (14)0.0000 (13)0.0124 (13)
F50.0351 (18)0.0279 (16)0.0264 (16)0.0042 (14)0.0121 (13)0.0124 (13)
O10.027 (2)0.040 (2)0.030 (2)0.0099 (18)0.0001 (17)0.0052 (19)
O20.0157 (16)0.0228 (17)0.0230 (18)0.0007 (13)0.0032 (14)0.0015 (14)
Geometric parameters (Å, º) top
Ir1—F51.903 (3)Sr1—O2v2.700 (4)
Ir1—F11.907 (3)Sr1—O22.704 (4)
Ir1—F41.909 (3)Sr1—Sr1v4.4143 (8)
Ir1—F31.910 (3)F2—Sr1vi2.454 (3)
Ir1—F61.919 (3)F3—Sr1vii2.453 (3)
Ir1—F21.930 (3)F6—Sr1viii2.461 (3)
Sr1—F5i2.421 (3)F5—Sr1i2.421 (3)
Sr1—F2ii2.454 (3)O1—H1B0.81 (4)
Sr1—F3iii2.453 (3)O1—H1A0.79 (4)
Sr1—F6iv2.461 (3)O2—Sr1v2.700 (4)
Sr1—F12.515 (3)O2—H2A0.80 (4)
Sr1—O12.610 (4)O2—H2B0.73 (4)
F5—Ir1—F190.91 (15)F6iv—Sr1—O2v70.39 (12)
F5—Ir1—F489.84 (15)F1—Sr1—O2v139.65 (12)
F1—Ir1—F492.79 (15)O1—Sr1—O2v123.23 (14)
F5—Ir1—F390.93 (15)F5i—Sr1—O271.37 (11)
F1—Ir1—F3178.15 (15)F2ii—Sr1—O2144.39 (11)
F4—Ir1—F387.20 (15)F3iii—Sr1—O276.96 (12)
F5—Ir1—F6178.70 (15)F6iv—Sr1—O271.96 (11)
F1—Ir1—F689.03 (15)F1—Sr1—O2128.68 (11)
F4—Ir1—F691.45 (15)O1—Sr1—O2129.60 (13)
F3—Ir1—F689.13 (16)O2v—Sr1—O270.45 (13)
F5—Ir1—F288.80 (14)F5i—Sr1—Sr1v106.45 (8)
F1—Ir1—F288.44 (14)F2ii—Sr1—Sr1v109.86 (8)
F4—Ir1—F2178.18 (15)F3iii—Sr1—Sr1v71.89 (8)
F3—Ir1—F291.62 (14)F6iv—Sr1—Sr1v66.74 (8)
F6—Ir1—F289.90 (15)F1—Sr1—Sr1v148.09 (8)
F5i—Sr1—F2ii143.44 (11)O1—Sr1—Sr1v136.52 (10)
F5i—Sr1—F3iii102.07 (12)O2v—Sr1—Sr1v35.26 (8)
F2ii—Sr1—F3iii85.43 (12)O2—Sr1—Sr1v35.19 (8)
F5i—Sr1—F6iv93.55 (12)Ir1—F2—Sr1vi139.16 (16)
F2ii—Sr1—F6iv104.37 (11)Ir1—F1—Sr1140.36 (17)
F3iii—Sr1—F6iv138.41 (12)Ir1—F3—Sr1vii146.71 (18)
F5i—Sr1—F171.68 (12)Ir1—F6—Sr1viii149.37 (18)
F2ii—Sr1—F175.33 (11)Ir1—F5—Sr1i155.32 (19)
F3iii—Sr1—F177.34 (11)Sr1—O1—H1B112 (5)
F6iv—Sr1—F1144.19 (12)Sr1—O1—H1A99 (7)
F5i—Sr1—O179.32 (14)H1B—O1—H1A106 (6)
F2ii—Sr1—O177.44 (14)Sr1v—O2—Sr1109.56 (13)
F3iii—Sr1—O1150.55 (13)Sr1v—O2—H2A111 (4)
F6iv—Sr1—O169.93 (13)Sr1—O2—H2A111 (4)
F1—Sr1—O175.25 (12)Sr1v—O2—H2B107 (5)
F5i—Sr1—O2v141.54 (11)Sr1—O2—H2B112 (5)
F2ii—Sr1—O2v75.00 (11)H2A—O2—H2B106 (5)
F3iii—Sr1—O2v73.61 (12)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y, z+1; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···F4ix0.81 (4)1.97 (4)2.784 (6)175 (7)
O2—H2B···F4iv0.73 (4)2.11 (4)2.788 (5)154 (6)
O2—H2A···O1x0.80 (4)2.29 (5)3.002 (6)149 (6)
Symmetry codes: (iv) x+1/2, y+1/2, z+1/2; (ix) x+1, y, z; (x) x1, y, z.
(III) barium hexafluoroiridate(IV) top
Crystal data top
Ba[IrF6]Dx = 6.404 Mg m3
Mr = 443.54Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 967 reflections
Hall symbol: -R 3θ = 4.2–30.0°
a = 7.3965 (5) ŵ = 37.44 mm1
c = 7.2826 (7) ÅT = 293 K
V = 345.04 (5) Å3Needle, light pink
Z = 30.12 × 0.04 × 0.04 mm
F(000) = 561
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
182 independent reflections
Radiation source: fine-focus sealed tube182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 25 pixels mm-1θmax = 27.4°, θmin = 4.2°
ϕ scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 79
Tmin = 0.178, Tmax = 0.216l = 99
889 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0408P)2 + 6.1383P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max < 0.001
S = 1.22Δρmax = 1.91 e Å3
182 reflectionsΔρmin = 2.46 e Å3
15 parametersExtinction correction: SHELXTL (Bruker, 2004), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0108 (11)
Crystal data top
Ba[IrF6]Z = 3
Mr = 443.54Mo Kα radiation
Trigonal, R3µ = 37.44 mm1
a = 7.3965 (5) ÅT = 293 K
c = 7.2826 (7) Å0.12 × 0.04 × 0.04 mm
V = 345.04 (5) Å3
Data collection top
Bruker Nonius X8 APEX CCD area-detector
diffractometer
182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
182 reflections with I > 2σ(I)
Tmin = 0.178, Tmax = 0.216Rint = 0.037
889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02415 parameters
wR(F2) = 0.0660 restraints
S = 1.22Δρmax = 1.91 e Å3
182 reflectionsΔρmin = 2.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.00000.00000.00000.0074 (4)
F10.0729 (6)0.2325 (6)0.1640 (5)0.0154 (10)
Ba10.33330.66670.16670.0099 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0064 (4)0.0064 (4)0.0093 (5)0.0032 (2)0.0000.000
F10.017 (2)0.0127 (19)0.015 (2)0.0068 (16)0.0006 (14)0.0042 (15)
Ba10.0092 (5)0.0092 (5)0.0112 (6)0.0046 (2)0.0000.000
Geometric parameters (Å, º) top
Ir1—F1i1.935 (4)Ba1—F1ix2.800 (4)
Ir1—F11.935 (4)Ba1—F1x2.800 (4)
Ir1—F1ii1.935 (4)Ba1—F1xi2.800 (4)
Ir1—F1iii1.935 (4)Ba1—F1xii2.800 (4)
Ir1—F1iv1.935 (4)Ba1—F1xiii2.883 (4)
Ir1—F1v1.935 (4)Ba1—F1xiv2.883 (4)
Ir1—Ba1vi3.6413 (4)Ba1—F1xv2.883 (4)
Ir1—Ba1vii3.6413 (4)Ba1—F1xvi2.883 (4)
Ba1—F12.800 (4)Ba1—F1xvii2.883 (4)
F1—Ba1vii2.883 (4)Ba1—F1xviii2.883 (4)
Ba1—F1viii2.800 (4)
F1i—Ir1—F1180.0 (3)F1xi—Ba1—F1xiii119.63 (13)
F1i—Ir1—F1ii85.93 (18)F1—Ba1—F1xiii96.28 (14)
F1—Ir1—F1ii94.07 (18)F1xii—Ba1—F1xiii113.77 (12)
F1i—Ir1—F1iii94.07 (18)F1viii—Ba1—F1xiv96.28 (14)
F1—Ir1—F1iii85.93 (18)F1ix—Ba1—F1xiv119.63 (13)
F1ii—Ir1—F1iii180.0 (3)F1x—Ba1—F1xiv66.23 (12)
F1i—Ir1—F1iv94.07 (18)F1xi—Ba1—F1xiv83.72 (14)
F1—Ir1—F1iv85.93 (18)F1—Ba1—F1xiv113.77 (12)
F1ii—Ir1—F1iv94.07 (18)F1xii—Ba1—F1xiv60.37 (13)
F1iii—Ir1—F1iv85.93 (18)F1xiii—Ba1—F1xiv54.47 (12)
F1i—Ir1—F1v85.93 (18)F1viii—Ba1—F1xv113.77 (12)
F1—Ir1—F1v94.07 (18)F1ix—Ba1—F1xv83.72 (14)
F1ii—Ir1—F1v85.93 (18)F1x—Ba1—F1xv119.63 (13)
F1iii—Ir1—F1v94.07 (18)F1xi—Ba1—F1xv66.23 (12)
F1iv—Ir1—F1v180.0 (5)F1—Ba1—F1xv60.37 (13)
F1i—Ir1—Ba1vi51.91 (12)F1xii—Ba1—F1xv96.28 (14)
F1—Ir1—Ba1vi128.09 (12)F1xiii—Ba1—F1xv54.47 (12)
F1ii—Ir1—Ba1vi51.91 (12)F1xiv—Ba1—F1xv54.47 (12)
F1iii—Ir1—Ba1vi128.09 (12)F1viii—Ba1—F1xvi66.23 (12)
F1iv—Ir1—Ba1vi128.09 (12)F1ix—Ba1—F1xvi96.28 (14)
F1v—Ir1—Ba1vi51.91 (12)F1x—Ba1—F1xvi60.37 (13)
F1i—Ir1—Ba1vii128.09 (12)F1xi—Ba1—F1xvi113.77 (12)
F1—Ir1—Ba1vii51.91 (12)F1—Ba1—F1xvi119.63 (13)
F1ii—Ir1—Ba1vii128.09 (12)F1xii—Ba1—F1xvi83.72 (14)
F1iii—Ir1—Ba1vii51.91 (12)F1xiii—Ba1—F1xvi125.53 (12)
F1iv—Ir1—Ba1vii51.91 (12)F1xiv—Ba1—F1xvi125.53 (13)
F1v—Ir1—Ba1vii128.09 (12)F1xv—Ba1—F1xvi180.0
Ba1vi—Ir1—Ba1vii180.0F1viii—Ba1—F1xvii83.72 (14)
Ir1—F1—Ba1138.56 (19)F1ix—Ba1—F1xvii60.37 (13)
Ir1—F1—Ba1vii96.20 (15)F1x—Ba1—F1xvii113.77 (12)
Ba1—F1—Ba1vii119.63 (13)F1xi—Ba1—F1xvii96.28 (14)
F1viii—Ba1—F1ix60.004 (3)F1—Ba1—F1xvii66.23 (12)
F1viii—Ba1—F1x60.004 (3)F1xii—Ba1—F1xvii119.63 (13)
F1ix—Ba1—F1x119.994 (2)F1xiii—Ba1—F1xvii125.53 (12)
F1viii—Ba1—F1xi180.0F1xiv—Ba1—F1xvii180.0
F1ix—Ba1—F1xi119.996 (3)F1xv—Ba1—F1xvii125.53 (13)
F1x—Ba1—F1xi119.996 (3)F1xvi—Ba1—F1xvii54.47 (12)
F1viii—Ba1—F1119.995 (3)F1viii—Ba1—F1xviii119.63 (13)
F1ix—Ba1—F160.005 (3)F1ix—Ba1—F1xviii113.77 (12)
F1x—Ba1—F1180.0F1x—Ba1—F1xviii96.28 (14)
F1xi—Ba1—F160.005 (2)F1xi—Ba1—F1xviii60.37 (13)
F1viii—Ba1—F1xii119.995 (3)F1—Ba1—F1xviii83.72 (14)
F1ix—Ba1—F1xii180.0F1xii—Ba1—F1xviii66.23 (12)
F1x—Ba1—F1xii60.006 (2)F1xiii—Ba1—F1xviii180.0
F1xi—Ba1—F1xii60.005 (3)F1xiv—Ba1—F1xviii125.53 (12)
F1—Ba1—F1xii119.995 (2)F1xv—Ba1—F1xviii125.53 (12)
F1viii—Ba1—F1xiii60.37 (13)F1xvi—Ba1—F1xviii54.47 (12)
F1ix—Ba1—F1xiii66.23 (12)F1xvii—Ba1—F1xviii54.47 (12)
F1x—Ba1—F1xiii83.72 (14)
Symmetry codes: (i) x, y, z; (ii) xy, x, z; (iii) x+y, x, z; (iv) y, xy, z; (v) y, x+y, z; (vi) x1/3, y2/3, z2/3; (vii) x1/3, y2/3, z+1/3; (viii) x+y, x+1, z; (ix) y1/3, x+y+1/3, z+1/3; (x) x+2/3, y+4/3, z+1/3; (xi) xy+2/3, x+1/3, z+1/3; (xii) y+1, xy+1, z; (xiii) xy+1/3, x+2/3, z+2/3; (xiv) y+1/3, x+y+2/3, z+2/3; (xv) x+1/3, y+2/3, z+2/3; (xvi) x+1/3, y+2/3, z1/3; (xvii) y+1/3, xy+2/3, z1/3; (xviii) x+y+1/3, x+2/3, z1/3.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaCa[IrF6]·2H2OSr[IrF6]·2H2OBa[IrF6]
Mr382.31429.85443.54
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nTrigonal, R3
Temperature (K)296296293
a, b, c (Å)5.9055 (2), 9.5369 (3), 11.0140 (3)6.0328 (2), 9.8264 (4), 11.2123 (5)7.3965 (5), 7.3965 (5), 7.2826 (7)
α, β, γ (°)90, 99.262 (1), 9090, 99.363 (1), 9090, 90, 120
V3)612.22 (3)655.82 (5)345.04 (5)
Z443
Radiation typeMo KαMo KαMo Kα
µ (mm1)22.7228.4737.44
Crystal size (mm)0.10 × 0.06 × 0.040.18 × 0.08 × 0.040.12 × 0.04 × 0.04
Data collection
DiffractometerBruker Nonius X8 APEX CCD area-detector
diffractometer
Bruker Nonius X8 APEX CCD area-detector
diffractometer
Bruker Nonius X8 APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.210, 0.4640.080, 0.3360.178, 0.216
No. of measured, independent and
observed [I > 2σ(I)] reflections
5426, 1790, 1688 5732, 1895, 1753 889, 182, 182
Rint0.0280.0180.037
(sin θ/λ)max1)0.7040.7030.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.25 0.019, 0.053, 1.12 0.024, 0.066, 1.22
No. of reflections17901895182
No. of parameters10710715
No. of restraints660
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.94, 2.842.33, 1.251.91, 2.46

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Bruker, 2004), BS (Ozawa & Kang, 2004).

Selected bond lengths (Å) for (I) top
Ir1—F51.926 (2)Ca1—F3ii2.306 (3)
Ir1—F11.929 (3)Ca1—F6iii2.313 (3)
Ir1—F41.931 (3)Ca1—F2iv2.326 (3)
Ir1—F61.937 (3)Ca1—F12.402 (3)
Ir1—F31.937 (2)Ca1—O12.464 (4)
Ir1—F21.947 (2)Ca1—O2v2.540 (4)
Ca1—F5i2.281 (3)Ca1—O22.607 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···F4vi0.81 (4)1.96 (5)2.736 (4)159 (8)
O2—H2B···F4iii0.78 (4)2.07 (4)2.777 (5)152 (6)
O2—H2A···O1vii0.83 (4)2.14 (4)2.966 (5)175 (5)
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x1, y, z.
Selected bond lengths (Å) for (II) top
Ir1—F51.903 (3)Sr1—F2ii2.454 (3)
Ir1—F11.907 (3)Sr1—F3iii2.453 (3)
Ir1—F41.909 (3)Sr1—F6iv2.461 (3)
Ir1—F31.910 (3)Sr1—F12.515 (3)
Ir1—F61.919 (3)Sr1—O12.610 (4)
Ir1—F21.930 (3)Sr1—O2v2.700 (4)
Sr1—F5i2.421 (3)Sr1—O22.704 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···F4vi0.81 (4)1.97 (4)2.784 (6)175 (7)
O2—H2B···F4iv0.73 (4)2.11 (4)2.788 (5)154 (6)
O2—H2A···O1vii0.80 (4)2.29 (5)3.002 (6)149 (6)
Symmetry codes: (iv) x+1/2, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x1, y, z.
Selected bond lengths (Å) for (III) top
Ir1—F11.935 (4)Ba1—F12.800 (4)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds