Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A redetermination of the structure of `La32.66Fe11S60' in the trigonal space group R\overline{3}m led to the new formula La52Fe12S90 and to a redefinition of the structure type. In the structure, the Fe2+ cations occur in Fe2S9 dimers of face-sharing octa­hedra (with 3m symmetry). The dimers are linked by face- and vertex-sharing bi- and tricapped LaS6 trigonal prisms (with m symmetry) to form a three-dimensional network containing two types of cubocta­hedral cavities. The larger cavities remain empty, while the smaller ones accommodate alternative sites for disordered La3+ cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106014879/iz1068sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106014879/iz1068Isup2.hkl
Contains datablock I

Comment top

In a search for materials with interesting magnetic properties, we have begun a reinvestigation of the R–Fe–S system (R = rare earth metal). With the larger rare-earth metals, phases of three different compositions are formed, viz. R2Fe2-δS5 (R = La, Ce and Pr), R3Fe2-δS7 (R = La, Ce, Pr and Nd) and R52Fe12S90 (R = La, Ce, Pr and Nd) (Collin et al., 1968; Patrie et al., 1968; Du & Tang, 1984). We have recently determined the structures of Ce2Fe1.82S5 (Harms et al., 2005) and Ce3Fe1.94S7 (Mills & Ruck, 2004). The structure of La52Fe12S90 is the subject of this communication.

La52Fe12S90 adopts a structure type that has been the source of considerable confusion. The existence of a family of compounds of composition R2TS4 (R = La and Ce and T = Cr, Mn and Fe) having monoclinic cell parameters was first reported by Patrie et al. (1968). The crystal structures of La32.66T11S60 (T = Mn and Fe) were subsequently determined in the non-standard monoclinic space group Bm (Collin & Laruelle, 1974), but it was later suggested that the symmetry of the structures is actually trigonal (Cenzual et al., 1990). More recently, an X-ray diffraction investigation of La15.9Cr5.4S32 established that the correct space group for the structure type is R3m (Litteer et al., 1999). We report here the redetermination of `La32.66Fe11S60' in R3m and propose the new formula La52Fe12S90. Views of the structure along [001] and [110] are presented in Figs. 1 and 2. Selected geometric parameters are listed in Table 1.

The two independent Fe atoms occur in Fe2S9 dimers of face-sharing octahedra, which reside on the 3 axes. The dimers are composed of octahedra that are trigonally compressed along [001]. The terminal Fe1—S3 and Fe2—S1 distances are both shorter than the bridging Fe1—S2 and Fe2—S2 distances (Table 1), suggesting a repulsion between the iron cations. The resulting Fe1···Fe2 distance of 3.222 (7) Å is considerably longer than the 2.980 (6) Å distance between Fe atoms in the [FeS6/2] chains of Ce3Fe1.94S7 (Mills & Ruck, 2004). The Fe—S distances in La52Fe12S90 are comparable to those of 2.45–2.67 Å found in the FeS6 octahedra of La2Fe2S5 (Besrest & Collin, 1977).

The La atoms occupy several different types of coordination environments, owing in part to the positional disorder of atom La1 (see below). The most populated La1 site, La1b, and the fully occupied La2 and La3 sites centre bi- and tricapped trigonal prisms (or alternatively, square antiprisms and monocapped square antiprisms) of S atoms. If all La—S distances less than 4 Å are considered, then La1b [La1b—S = 2.774 (4)–3.352 96) Å] and La3 [La3—S = 2.8995 (13)–3.811 (5) Å] can be described as eight-coordinate, and La2 [La2—S = 2.875 (3)–3.437 (4) Å] as nine-coordinate. The range of La—S distances is similar to that observed in the capped trigonal prisms of La4Ge3S12 (2.86–3.73 Å; Mazurier & Etienne, 1974).

In addition to sharing faces and vertices with one another, the prisms each share either one (La1bS8 and La3S8) or two (La2S9) faces with an Fe2S9 dimer, as well as a vertex with a neighbouring dimer. The dimers, in turn, share their twelve lateral faces and all of their vertices with La-centred polyhedra. The resulting three-dimensional network contains large cuboctahedral cavities. Two types of cavities alternate along the 3 axes, separated by the Fe2S9 dimers. Smaller cavities outlined by six S1 and six S4 atoms surround the 3b sites, and larger cavities outlined by six S3 and six S5 atoms surround the 3a sites. The volumes of the cavities defined by the atom centres are 114 and 132 Å3, respectively (calculated with the program VOID95; Koch & Fischer, 1995).

While the larger cavity remains empty, the smaller cavity accommodates alternative sites for the disordered La atom, La1. Site La1b, at the edge of the cavity, is non-ideal, since it is located at only 3.60 (2) Å from itself. The La atoms, therefore, move away from this position and occupy a path of six closely spaced sites (La1a–La1f) that extends into the neighbouring cavity (Fig. 3). The total occupancy of these sites is 8/9, the vacancies being necessary for charge balance. The outer sites, La1a–La1c, which have a combined occupancy of approximately 80%, are eight-coordinate, with bicapped trigonal–prismatic (or square–antiprismatic) coordination geometries similar to those of La2 and La3. However, more unusual coordination environments are encountered for the inner sites La1d–La1f, which have individual occupancies ranging from only 1 to 7%. La1d is coordinated by five S atoms in a square–pyramidal arrangement, La1e is coordinated by eight S atoms in a bicapped trigonal–prismatic arrangement, and La1f, located at the centre of the cavity, is coordinated by six S atoms in an octahedral arrangement. The split La1 positions suggest that the trivalent cations are mobile; the sparsely occupied inner sites can be regarded as local energy minima on the path between the more favourable outer sites.

Aside from symmetry considerations, the main differences between our structural model and those previously proposed for the structure type involve the filling of the two cavities. In the first structures of this type to be determined, La32.66T11S60 (T = Mn and Fe), the smaller cavity contains an implausible T2 dumbbell, and the sites at the edge of the cavity, equivalent to La1b in our structure, are 60–80% occupied (Collin & Laruelle, 1974). In the more recently published structure of La15.9Cr5.4S32, three sites just outside the smaller cavity are partially filled by La or Cr, with a total occupancy of approximately 90%, and one site inside the cavity is occupied by an S atom with a non-positive definite displacement ellipsoid (Litteer et al., 1999). An additional S atom is located inside the larger cavity, which remains empty in the other structures. However, since La15.9Cr5.4S32 was synthesized in an LaCl3 flux, it is possible that this site actually belongs to a misassigned Cl atom. Using a similar synthetic method, we have recently isolated the compounds Ce53Fe12S90X3, in which X atoms (X = Cl, Br or I) occupy this site, from reactions in CeX3 fluxes. The structures of the filled compounds will be communicated shortly (Mills & Ruck, 2005).

Experimental top

Hexagonal prisms of La52Fe12S90 were unexpectedly isolated from a flux reaction designed to produce La3Fe2S7. Starting reactants were lanthanum (rod, > 99.5%, Treibacher; freshly filed under Ar prior to use), iron (powder, 99.99%, ABCR), and sulfur [powder, > 99%, VEB Laborchemie; recrystallized from CS2, then purified of C according to the method of von Wartenberg et al. (1956)]. A 1:1 mixture of LiCl (p.a., Merck) and KCl (p.a., J. T. Baker) was used as a flux after being heated under dynamic vacuum to remove any moisture. The elements, in an La:Fe:S ratio of 3:2:7 (0.25 g in total), were added to the LiCl/KCl flux (0.5 g) in a fused-silica ampoule (6 cm in length, 0.8 cm in diameter), which was then sealed under vacuum (10−3 Torr). The reaction mixture was heated at 1170 K for four days and then cooled to room temperature over a period of four days. The flux was removed by washing the sample several times with water and ethanol. Energy-dispersive X-ray (EDX) analysis on a Philips XL30 scanning electron microscope of crystals isolated from the product confirmed the presence of La, Fe and S in the appropriate ratios. Analysis (mol.%): La 34.8 (2), Fe 7.1 (5), S 58.1 (3) (average of two analyses).

Refinement top

In the new data set collected for the title compound, the intensity statistics were consistent with Laue symmetry 3m, and a trigonal cell was found. The only systematic reflection condition obeyed was that for R-centring (hkl: −h + k + l = 3n, obverse setting). The centrosymmetric space group R3m was therefore chosen, on the basis of the close relationship between the structures of La52Fe12S90 and La15.9Cr5.4S32 (Litteer et al., 1999). No evidence of superstructure, symmetry lowering or twinning was observed. After three lanthanum, two iron and five sulfur sites were found through repeated refinements and difference Fourier syntheses, additional residual electron density remained in a series of closely spaced sites extending from La1 to the centre of the neighbouring cuboctahedral cavity at (0, 0, 1/2). These were attributed to a positional disorder of La1. The six split positions La1a–La1f were refined with the same isotropic displacement parameter, and their occupancies were constrained to total 8/9, as required for charge balance. The occasional filling of the cavity requires a structural readjustment, which is reflected in the larger displacement ellipsoids of some atoms, particularly those defining the cavity (S1 and S4). Atomic positions were standardized using the program STRUCTURE TIDY (Gelato & Parthé, 1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2004); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the structure of La52Fe12S90 along [001]. Displacement ellipsoids are drawn at the 90% probability level. La atoms are dark grey, Fe atoms medium grey and S atoms light grey.
[Figure 2] Fig. 2. A (110) section of the structure of La52Fe12S90, with the atomic labelling scheme indicated. Displacement ellipsoids are drawn at the 90% probability level. La atoms are dark grey, Fe atoms medium grey and S atoms light grey. [Symmetry code: (i) x + 2/3, y + 1/3, z + 1/3.]
[Figure 3] Fig. 3. Positional disorder of La1 in La52Fe12S90. A path of six closely spaced sites extends into the smaller cuboctahedral cavity. The size of the La1a–La1f atoms at each site represents their occupancy, and the lines connecting them represent possible paths between the sites. The total occupancy of the sites is 8/9.
lanthanum(III) iron(II) sulfide top
Crystal data top
La52Fe12S90Dx = 4.813 Mg m3
Mr = 10778.92Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3mCell parameters from 22416 reflections
Hall symbol: -R 3 2"θ = 1.9–27.3°
a = 14.0426 (5) ŵ = 16.96 mm1
c = 21.776 (1) ÅT = 293 K
V = 3718.8 (3) Å3Prism, black
Z = 10.15 × 0.12 × 0.10 mm
F(000) = 4716
Data collection top
Stoe IPDS-II
diffractometer
1018 independent reflections
Radiation source: fine-focus sealed tube1000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 1.9°
ω scansh = 1717
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001); crystal description optimized based on equivalent reflections using X-SHAPE (Stoe & Cie, 1999)]
k = 1716
Tmin = 0.210, Tmax = 0.363l = 2727
19622 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.033P)2 + 405P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max = 0.001
S = 1.20Δρmax = 3.27 e Å3
1018 reflectionsΔρmin = 4.12 e Å3
65 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00033 (2)
Crystal data top
La52Fe12S90Z = 1
Mr = 10778.92Mo Kα radiation
Trigonal, R3mµ = 16.96 mm1
a = 14.0426 (5) ÅT = 293 K
c = 21.776 (1) Å0.15 × 0.12 × 0.10 mm
V = 3718.8 (3) Å3
Data collection top
Stoe IPDS-II
diffractometer
1018 independent reflections
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001); crystal description optimized based on equivalent reflections using X-SHAPE (Stoe & Cie, 1999)]
1000 reflections with I > 2σ(I)
Tmin = 0.210, Tmax = 0.363Rint = 0.041
19622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.033P)2 + 405P]
where P = (Fo2 + 2Fc2)/3
S = 1.20Δρmax = 3.27 e Å3
1018 reflectionsΔρmin = 4.12 e Å3
65 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The La1 atom is positionally disordered over six sites La1a–f with a total occupancy of 8/9.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La1A0.1407 (2)0.2814 (5)0.3752 (4)0.0131 (4)*0.139 (2)
La1B0.1289 (2)0.2577 (5)0.4045 (4)0.0131 (4)*0.447 (19)
La1C0.1219 (4)0.2439 (8)0.4171 (7)0.0131 (4)*0.22 (2)
La1D0.080 (2)0.160 (5)0.453 (2)0.0131 (4)*0.013 (2)
La1E0.0456 (5)0.0911 (10)0.4957 (5)0.0131 (4)*0.0672 (19)
La1F0.00000.00000.50000.0131 (4)*0.033 (6)
La20.46886 (3)0.53114 (3)0.41361 (3)0.0149 (3)
La30.53548 (3)0.46452 (3)0.23845 (4)0.0164 (3)
Fe10.00000.00000.1838 (3)0.0470 (13)
Fe20.00000.00000.3318 (2)0.0258 (9)
S10.4181 (2)0.5819 (2)0.2757 (4)0.0626 (18)
S20.57968 (17)0.42032 (17)0.0706 (2)0.0338 (10)
S30.75397 (14)0.24603 (14)0.20624 (16)0.0198 (7)
S40.3024 (4)0.00000.50000.0363 (10)
S50.2987 (3)0.00000.00000.0188 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La20.0120 (3)0.0120 (3)0.0225 (4)0.0074 (3)0.00089 (14)0.00089 (14)
La30.0109 (3)0.0109 (3)0.0235 (4)0.0025 (3)0.00282 (15)0.00282 (15)
Fe10.0398 (17)0.0398 (17)0.062 (3)0.0199 (9)0.0000.000
Fe20.0152 (11)0.0152 (11)0.047 (2)0.0076 (5)0.0000.000
S10.0301 (18)0.0301 (18)0.133 (6)0.019 (2)0.0150 (15)0.0150 (15)
S20.0129 (12)0.0129 (12)0.070 (3)0.0027 (14)0.0000 (9)0.0000 (9)
S30.0136 (11)0.0136 (11)0.0308 (17)0.0058 (13)0.0028 (7)0.0028 (7)
S40.053 (2)0.0187 (18)0.0260 (18)0.0094 (9)0.0052 (7)0.0104 (15)
S50.0256 (13)0.0163 (16)0.0114 (13)0.0081 (8)0.0007 (6)0.0014 (11)
Geometric parameters (Å, º) top
La1B—S1i2.774 (4)La3—La1Bxxi4.056 (6)
La1B—S2ii2.858 (7)Fe1—S3iv2.456 (4)
La1B—S4iii3.022 (6)Fe1—S3xxii2.456 (4)
La1B—S2iv3.249 (9)Fe1—S2iv2.727 (6)
La1B—S5v3.352 (6)Fe1—S2xxii2.727 (6)
La2—S3vi2.875 (3)Fe1—Fe23.222 (7)
La2—S2ii2.9006 (10)Fe1—La2i3.625 (3)
La2—S5ii2.9737 (5)Fe1—La2x3.625 (3)
La2—S3vii2.983 (4)Fe1—La2xiii3.625 (3)
La2—S13.247 (8)Fe1—La3v3.732 (3)
La2—S4viii3.437 (4)Fe1—La3xxii3.732 (3)
La3—S3viii2.8995 (13)Fe2—S1x2.432 (6)
La3—S4ix2.9132 (6)Fe2—S1xiii2.432 (6)
La3—S12.968 (5)Fe2—S2xxii2.595 (5)
La3—S5ii2.9769 (19)Fe2—S2iv2.595 (5)
La3—S23.811 (5)Fe2—La1Dxvi3.29 (5)
Fe1—S3v2.456 (4)Fe2—La1Diii3.29 (5)
Fe1—S2v2.727 (6)Fe2—La1Ciii3.500 (5)
Fe2—S1i2.432 (6)S1—La1Dix2.42 (4)
Fe2—S2v2.595 (5)S1—La1Di2.42 (4)
La1A—S2ii2.644 (7)S1—Fe2i2.432 (6)
La1A—S2iv2.776 (9)S1—La1Exxi2.645 (13)
La1A—S1i3.004 (5)S1—La1Ci2.694 (5)
La1A—S1x3.004 (5)S1—La1Cix2.694 (5)
La1A—S5v3.037 (5)S1—La1Bi2.774 (4)
La1A—S5vii3.037 (5)S1—La1Bix2.774 (4)
La1B—S1x2.775 (4)S1—La1Ei2.897 (11)
La1B—S4xi3.022 (6)S1—La1Eix2.897 (11)
La1B—S5vii3.352 (6)S1—La1Aix3.004 (5)
La1B—Fe23.511 (3)S2—Fe2v2.595 (5)
La1C—S1i2.694 (5)S2—La1Axxi2.644 (7)
La1C—S1x2.694 (5)S2—Fe1v2.727 (6)
La1C—S4iii2.876 (8)S2—La1Axxiii2.776 (9)
La1C—S4xi2.876 (8)S2—La1Bxxi2.858 (7)
La1C—S2ii3.040 (12)S2—La2xxiv2.9005 (10)
La1C—S2iv3.467 (13)S2—La2xxi2.9005 (10)
La1C—Fe23.500 (5)S2—La1Cxxi3.040 (12)
La1C—S5v3.536 (11)S2—La1Bxxiii3.249 (9)
La1C—S5vii3.536 (11)S2—La1Cxxiii3.467 (13)
La1C—La3ii3.892 (9)S2—S1xxi3.487 (8)
La1D—S1i2.42 (4)S2—S1xxiv3.487 (8)
La1D—S1x2.42 (4)S3—Fe1v2.456 (4)
La1D—S4xi2.92 (4)S3—La2vi2.875 (3)
La1D—S4iii2.92 (4)S3—La3viii2.8995 (13)
La1D—Fe23.29 (5)S3—La3xix2.8995 (13)
La1D—S1ii3.39 (5)S3—La2xxv2.983 (4)
La1D—La3ii3.93 (5)S3—S4x3.488 (5)
La1E—S1ii2.645 (13)S3—S4xxvi3.488 (5)
La1E—S1i2.897 (11)S3—S2xix3.636 (5)
La1E—S1x2.897 (11)S3—S2viii3.636 (5)
La1E—S4iii3.334 (11)S3—S3xix3.678 (6)
La1E—S4xi3.334 (11)S3—S3viii3.678 (6)
La1E—S1xii3.722 (12)S3—S5xxvii3.786 (4)
La1F—S1xii3.144 (8)S4—La1Cxvi2.876 (8)
La1F—S1i3.144 (8)S4—La1Cxxviii2.876 (8)
La1F—S1ii3.144 (8)S4—La3x2.9132 (6)
La1F—S1xiii3.144 (8)S4—La3xii2.9132 (6)
La1F—S1xiv3.144 (8)S4—La1Dxxviii2.92 (4)
La1F—S1x3.144 (8)S4—La1Dxvi2.92 (4)
La1F—Fe2xv3.664 (4)S4—La1Bxvi3.022 (6)
La1F—Fe23.664 (4)S4—La1Bxxviii3.022 (6)
La1F—S4xi4.246 (5)S4—La1Exvi3.334 (11)
La1F—S4xvi4.246 (5)S4—La1Exxviii3.334 (11)
La1F—S4iii4.246 (5)S4—La2xxviii3.437 (4)
La1F—S44.246 (5)S4—La2xix3.437 (4)
La2—S2xvii2.9006 (10)S5—La2xxi2.9737 (5)
La2—S5v2.9737 (5)S5—La2v2.9737 (5)
La2—S4xi3.437 (4)S5—La3xxi2.9768 (18)
La2—Fe1i3.625 (3)S5—La3v2.9769 (18)
La2—Fe2i3.715 (2)S5—La1Av3.037 (5)
La2—La2xviii4.0559 (15)S5—La1Axxv3.037 (5)
La3—S3xix2.8995 (13)S5—La1Bv3.352 (6)
La3—S4xx2.9132 (6)S5—La1Bxxv3.352 (6)
La3—S5v2.9769 (19)S5—S1v3.435 (5)
La3—Fe1v3.732 (3)S5—S1xxi3.435 (5)
La3—La1Cxxi3.892 (9)S5—La1Cv3.536 (11)
La3—La1Dxxi3.93 (5)S5—La1Cxxv3.536 (11)
S2ii—La1A—S2iv131.7 (3)S2v—Fe1—S2iv84.4 (2)
S2ii—La1A—S1i138.31 (18)S3iv—Fe1—S2xxii88.95 (9)
S2iv—La1A—S1i74.1 (2)S3xxii—Fe1—S2xxii171.1 (3)
S2ii—La1A—S1x138.31 (18)S3v—Fe1—S2xxii88.95 (9)
S2iv—La1A—S1x74.1 (2)S2v—Fe1—S2xxii84.4 (2)
S1i—La1A—S1x72.9 (2)S2iv—Fe1—S2xxii84.4 (2)
S2ii—La1A—S5v82.46 (13)S3iv—Fe1—Fe2120.17 (15)
S2iv—La1A—S5v80.38 (16)S3xxii—Fe1—Fe2120.17 (15)
S1i—La1A—S5v138.85 (19)S3v—Fe1—Fe2120.17 (15)
S1x—La1A—S5v69.30 (13)S2v—Fe1—Fe250.88 (14)
S2ii—La1A—S5vii82.46 (13)S2iv—Fe1—Fe250.89 (14)
S2iv—La1A—S5vii80.37 (16)S2xxii—Fe1—Fe250.89 (14)
S1i—La1A—S5vii69.30 (13)S3iv—Fe1—La2i127.026 (18)
S1x—La1A—S5vii138.85 (19)S3xxii—Fe1—La2i127.026 (18)
S5v—La1A—S5vii137.1 (3)S3v—Fe1—La2i54.76 (9)
S1i—La1B—S1x80.1 (2)S2v—Fe1—La2i116.3 (2)
S1i—La1B—S2ii139.26 (17)S2iv—Fe1—La2i52.03 (5)
S1x—La1B—S2ii139.26 (17)S2xxii—Fe1—La2i52.03 (5)
S1i—La1B—S4xi131.4 (4)Fe2—Fe1—La2i65.41 (9)
S1x—La1B—S4xi75.94 (19)S3iv—Fe1—La2x127.028 (18)
S2ii—La1B—S4xi79.82 (12)S3xxii—Fe1—La2x54.76 (9)
S1i—La1B—S4iii75.94 (19)S3v—Fe1—La2x127.028 (18)
S1x—La1B—S4iii131.4 (4)S2v—Fe1—La2x52.03 (5)
S2ii—La1B—S4iii79.82 (12)S2iv—Fe1—La2x52.03 (5)
S4xi—La1B—S4iii89.3 (2)S2xxii—Fe1—La2x116.3 (2)
S1i—La1B—S2iv70.24 (19)Fe2—Fe1—La2x65.41 (9)
S1x—La1B—S2iv70.24 (19)La2i—Fe1—La2x103.90 (10)
S2ii—La1B—S2iv108.0 (3)S3iv—Fe1—La2xiii54.76 (9)
S4xi—La1B—S2iv135.25 (8)S3xxii—Fe1—La2xiii127.027 (18)
S4iii—La1B—S2iv135.25 (8)S3v—Fe1—La2xiii127.028 (18)
S1i—La1B—S5v134.57 (19)S2v—Fe1—La2xiii52.03 (5)
S1x—La1B—S5v67.44 (15)S2iv—Fe1—La2xiii116.3 (2)
S2ii—La1B—S5v73.96 (17)S2xxii—Fe1—La2xiii52.03 (5)
S4xi—La1B—S5v71.11 (7)Fe2—Fe1—La2xiii65.41 (9)
S4iii—La1B—S5v149.47 (9)La2i—Fe1—La2xiii103.90 (10)
S2iv—La1B—S5v69.35 (16)La2x—Fe1—La2xiii103.90 (10)
S1i—La1B—S5vii67.44 (15)S3iv—Fe1—La3v50.93 (6)
S1x—La1B—S5vii134.57 (19)S3xxii—Fe1—La3v50.93 (6)
S2ii—La1B—S5vii73.96 (17)S3v—Fe1—La3v118.6 (2)
S4xi—La1B—S5vii149.47 (9)S2v—Fe1—La3v70.36 (10)
S4iii—La1B—S5vii71.11 (7)S2iv—Fe1—La3v131.22 (3)
S2iv—La1B—S5vii69.35 (16)S2xxii—Fe1—La3v131.22 (3)
S5v—La1B—S5vii115.0 (3)Fe2—Fe1—La3v121.24 (8)
S1i—La1B—Fe243.58 (11)La2i—Fe1—La3v173.35 (16)
S1x—La1B—Fe243.58 (11)La2x—Fe1—La3v80.044 (15)
S2ii—La1B—Fe2153.0 (4)La2xiii—Fe1—La3v80.043 (15)
S4xi—La1B—Fe2118.09 (19)S3iv—Fe1—La3xxii50.93 (6)
S4iii—La1B—Fe2118.09 (19)S3xxii—Fe1—La3xxii118.6 (2)
S2iv—La1B—Fe244.93 (11)S3v—Fe1—La3xxii50.93 (6)
S5v—La1B—Fe292.09 (10)S2v—Fe1—La3xxii131.22 (3)
S5vii—La1B—Fe292.09 (10)S2iv—Fe1—La3xxii131.21 (3)
S1i—La1C—S1x83.0 (3)S2xxii—Fe1—La3xxii70.36 (10)
S1i—La1C—S4iii79.7 (2)Fe2—Fe1—La3xxii121.24 (8)
S1x—La1C—S4iii143.1 (7)La2i—Fe1—La3xxii80.043 (15)
S1i—La1C—S4xi143.1 (7)La2x—Fe1—La3xxii173.35 (16)
S1x—La1C—S4xi79.7 (2)La2xiii—Fe1—La3xxii80.045 (15)
S4iii—La1C—S4xi95.2 (3)La3v—Fe1—La3xxii95.54 (11)
S1i—La1C—S2ii134.0 (4)S1i—Fe2—S1x94.5 (3)
S1x—La1C—S2ii134.0 (4)S1i—Fe2—S1xiii94.5 (3)
S4iii—La1C—S2ii79.23 (16)S1x—Fe2—S1xiii94.5 (3)
S4xi—La1C—S2ii79.23 (16)S1i—Fe2—S2v176.7 (3)
S1i—La1C—S2iv67.6 (3)S1x—Fe2—S2v87.79 (16)
S1x—La1C—S2iv67.6 (3)S1xiii—Fe2—S2v87.79 (16)
S4iii—La1C—S2iv132.0 (2)S1i—Fe2—S2xxii87.79 (16)
S4xi—La1C—S2iv132.0 (2)S1x—Fe2—S2xxii176.7 (3)
S2ii—La1C—S2iv98.8 (5)S1xiii—Fe2—S2xxii87.79 (16)
S1i—La1C—Fe243.87 (13)S2v—Fe2—S2xxii89.85 (19)
S1x—La1C—Fe243.87 (13)S1i—Fe2—S2iv87.79 (16)
S4iii—La1C—Fe2122.9 (2)S1x—Fe2—S2iv87.79 (16)
S4xi—La1C—Fe2122.9 (2)S1xiii—Fe2—S2iv176.7 (3)
S2ii—La1C—Fe2142.5 (6)S2v—Fe2—S2iv89.85 (19)
S2iv—La1C—Fe243.73 (13)S2xxii—Fe2—S2iv89.84 (19)
S1i—La1C—S5v129.9 (4)S1i—Fe2—Fe1122.0 (2)
S1x—La1C—S5v65.3 (2)S1x—Fe2—Fe1122.0 (2)
S4iii—La1C—S5v146.9 (3)S1xiii—Fe2—Fe1122.0 (2)
S4xi—La1C—S5v69.97 (11)S2v—Fe2—Fe154.63 (13)
S2ii—La1C—S5v69.2 (3)S2xxii—Fe2—Fe154.63 (13)
S2iv—La1C—S5v64.9 (2)S2iv—Fe2—Fe154.63 (13)
Fe2—La1C—S5v89.24 (19)S1i—Fe2—La1D47.28 (15)
S1i—La1C—S5vii65.3 (2)S1x—Fe2—La1D47.28 (15)
S1x—La1C—S5vii129.9 (4)S1xiii—Fe2—La1D94.4 (10)
S4iii—La1C—S5vii69.97 (11)S2v—Fe2—La1D135.06 (9)
S4xi—La1C—S5vii146.9 (3)S2xxii—Fe2—La1D135.06 (9)
S2ii—La1C—S5vii69.2 (3)S2iv—Fe2—La1D89.0 (10)
S2iv—La1C—S5vii64.9 (2)Fe1—Fe2—La1D143.6 (10)
Fe2—La1C—S5vii89.24 (19)S1i—Fe2—La1Dxvi94.4 (10)
S5v—La1C—S5vii106.2 (5)S1x—Fe2—La1Dxvi47.28 (15)
S1i—La1C—La3ii122.9 (4)S1xiii—Fe2—La1Dxvi47.28 (15)
S1x—La1C—La3ii122.9 (4)S2v—Fe2—La1Dxvi89.0 (10)
S4iii—La1C—La3ii48.16 (14)S2xxii—Fe2—La1Dxvi135.06 (9)
S4xi—La1C—La3ii48.16 (14)S2iv—Fe2—La1Dxvi135.06 (9)
S2ii—La1C—La3ii65.35 (13)Fe1—Fe2—La1Dxvi143.6 (10)
S2iv—La1C—La3ii164.1 (5)S1i—Fe2—La1Diii47.28 (16)
Fe2—La1C—La3ii152.2 (5)S1x—Fe2—La1Diii94.4 (10)
S5v—La1C—La3ii106.99 (9)S1xiii—Fe2—La1Diii47.28 (15)
S5vii—La1C—La3ii106.99 (9)S2v—Fe2—La1Diii135.06 (9)
S1i—La1D—S1x94.9 (18)S2xxii—Fe2—La1Diii89.0 (10)
S1i—La1D—S4xi163 (2)S2iv—Fe2—La1Diii135.06 (9)
S1x—La1D—S4xi83.3 (4)Fe1—Fe2—La1Diii143.6 (10)
S1i—La1D—S4iii83.3 (4)S1i—Fe2—La1C50.15 (11)
S1x—La1D—S4iii163 (2)S1x—Fe2—La1C50.15 (11)
S4xi—La1D—S4iii93.3 (16)S1xiii—Fe2—La1C115.9 (4)
S1i—La1D—Fe247.5 (9)S2v—Fe2—La1C130.76 (11)
S1x—La1D—Fe247.5 (9)S2xxii—Fe2—La1C130.76 (11)
S4xi—La1D—Fe2129.2 (9)S2iv—Fe2—La1C67.5 (3)
S4iii—La1D—Fe2129.2 (9)Fe1—Fe2—La1C122.1 (3)
S1i—La1D—S1ii124.9 (13)S1i—Fe2—La1Ciii50.15 (11)
S1x—La1D—S1ii124.9 (13)S1x—Fe2—La1Ciii115.9 (4)
S4xi—La1D—S1ii68.4 (10)S1xiii—Fe2—La1Ciii50.15 (11)
S4iii—La1D—S1ii68.4 (10)S2v—Fe2—La1Ciii130.76 (11)
Fe2—La1D—S1ii145.4 (18)S2xxii—Fe2—La1Ciii67.5 (3)
S1i—La1D—La3ii130.8 (11)S2iv—Fe2—La1Ciii130.76 (11)
S1x—La1D—La3ii130.8 (11)Fe1—Fe2—La1Ciii122.1 (3)
S4xi—La1D—La3ii47.6 (8)La1Dix—S1—Fe2i85.2 (9)
S4iii—La1D—La3ii47.6 (8)La1Di—S1—Fe2i85.2 (9)
Fe2—La1D—La3ii167.5 (17)Fe2i—S1—La1Exxi100.9 (3)
S1ii—La1D—La3ii47.1 (7)Fe2i—S1—La1Ci85.98 (15)
S1ii—La1E—S1i138.1 (3)Fe2i—S1—La1Cix85.98 (15)
S1ii—La1E—S1x138.1 (3)Fe2i—S1—La1Bi84.55 (12)
S1i—La1E—S1x76.1 (3)Fe2i—S1—La1Bix84.55 (12)
S1ii—La1E—S4iii72.3 (2)Fe2i—S1—La1Ei88.6 (2)
S1i—La1E—S4iii69.53 (17)Fe2i—S1—La1Eix88.6 (2)
S1x—La1E—S4iii115.8 (4)La1Dix—S1—La3106.1 (10)
S1ii—La1E—S4xi72.3 (2)La1Di—S1—La3106.1 (10)
S1i—La1E—S4xi115.8 (4)Fe2i—S1—La3163.8 (4)
S1x—La1E—S4xi69.53 (18)La1Exxi—S1—La395.3 (3)
S4iii—La1E—S4xi79.1 (3)La1Ci—S1—La398.56 (13)
S1ii—La1E—S1xii65.7 (3)La1Cix—S1—La398.56 (13)
S1i—La1E—S1xii143.3 (4)La1Bi—S1—La398.19 (10)
S1x—La1E—S1xii102.2 (2)La1Bix—S1—La398.19 (10)
S4iii—La1E—S1xii136.9 (3)La1Ei—S1—La3106.6 (3)
S4xi—La1E—S1xii96.82 (14)La1Eix—S1—La3106.6 (3)
S1xii—La1F—S1i180.0 (2)Fe2i—S1—La1Aix80.83 (13)
S1xii—La1F—S1ii69.20 (16)La3—S1—La1Aix98.24 (11)
S1i—La1F—S1ii110.80 (16)Fe2v—S2—La1Axxi131.0 (3)
S1xii—La1F—S1xiii110.80 (16)Fe2v—S2—Fe1v74.49 (16)
S1i—La1F—S1xiii69.20 (16)La1Axxi—S2—Fe1v154.5 (3)
S1ii—La1F—S1xiii180.0Fe2v—S2—La1Axxiii82.7 (2)
S1xii—La1F—S1xiv69.20 (16)Fe1v—S2—La1Axxiii157.2 (3)
S1i—La1F—S1xiv110.80 (16)Fe2v—S2—La1Bxxi144.9 (3)
S1ii—La1F—S1xiv69.20 (16)Fe1v—S2—La1Bxxi140.6 (3)
S1xiii—La1F—S1xiv110.80 (16)Fe2v—S2—La2xxiv84.88 (9)
S1xii—La1F—S1x110.80 (16)La1Axxi—S2—La2xxiv100.01 (8)
S1i—La1F—S1x69.20 (16)Fe1v—S2—La2xxiv80.15 (9)
S1ii—La1F—S1x110.80 (16)La1Axxiii—S2—La2xxiv98.06 (10)
S1xiii—La1F—S1x69.20 (16)La1Bxxi—S2—La2xxiv99.26 (8)
S1xiv—La1F—S1x180.0Fe2v—S2—La2xxi84.88 (9)
S1xii—La1F—Fe2xv40.97 (10)La1Axxi—S2—La2xxi100.01 (8)
S1i—La1F—Fe2xv139.03 (10)Fe1v—S2—La2xxi80.15 (9)
S1ii—La1F—Fe2xv40.97 (10)La1Axxiii—S2—La2xxi98.06 (10)
S1xiii—La1F—Fe2xv139.03 (10)La1Bxxi—S2—La2xxi99.26 (8)
S1xiv—La1F—Fe2xv40.97 (10)La2xxiv—S2—La2xxi159.62 (17)
S1x—La1F—Fe2xv139.03 (10)Fe2v—S2—La1Cxxi150.1 (3)
S1xii—La1F—Fe2139.03 (10)Fe1v—S2—La1Cxxi135.4 (3)
S1i—La1F—Fe240.97 (10)La2xxiv—S2—La1Cxxi98.83 (8)
S1ii—La1F—Fe2139.03 (10)La2xxi—S2—La1Cxxi98.83 (8)
S1xiii—La1F—Fe240.97 (10)Fe2v—S2—La1Bxxiii72.9 (2)
S1xiv—La1F—Fe2139.03 (10)Fe1v—S2—La1Bxxiii147.4 (2)
S1x—La1F—Fe240.97 (10)La2xxiv—S2—La1Bxxiii96.88 (10)
Fe2xv—La1F—Fe2180.0La2xxi—S2—La1Bxxiii96.88 (10)
S1xii—La1F—S4xi90.0Fe2v—S2—La1Cxxiii68.8 (3)
S1i—La1F—S4xi90.000 (1)Fe1v—S2—La1Cxxiii143.3 (3)
S1ii—La1F—S4xi55.40 (8)La2xxiv—S2—La1Cxxiii96.33 (11)
S1xiii—La1F—S4xi124.60 (8)La2xxi—S2—La1Cxxiii96.33 (11)
S1xiv—La1F—S4xi124.60 (8)La1Axxi—S2—S1xxi96.5 (2)
S1x—La1F—S4xi55.40 (8)Fe1v—S2—S1xxi105.29 (15)
Fe2xv—La1F—S4xi90.000 (1)La1Axxiii—S2—S1xxi55.95 (17)
Fe2—La1F—S4xi90.000 (1)La1Bxxi—S2—S1xxi108.3 (2)
S1xii—La1F—S4xvi90.0La2xxiv—S2—S1xxi120.81 (18)
S1i—La1F—S4xvi90.000 (1)La2xxi—S2—S1xxi60.29 (12)
S1ii—La1F—S4xvi124.60 (8)La1Cxxi—S2—S1xxi112.7 (3)
S1xiii—La1F—S4xvi55.40 (8)La1Bxxiii—S2—S1xxi48.49 (15)
S1xiv—La1F—S4xvi55.40 (8)La1Cxxiii—S2—S1xxi45.58 (18)
S1x—La1F—S4xvi124.60 (8)La1Axxi—S2—S1xxiv96.5 (2)
Fe2xv—La1F—S4xvi90.000 (1)Fe1v—S2—S1xxiv105.29 (15)
Fe2—La1F—S4xvi90.000 (1)La1Axxiii—S2—S1xxiv55.95 (17)
S4xi—La1F—S4xvi180.00 (13)La1Bxxi—S2—S1xxiv108.3 (2)
S1xii—La1F—S4iii124.60 (8)La2xxiv—S2—S1xxiv60.29 (12)
S1i—La1F—S4iii55.40 (8)La2xxi—S2—S1xxiv120.81 (18)
S1ii—La1F—S4iii55.40 (8)La1Cxxi—S2—S1xxiv112.7 (3)
S1xiii—La1F—S4iii124.60 (8)La1Bxxiii—S2—S1xxiv48.49 (15)
S1xiv—La1F—S4iii90.0La1Cxxiii—S2—S1xxiv45.58 (18)
S1x—La1F—S4iii90.001 (1)S1xxi—S2—S1xxiv61.6 (2)
Fe2xv—La1F—S4iii90.0Fe1v—S3—La2vi170.6 (2)
Fe2—La1F—S4iii90.0Fe1v—S3—La3viii87.94 (8)
S4xi—La1F—S4iii60.0La2vi—S3—La3viii94.85 (7)
S4xvi—La1F—S4iii120.0Fe1v—S3—La3xix87.94 (8)
S1xii—La1F—S455.40 (8)La2vi—S3—La3xix94.85 (7)
S1i—La1F—S4124.60 (8)La3viii—S3—La3xix144.75 (14)
S1ii—La1F—S490.001 (1)Fe1v—S3—La2xxv82.98 (16)
S1xiii—La1F—S490.0La2vi—S3—La2xxv87.62 (10)
S1xiv—La1F—S4124.60 (8)La3viii—S3—La2xxv107.10 (7)
S1x—La1F—S455.40 (8)La3xix—S3—La2xxv107.10 (7)
Fe2xv—La1F—S490.0Fe1v—S3—S4x110.75 (10)
Fe2—La1F—S490.0La2vi—S3—S4x64.55 (6)
S4xi—La1F—S460.0La3viii—S3—S4x156.73 (12)
S4xvi—La1F—S4120.0La3xix—S3—S4x53.30 (6)
S4iii—La1F—S4120.000 (1)La2xxv—S3—S4x63.59 (7)
S3vi—La2—S2ii138.37 (9)Fe1v—S3—S4xxvi110.75 (10)
S3vi—La2—S2xvii138.37 (9)La2vi—S3—S4xxvi64.55 (6)
S2ii—La2—S2xvii78.35 (16)La3viii—S3—S4xxvi53.30 (6)
S3vi—La2—S5v80.67 (8)La3xix—S3—S4xxvi156.73 (12)
S2ii—La2—S5v79.49 (11)La2xxv—S3—S4xxvi63.59 (7)
S2xvii—La2—S5v135.12 (11)S4x—S3—S4xxvi105.40 (14)
S3vi—La2—S5ii80.67 (8)Fe1v—S3—S2xix48.57 (12)
S2ii—La2—S5ii135.12 (11)La2vi—S3—S2xix124.21 (11)
S2xvii—La2—S5ii79.49 (11)La3viii—S3—S2xix128.57 (12)
S5v—La2—S5ii89.69 (10)La3xix—S3—S2xix70.30 (8)
S3vi—La2—S3vii92.38 (10)La2xxv—S3—S2xix50.81 (7)
S2ii—La2—S3vii76.33 (11)S4x—S3—S2xix63.94 (7)
S2xvii—La2—S3vii76.33 (11)S4xxvi—S3—S2xix111.24 (11)
S5v—La2—S3vii134.14 (4)Fe1v—S3—S2viii48.57 (12)
S5ii—La2—S3vii134.14 (4)La2vi—S3—S2viii124.21 (11)
S3vi—La2—S1133.12 (11)La3viii—S3—S2viii70.30 (8)
S2ii—La2—S168.84 (12)La3xix—S3—S2viii128.57 (12)
S2xvii—La2—S168.84 (12)La2xxv—S3—S2viii50.81 (7)
S5v—La2—S166.86 (6)S4x—S3—S2viii111.24 (11)
S5ii—La2—S166.86 (6)S4xxvi—S3—S2viii63.94 (7)
S3vii—La2—S1134.50 (11)S2xix—S3—S2viii60.51 (14)
S3vi—La2—S4viii66.41 (5)La2vi—S3—S3xix144.07 (4)
S2ii—La2—S4viii136.05 (9)La3viii—S3—S3xix50.64 (7)
S2xvii—La2—S4viii72.54 (10)La3xix—S3—S3xix108.59 (7)
S5v—La2—S4viii143.49 (7)La2xxv—S3—S3xix109.91 (6)
S5ii—La2—S4viii70.43 (5)S4x—S3—S3xix151.28 (6)
S3vii—La2—S4viii65.38 (5)S4xxvi—S3—S3xix94.67 (7)
S1—La2—S4viii126.16 (6)S2xix—S3—S3xix89.89 (7)
S3vi—La2—S4xi66.41 (5)S2viii—S3—S3xix59.62 (7)
S2ii—La2—S4xi72.54 (10)La2vi—S3—S3viii144.07 (4)
S2xvii—La2—S4xi136.05 (9)La3viii—S3—S3viii108.59 (7)
S5v—La2—S4xi70.43 (5)La3xix—S3—S3viii50.64 (7)
S5ii—La2—S4xi143.49 (7)La2xxv—S3—S3viii109.91 (6)
S3vii—La2—S4xi65.38 (5)S4x—S3—S3viii94.67 (7)
S1—La2—S4xi126.16 (6)S4xxvi—S3—S3viii151.28 (6)
S4viii—La2—S4xi107.68 (11)S2xix—S3—S3viii59.62 (7)
S3vi—La2—Fe1i134.64 (11)S2viii—S3—S3viii89.89 (7)
S2ii—La2—Fe1i47.82 (10)S3xix—S3—S3viii60.0
S2xvii—La2—Fe1i47.82 (10)Fe1v—S3—S5xxvii135.39 (11)
S5v—La2—Fe1i127.24 (8)La2vi—S3—S5xxvii50.81 (6)
S5ii—La2—Fe1i127.24 (8)La3viii—S3—S5xxvii50.79 (4)
S3vii—La2—Fe1i42.26 (11)La3xix—S3—S5xxvii115.06 (10)
S1—La2—Fe1i92.24 (12)La2xxv—S3—S5xxvii121.03 (10)
S4viii—La2—Fe1i88.43 (5)S4x—S3—S5xxvii113.62 (9)
S4xi—La2—Fe1i88.43 (5)S4xxvi—S3—S5xxvii61.28 (5)
S3vi—La2—Fe2i173.30 (10)S2xix—S3—S5xxvii171.84 (12)
S2ii—La2—Fe2i44.07 (9)S2viii—S3—S5xxvii115.57 (7)
S2xvii—La2—Fe2i44.07 (9)S3xix—S3—S5xxvii93.91 (5)
S5v—La2—Fe2i94.62 (7)S3viii—S3—S5xxvii128.47 (7)
S5ii—La2—Fe2i94.62 (7)La1Cxvi—S4—La3x95.78 (13)
S3vii—La2—Fe2i94.32 (9)La1Cxxviii—S4—La3x84.49 (12)
S1—La2—Fe2i40.18 (10)La1Cxvi—S4—La3xii84.49 (12)
S4viii—La2—Fe2i116.62 (5)La1Cxxviii—S4—La3xii95.78 (13)
S4xi—La2—Fe2i116.61 (5)La3x—S4—La3xii179.5 (2)
Fe1i—La2—Fe2i52.06 (11)La3x—S4—La1Dxxviii84.7 (8)
S3vi—La2—La2xviii47.30 (7)La3xii—S4—La1Dxxviii95.7 (8)
S2ii—La2—La2xviii110.85 (10)La3x—S4—La1Dxvi95.7 (8)
S2xvii—La2—La2xviii110.85 (10)La3xii—S4—La1Dxvi84.7 (8)
S5v—La2—La2xviii113.41 (3)La3x—S4—La1Bxvi94.03 (9)
S5ii—La2—La2xviii113.41 (3)La3xii—S4—La1Bxvi86.21 (8)
S3vii—La2—La2xviii45.08 (7)La3x—S4—La1Bxxviii86.21 (8)
S1—La2—La2xviii179.58 (9)La3xii—S4—La1Bxxviii94.02 (9)
S4viii—La2—La2xviii53.84 (6)La3x—S4—La1Exvi97.42 (19)
S4xi—La2—La2xviii53.84 (6)La3xii—S4—La1Exvi83.03 (17)
Fe1i—La2—La2xviii87.34 (9)La3x—S4—La1Exxviii83.04 (17)
Fe2i—La2—La2xviii139.40 (7)La3xii—S4—La1Exxviii97.42 (19)
S3viii—La3—S3xix78.73 (13)La1Cxvi—S4—La2xxviii158.1 (2)
S3viii—La3—S4ix73.76 (13)La1Cxxviii—S4—La2xxviii90.8 (3)
S3xix—La3—S4ix130.15 (8)La3x—S4—La2xxviii96.00 (10)
S3viii—La3—S4xx130.15 (8)La3xii—S4—La2xxviii83.63 (8)
S3xix—La3—S4xx73.76 (13)La1Dxxviii—S4—La2xxviii116.3 (10)
S4ix—La3—S4xx93.57 (16)La1Dxvi—S4—La2xxviii166.3 (9)
S3viii—La3—S1140.58 (7)La1Bxvi—S4—La2xxviii154.22 (18)
S3xix—La3—S1140.58 (7)La1Bxxviii—S4—La2xxviii85.31 (17)
S4ix—La3—S174.78 (14)La1Exvi—S4—La2xxviii147.97 (18)
S4xx—La3—S174.78 (14)La1Exxviii—S4—La2xxviii138.06 (17)
S3viii—La3—S5ii136.35 (10)La1Cxvi—S4—La2xix90.8 (3)
S3xix—La3—S5ii80.21 (7)La1Cxxviii—S4—La2xix158.1 (3)
S4ix—La3—S5ii145.37 (11)La3x—S4—La2xix83.63 (8)
S4xx—La3—S5ii78.23 (5)La3xii—S4—La2xix96.00 (10)
S1—La3—S5ii70.60 (12)La1Dxxviii—S4—La2xix166.3 (9)
S3viii—La3—S5v80.21 (7)La1Dxvi—S4—La2xix116.3 (10)
S3xix—La3—S5v136.35 (10)La1Bxvi—S4—La2xix85.31 (17)
S4ix—La3—S5v78.23 (5)La1Bxxviii—S4—La2xix154.22 (19)
S4xx—La3—S5v145.37 (11)La1Exvi—S4—La2xix138.06 (17)
S1—La3—S5v70.60 (12)La1Exxviii—S4—La2xix147.97 (18)
S5ii—La3—S5v89.57 (4)La2xxviii—S4—La2xix72.32 (11)
S3viii—La3—Fe1v41.12 (7)La2xxi—S5—La2v178.94 (14)
S3xix—La3—Fe1v41.12 (7)La2xxi—S5—La3xxi88.28 (4)
S4ix—La3—Fe1v94.90 (10)La2v—S5—La3xxi91.21 (4)
S4xx—La3—Fe1v94.90 (10)La2xxi—S5—La3v91.21 (4)
S1—La3—Fe1v164.61 (18)La2v—S5—La3v88.28 (4)
S5ii—La3—Fe1v119.13 (6)La3xxi—S5—La3v122.55 (13)
S5v—La3—Fe1v119.13 (6)La2xxi—S5—La1Av90.97 (12)
S3viii—La3—S263.94 (8)La2v—S5—La1Av90.01 (12)
S3xix—La3—S263.94 (8)La3xxi—S5—La1Av97.32 (16)
S4ix—La3—S266.75 (5)La3v—S5—La1Av140.12 (18)
S4xx—La3—S266.75 (5)La2xxi—S5—La1Axxv90.01 (12)
S1—La3—S2122.24 (17)La2v—S5—La1Axxv90.98 (12)
S5ii—La3—S2135.051 (15)La3xxi—S5—La1Axxv140.12 (18)
S5v—La3—S2135.051 (15)La3v—S5—La1Axxv97.32 (16)
Fe1v—La3—S242.37 (10)La2xxi—S5—La1Bv93.29 (7)
S3viii—La3—La1Cxxi99.13 (19)La2v—S5—La1Bv87.60 (7)
S3xix—La3—La1Cxxi99.13 (19)La3xxi—S5—La1Bv86.42 (15)
S4ix—La3—La1Cxxi47.35 (7)La3v—S5—La1Bv150.81 (18)
S4xx—La3—La1Cxxi47.35 (7)La2xxi—S5—La1Bxxv87.60 (7)
S1—La3—La1Cxxi75.8 (3)La2v—S5—La1Bxxv93.30 (7)
S5ii—La3—La1Cxxi121.76 (14)La3xxi—S5—La1Bxxv150.81 (18)
S5v—La3—La1Cxxi121.76 (14)La3v—S5—La1Bxxv86.42 (15)
Fe1v—La3—La1Cxxi88.8 (2)La2xxi—S5—S1v119.99 (13)
S2—La3—La1Cxxi46.5 (2)La2v—S5—S1v60.38 (12)
S3viii—La3—La1Dxxi113.3 (6)La3xxi—S5—S1v150.59 (12)
S3xix—La3—La1Dxxi113.3 (6)La3v—S5—S1v54.58 (8)
S4ix—La3—La1Dxxi47.69 (16)La1Av—S5—S1v90.60 (16)
S4xx—La3—La1Dxxi47.69 (16)La1Axxv—S5—S1v54.89 (14)
S1—La3—La1Dxxi56.9 (8)La1Bv—S5—S1v98.89 (16)
S5ii—La3—La1Dxxi110.1 (5)La1Bxxv—S5—S1v48.24 (13)
S5v—La3—La1Dxxi110.1 (5)La2xxi—S5—S1xxi60.38 (12)
Fe1v—La3—La1Dxxi107.7 (8)La2v—S5—S1xxi119.99 (13)
S2—La3—La1Dxxi65.3 (8)La3xxi—S5—S1xxi54.58 (8)
S3viii—La3—La1Bxxi96.05 (12)La3v—S5—S1xxi150.59 (12)
S3xix—La3—La1Bxxi96.05 (12)La1Av—S5—S1xxi54.89 (14)
S4ix—La3—La1Bxxi48.02 (6)La1Axxv—S5—S1xxi90.60 (16)
S4xx—La3—La1Bxxi48.02 (6)La1Bv—S5—S1xxi48.23 (13)
S1—La3—La1Bxxi79.8 (2)La1Bxxv—S5—S1xxi98.88 (16)
S5ii—La3—La1Bxxi123.94 (9)S1v—S5—S1xxi144.69 (16)
S5v—La3—La1Bxxi123.94 (9)La2xxi—S5—La1Cv93.54 (9)
Fe1v—La3—La1Bxxi84.82 (15)La2v—S5—La1Cv87.31 (9)
S2—La3—La1Bxxi42.46 (14)La3xxi—S5—La1Cv82.0 (2)
S3iv—Fe1—S3xxii96.96 (19)La3v—S5—La1Cv155.1 (2)
S3iv—Fe1—S3v96.96 (19)S1v—S5—La1Cv102.5 (2)
S3xxii—Fe1—S3v96.96 (19)S1xxi—S5—La1Cv45.43 (17)
S3iv—Fe1—S2v88.95 (9)La2xxi—S5—La1Cxxv87.31 (9)
S3xxii—Fe1—S2v88.95 (9)La2v—S5—La1Cxxv93.54 (9)
S3v—Fe1—S2v171.1 (3)La3xxi—S5—La1Cxxv155.1 (2)
S3iv—Fe1—S2iv171.1 (3)La3v—S5—La1Cxxv82.0 (2)
S3xxii—Fe1—S2iv88.95 (9)S1v—S5—La1Cxxv45.43 (17)
S3v—Fe1—S2iv88.95 (9)S1xxi—S5—La1Cxxv102.5 (2)
Symmetry codes: (i) x+1/3, y+2/3, z+2/3; (ii) y+2/3, xy+1/3, z+1/3; (iii) y, xy, z; (iv) y1/3, x+y+1/3, z+1/3; (v) x+2/3, y+1/3, z+1/3; (vi) x+4/3, y+2/3, z+2/3; (vii) x1/3, y+1/3, z+1/3; (viii) x+y+1, x+1, z; (ix) y+1/3, x+y+2/3, z+2/3; (x) xy+1/3, x1/3, z+2/3; (xi) xy, x, z+1; (xii) x1/3, y2/3, z+1/3; (xiii) y2/3, x+y1/3, z+2/3; (xiv) x+y1/3, x+1/3, z+1/3; (xv) x, y, z+1; (xvi) x+y, x, z; (xvii) x+y+2/3, x+4/3, z+1/3; (xviii) x+1, y+1, z+1; (xix) y+1, xy, z; (xx) x+1/3, y+2/3, z1/3; (xxi) x+y+1/3, x+2/3, z1/3; (xxii) xy1/3, x2/3, z+1/3; (xxiii) xy+2/3, x+1/3, z+1/3; (xxiv) y+4/3, xy+2/3, z1/3; (xxv) x+1/3, y1/3, z1/3; (xxvi) x+y+4/3, x+2/3, z1/3; (xxvii) x+2/3, y+1/3, z+1/3; (xxviii) y, x+y, z+1.

Experimental details

Crystal data
Chemical formulaLa52Fe12S90
Mr10778.92
Crystal system, space groupTrigonal, R3m
Temperature (K)293
a, c (Å)14.0426 (5), 21.776 (1)
V3)3718.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)16.96
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionNumerical
[X-RED (Stoe & Cie, 2001); crystal description optimized based on equivalent reflections using X-SHAPE (Stoe & Cie, 1999)]
Tmin, Tmax0.210, 0.363
No. of measured, independent and
observed [I > 2σ(I)] reflections
19622, 1018, 1000
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.104, 1.20
No. of reflections1018
No. of parameters65
No. of restraints1
w = 1/[σ2(Fo2) + (0.033P)2 + 405P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.27, 4.12

Computer programs: X-AREA (Stoe & Cie, 2004), X-AREA, X-RED (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), SHELXL97.

Selected bond lengths (Å) top
La1B—S1i2.774 (4)La2—S4viii3.437 (4)
La1B—S2ii2.858 (7)La3—S3viii2.8995 (13)
La1B—S4iii3.022 (6)La3—S4ix2.9132 (6)
La1B—S2iv3.249 (9)La3—S12.968 (5)
La1B—S5v3.352 (6)La3—S5ii2.9769 (19)
La2—S3vi2.875 (3)La3—S23.811 (5)
La2—S2ii2.9006 (10)Fe1—S3v2.456 (4)
La2—S5ii2.9737 (5)Fe1—S2v2.727 (6)
La2—S3vii2.983 (4)Fe2—S1i2.432 (6)
La2—S13.247 (8)Fe2—S2v2.595 (5)
Symmetry codes: (i) x+1/3, y+2/3, z+2/3; (ii) y+2/3, xy+1/3, z+1/3; (iii) y, xy, z; (iv) y1/3, x+y+1/3, z+1/3; (v) x+2/3, y+1/3, z+1/3; (vi) x+4/3, y+2/3, z+2/3; (vii) x1/3, y+1/3, z+1/3; (viii) x+y+1, x+1, z; (ix) y+1/3, x+y+2/3, z+2/3.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds