Download citation
Download citation
link to html
A new mixed barium zirconium oxalate, tri­aqua­tetra-μ-oxalato-dibarium(II)­zirconium(IV), Ba2Zr(C2O4)4·3H2O or [Ba2Zr(C2O4)4(H2O)3]n, has been synthesized. The complex is built from eightfold-coordinated Zr atoms and eleven- and sixfold-coordinated Ba atoms, linked by oxalate groups. The Zr atom, the two Ba atoms and one water O atom lie on crystallographic twofold axes, so that each coordination polyhedron has imposed C2 symmetry. Packing in the crystal is also assumed through hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104006791/iz1040sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104006791/iz1040Isup2.hkl
Contains datablock I

CCDC reference: 243568

Comment top

Oxalate complexes can be used as precursors in the formation of ternary oxides. For example, the barium titanate perovskite BaTiO3 can be synthesized by thermal decomposition of the mixed oxalate BaTiO(C2O4)2·4H2O (Wada et al., 2003). Due to the great interest in the dielectric and ferroelectric properties of BaTiO3, the crystallographic structure of barium titanyl oxalate is well documented (Rhine et al., 1992). In contrast, very little work has been done in the case of the barium zirconium oxalate, even though it might be a precursor for the formation of barium zirconate. BaZrO3 has potential interest as a refractory material, due to its ability to resist the corrosive fluxes encountered during the synthesis of copper-based superconducting phases (Erb et al., 1995). The manufacture of BaZrO3 crucibles requires a very good densification behaviour, influenced by the morphology and size distribution of the particles (Robertz et al., 2001). Therefore, the determination of the crystallographic structure of the title compound, (I), a potential precursor, is of some interest. \sch

The unindexed powder diffraction pattern published by Reddy & Mehrotra (1997) is attributed to a BaZrO(C2O4)2·4.5H2O phase. In the present study, the structural refinement of single-crystal data indicates a Ba2Zr(C2O4)4·3H2O composition. The Ba:Zr ratio is confirmed by energy-dispersive spectrometry. A similar composition was found by other authors, in the case of the lead zirconium oxalate Pb2Zr(C2O4)4.nH2O (Boudaren et al., 2000) and for Cd2Zr(C2O4)4·4H2O (Jeanneau et al., 2001).

The complex three-dimensional structure of (I) is built from Zr and Ba atoms linked by oxalate groups (Fig. 1). The coordination polyhedra have imposed C2 symmetry, the Zr and Ba atoms lying on crystallographic twofold axes. The Zr atom is eightfold coordinated by O atoms from bridging bidentate oxalate groups. There are two symmetrically non-equivalent Ba atoms per asymmetric unit. One Ba atom, Ba1, is surrounded by eight O atoms from four bidendate oxalate ligands (two symmetrically non-equivalent). Atom Ba1 is also linked to three water O atoms (from two symmetry-distinct water molecules), reaching a coordination number of 11. The second Ba atom is sixfold coordinated to four O atoms, which belong to two (symmetrically equivalent) bidendate and to two (symmetrically equivalent) monodendate oxalate anions, respectively.

Intermolecular contacts (Table 1) indicate probable hydrogen bonding between water and oxalate O atoms. Fig. 2 shows how the metal atoms alternate in the crystal packing of (I).

Experimental top

The Ba2Zr(C2O4)4·3H2O phase was synthesized by precipitation at the interface between an ethyl oxalate organic phase and an aqueous solution of barium chloride (BaCl2) and zirconyl chloride (ZrOCl2). Since diethyl oxalate is only very slightly soluble in water, it provides a slow release of oxalic acid at the interface between the organic and aqueous phases (Ryu et al., 1999). This procedure should give good control over the crystallization kinetics. The Ba:Zr ratio in the solution was varied between 1:1 and 2:1, with total cationic concentrations ranging between 0.125 M and 0.19 M. The mixtures were held for 2 d at different temperatures (279, 293 and 318 K). The white precipitates which formed were filtered and washed with water and acetone. All precipitates were characterized by powder X-ray diffraction (Siemens D-5000 diffractometer with Cu Kα radiation) and displayed similar diffraction patterns. Energy-dispersive analysis coupled to a scanning electron microscope (Philips XL-30 ESEM FEG) revealed a 2:1 Ba:Zr ratio in all samples, without a detectable secondary phase. From these results, it appears that the same phase is formed independently of the initial Ba:Zr ratio and of the crystallization temperature. In contrast, scanning electron microscopy shows that the morphology of the crystals depends on the crystallization temperature. At room temperature or below, elongated crystallites form `bundles' of crystals. At 318 K, larger tabular crystals were obtained, but intergrowth and twinning was frequently observed. The single-crystal of (I) used for the present structure determination was taken from the batch prepared at 318 K with a 1:1 Ba:Zr ratio.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1991); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The oxygen coordination spheres around the Zr and Ba atoms in (I). Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) 1/2 − x, 1/2 − y, 1/2 − z; (iii) 1/2 + x, 1/2 + y, 3/2 + z; (iv) 1/2 + x, 1/2 + y, 5/2 + z; (v) x − 1/2, −y, 1 + z; (vi) x − 1/2, 1/2 + y, 5/2 + z; (vii) ? Please provide details for missing symmetry code.
[Figure 2] Fig. 2. The crystal packing in (I), viewed along [100]. The c axis is horizontal from left to right. Dashed lines indicate O(water)···O(oxalate) interactions.
Triaquatetraoxalatodibarium(II)zirconium(IV) top
Crystal data top
[Ba2Zr(C2O4)4(H2O)3]F(000) = 1432
Mr = 772.03Dx = 2.309 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 35 reflections
a = 9.2010 (12) Åθ = 4.9–12.2°
b = 29.032 (5) ŵ = 4.05 mm1
c = 9.2079 (17) ÅT = 293 K
β = 115.45 (3)°Prismatic, colourless
V = 2221.0 (7) Å30.03 × 0.02 × 0.02 mm
Z = 4
Data collection top
Bruker P4
diffractometer
1510 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
2θ/ω scansh = 109
Absorption correction: ψ scan
(North et al., 1968)
k = 3434
Tmin = 0.907, Tmax = 0.922l = 910
6582 measured reflections3 standard reflections every 97 reflections
1964 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: undef
wR(F2) = 0.124H-atom parameters not refined
S = 1.05 w = 1/[σ2(Fo2) + (0.038P)2 + 45.4129P]
where P = (Fo2 + 2Fc2)/3
1964 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 2.05 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Ba2Zr(C2O4)4(H2O)3]V = 2221.0 (7) Å3
Mr = 772.03Z = 4
Monoclinic, I2/aMo Kα radiation
a = 9.2010 (12) ŵ = 4.05 mm1
b = 29.032 (5) ÅT = 293 K
c = 9.2079 (17) Å0.03 × 0.02 × 0.02 mm
β = 115.45 (3)°
Data collection top
Bruker P4
diffractometer
1510 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.060
Tmin = 0.907, Tmax = 0.9223 standard reflections every 97 reflections
6582 measured reflections intensity decay: none
1964 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H-atom parameters not refined
S = 1.05 w = 1/[σ2(Fo2) + (0.038P)2 + 45.4129P]
where P = (Fo2 + 2Fc2)/3
1964 reflectionsΔρmax = 2.05 e Å3
139 parametersΔρmin = 0.80 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.25000.47133 (3)0.50000.0227 (3)
Ba20.25000.22910 (3)1.00000.0319 (3)
Zr10.25000.38452 (4)1.00000.0190 (3)
O10.1750 (8)0.4651 (3)0.7752 (9)0.0380 (18)
O20.0175 (9)0.4593 (3)0.5776 (8)0.0344 (17)
O30.1784 (8)0.4234 (2)0.7784 (8)0.0269 (15)
O40.0308 (8)0.4247 (3)0.9569 (8)0.0315 (16)
O50.1468 (8)0.3497 (2)1.1474 (8)0.0281 (15)
O60.0697 (9)0.3355 (3)0.8494 (8)0.0354 (18)
O70.1188 (10)0.2843 (3)0.8289 (9)0.0402 (19)
O80.0490 (14)0.3039 (4)1.1453 (11)0.074 (3)
O9W0.0259 (10)0.4438 (4)0.2333 (10)0.067 (3)
O10W0.25000.3756 (5)0.50000.079 (5)
C10.0473 (12)0.4455 (3)0.8221 (12)0.025 (2)
C20.0432 (12)0.4432 (3)0.7134 (12)0.024 (2)
C30.0273 (13)0.3227 (4)1.0819 (13)0.036 (3)
C40.0133 (13)0.3124 (4)0.9048 (13)0.033 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0215 (4)0.0230 (5)0.0274 (5)0.0000.0141 (3)0.000
Ba20.0445 (6)0.0239 (5)0.0304 (5)0.0000.0190 (4)0.000
Zr10.0225 (7)0.0173 (7)0.0212 (6)0.0000.0131 (5)0.000
O10.030 (4)0.048 (5)0.048 (4)0.012 (4)0.027 (3)0.011 (4)
O20.037 (4)0.044 (5)0.034 (4)0.016 (4)0.026 (3)0.008 (3)
O30.030 (4)0.030 (4)0.033 (4)0.010 (3)0.025 (3)0.013 (3)
O40.026 (4)0.042 (5)0.028 (4)0.007 (3)0.013 (3)0.004 (3)
O50.039 (4)0.019 (4)0.027 (4)0.008 (3)0.016 (3)0.000 (3)
O60.039 (4)0.040 (5)0.033 (4)0.019 (3)0.021 (4)0.011 (3)
O70.051 (5)0.043 (5)0.031 (4)0.013 (4)0.023 (4)0.005 (3)
O80.100 (8)0.085 (8)0.054 (5)0.068 (7)0.048 (6)0.033 (5)
O9W0.038 (5)0.116 (9)0.045 (5)0.008 (5)0.017 (4)0.042 (5)
O10W0.122 (13)0.034 (8)0.075 (9)0.0000.036 (9)0.000
C10.033 (6)0.019 (5)0.036 (6)0.001 (4)0.026 (5)0.005 (4)
C20.028 (5)0.015 (5)0.037 (6)0.000 (4)0.021 (5)0.002 (4)
C30.039 (6)0.037 (6)0.032 (6)0.015 (6)0.014 (5)0.000 (5)
C40.037 (6)0.026 (6)0.034 (6)0.008 (5)0.013 (5)0.004 (5)
Geometric parameters (Å, º) top
Ba1—O10W2.778 (14)Zr1—O52.209 (6)
Ba1—O9W2.785 (8)Zr1—O4viii2.213 (7)
Ba1—O9Wi2.785 (8)Zr1—O42.213 (7)
Ba1—O2ii2.799 (7)O1—C11.205 (12)
Ba1—O2iii2.799 (7)O1—O9Wix2.789 (11)
Ba1—O2i2.864 (7)O1—Ba1iii2.968 (7)
Ba1—O22.864 (7)O2—C21.222 (12)
Ba1—O1ii2.968 (7)O2—Ba1iii2.799 (7)
Ba1—O1iii2.968 (7)O3—C21.263 (11)
Ba1—O3i3.224 (6)O4—C11.287 (12)
Ba1—O33.224 (6)O4—O9Wx2.863 (11)
Ba1—C2i3.370 (9)O5—C31.272 (12)
Ba2—O7iv2.764 (7)O5—O10Wx3.059 (7)
Ba2—O7v2.764 (7)O6—C41.277 (12)
Ba2—O82.793 (9)O7—C41.230 (13)
Ba2—O8vi2.793 (9)O7—Ba2iv2.764 (7)
Ba2—O72.854 (8)O8—C31.218 (14)
Ba2—O7vi2.854 (8)O9W—O1ix2.789 (11)
Ba2—Ba2iv4.7612 (9)O9W—O4xi2.863 (11)
Ba2—Ba2vii4.7612 (10)O9W—O10W3.321 (14)
Zr1—O3viii2.172 (6)O10W—O5xi3.059 (7)
Zr1—O32.172 (6)O10W—O5viii3.059 (7)
Zr1—O62.173 (7)O10W—O9Wi3.321 (14)
Zr1—O6viii2.173 (7)C1—C21.555 (13)
Zr1—O5viii2.209 (6)C3—C41.537 (15)
O10W—Ba1—O9W73.3 (2)O7—Ba2—Ba2iv31.49 (15)
O10W—Ba1—O9Wi73.3 (2)O7vi—Ba2—Ba2iv124.49 (15)
O9W—Ba1—O9Wi146.6 (5)O7iv—Ba2—Ba2vii156.08 (18)
O10W—Ba1—O2ii136.04 (16)O7v—Ba2—Ba2vii32.64 (16)
O9W—Ba1—O2ii137.6 (3)O8—Ba2—Ba2vii67.27 (18)
O9Wi—Ba1—O2ii71.0 (3)O8vi—Ba2—Ba2vii89.42 (19)
O10W—Ba1—O2iii136.04 (16)O7—Ba2—Ba2vii124.49 (15)
O9W—Ba1—O2iii71.0 (3)O7vi—Ba2—Ba2vii31.49 (15)
O9Wi—Ba1—O2iii137.6 (3)Ba2iv—Ba2—Ba2vii150.47 (4)
O2ii—Ba1—O2iii87.9 (3)O3viii—Zr1—O3117.4 (4)
O10W—Ba1—O2i82.98 (16)O3viii—Zr1—O6141.3 (2)
O9W—Ba1—O2i107.5 (2)O3—Zr1—O684.3 (3)
O9Wi—Ba1—O2i68.3 (2)O3viii—Zr1—O6viii84.3 (3)
O2ii—Ba1—O2i60.5 (3)O3—Zr1—O6viii141.3 (2)
O2iii—Ba1—O2i131.98 (18)O6—Zr1—O6viii98.2 (4)
O10W—Ba1—O282.98 (16)O3viii—Zr1—O5viii141.1 (3)
O9W—Ba1—O268.3 (2)O3—Zr1—O5viii72.4 (2)
O9Wi—Ba1—O2107.5 (2)O6—Zr1—O5viii73.7 (3)
O2ii—Ba1—O2131.98 (18)O6viii—Zr1—O5viii71.4 (2)
O2iii—Ba1—O260.5 (3)O3viii—Zr1—O572.4 (2)
O2i—Ba1—O2166.0 (3)O3—Zr1—O5141.1 (3)
O10W—Ba1—O1ii128.49 (16)O6—Zr1—O571.4 (2)
O9W—Ba1—O1ii136.2 (2)O6viii—Zr1—O573.7 (3)
O9Wi—Ba1—O1ii68.7 (3)O5viii—Zr1—O5125.4 (4)
O2ii—Ba1—O1ii57.46 (19)O3viii—Zr1—O4viii70.9 (2)
O2iii—Ba1—O1ii69.0 (2)O3—Zr1—O4viii77.3 (3)
O2i—Ba1—O1ii112.30 (19)O6—Zr1—O4viii147.8 (3)
O2—Ba1—O1ii76.9 (2)O6viii—Zr1—O4viii81.0 (3)
O10W—Ba1—O1iii128.49 (16)O5viii—Zr1—O4viii75.6 (3)
O9W—Ba1—O1iii68.7 (3)O5—Zr1—O4viii137.0 (2)
O9Wi—Ba1—O1iii136.2 (2)O3viii—Zr1—O477.3 (3)
O2ii—Ba1—O1iii69.0 (2)O3—Zr1—O470.9 (2)
O2iii—Ba1—O1iii57.46 (19)O6—Zr1—O481.0 (3)
O2i—Ba1—O1iii76.9 (2)O6viii—Zr1—O4147.8 (3)
O2—Ba1—O1iii112.30 (19)O5viii—Zr1—O4137.0 (2)
O1ii—Ba1—O1iii103.0 (3)O5—Zr1—O475.6 (3)
O10W—Ba1—O3i64.43 (12)O4viii—Zr1—O4116.4 (4)
O9W—Ba1—O3i66.1 (2)C1—O1—O9Wix134.8 (7)
O9Wi—Ba1—O3i99.0 (3)C1—O1—Ba1iii115.6 (6)
O2ii—Ba1—O3i96.82 (18)O9Wix—O1—Ba1iii104.4 (3)
O2iii—Ba1—O3i120.18 (19)C2—O2—Ba1iii120.0 (6)
O2i—Ba1—O3i42.07 (18)C2—O2—Ba1103.8 (6)
O2—Ba1—O3i129.56 (19)Ba1iii—O2—Ba1119.5 (3)
O1ii—Ba1—O3i153.59 (17)C2—O3—Zr1121.4 (6)
O1iii—Ba1—O3i69.01 (19)C2—O3—Ba185.6 (5)
O10W—Ba1—O364.43 (12)Zr1—O3—Ba1152.7 (3)
O9W—Ba1—O399.0 (3)C1—O4—Zr1120.6 (6)
O9Wi—Ba1—O366.1 (2)C1—O4—O9Wx121.8 (6)
O2ii—Ba1—O3120.18 (19)Zr1—O4—O9Wx116.3 (3)
O2iii—Ba1—O396.82 (18)C3—O5—Zr1120.2 (6)
O2i—Ba1—O3129.56 (19)C3—O5—O10Wx117.8 (6)
O2—Ba1—O342.07 (18)Zr1—O5—O10Wx121.3 (3)
O1ii—Ba1—O369.01 (19)C4—O6—Zr1120.9 (6)
O1iii—Ba1—O3153.59 (17)C4—O7—Ba2iv125.6 (7)
O3i—Ba1—O3128.9 (2)C4—O7—Ba2118.5 (6)
O10W—Ba1—C2i75.97 (16)Ba2iv—O7—Ba2115.9 (3)
O9W—Ba1—C2i86.9 (2)C3—O8—Ba2121.2 (8)
O9Wi—Ba1—C2i85.1 (3)Ba1—O9W—O1ix118.4 (3)
O2ii—Ba1—C2i76.2 (2)Ba1—O9W—O4xi113.2 (3)
O2iii—Ba1—C2i125.9 (2)O1ix—O9W—O4xi124.9 (4)
O2i—Ba1—C2i20.6 (2)Ba1—O9W—O10W53.3 (3)
O2—Ba1—C2i151.3 (2)O1ix—O9W—O10W125.8 (4)
O1ii—Ba1—C2i131.8 (2)O4xi—O9W—O10W99.7 (3)
O1iii—Ba1—C2i68.6 (2)Ba1—O10W—O5xi104.3 (3)
O3i—Ba1—C2i21.9 (2)Ba1—O10W—O5viii104.3 (3)
O3—Ba1—C2i135.9 (2)O5xi—O10W—O5viii151.5 (6)
O7iv—Ba2—O7v163.8 (3)Ba1—O10W—O9Wi53.4 (3)
O7iv—Ba2—O8121.5 (3)O5xi—O10W—O9Wi136.2 (3)
O7v—Ba2—O872.4 (3)O5viii—O10W—O9Wi64.7 (2)
O7iv—Ba2—O8vi72.4 (3)O1—C1—O4128.4 (9)
O7v—Ba2—O8vi121.5 (3)O1—C1—C2119.9 (9)
O8—Ba2—O8vi77.9 (5)O4—C1—C2111.7 (8)
O7iv—Ba2—O764.1 (3)O2—C2—O3125.7 (9)
O7v—Ba2—O7126.5 (3)O2—C2—C1120.4 (9)
O8—Ba2—O758.5 (2)O3—C2—C1113.9 (8)
O8vi—Ba2—O769.4 (3)O2—C2—Ba155.6 (5)
O7iv—Ba2—O7vi126.5 (3)O3—C2—Ba172.5 (5)
O7v—Ba2—O7vi64.1 (3)C1—C2—Ba1163.3 (6)
O8—Ba2—O7vi69.4 (3)O8—C3—O5127.4 (10)
O8vi—Ba2—O7vi58.5 (2)O8—C3—C4119.7 (10)
O7—Ba2—O7vi111.6 (3)O5—C3—C4112.9 (9)
O7iv—Ba2—Ba2iv32.64 (16)O7—C4—O6125.7 (10)
O7v—Ba2—Ba2iv156.08 (18)O7—C4—C3120.2 (9)
O8—Ba2—Ba2iv89.42 (19)O6—C4—C3114.1 (9)
O8vi—Ba2—Ba2iv67.27 (18)
Symmetry codes: (i) x+1/2, y, z+1; (ii) x+1/2, y+1, z; (iii) x, y+1, z+1; (iv) x1/2, y+1/2, z+3/2; (v) x, y+1/2, z+1/2; (vi) x1/2, y, z+2; (vii) x1/2, y+1/2, z+5/2; (viii) x+1/2, y, z+2; (ix) x1/2, y, z+1; (x) x, y, z+1; (xi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ba2Zr(C2O4)4(H2O)3]
Mr772.03
Crystal system, space groupMonoclinic, I2/a
Temperature (K)293
a, b, c (Å)9.2010 (12), 29.032 (5), 9.2079 (17)
β (°) 115.45 (3)
V3)2221.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.05
Crystal size (mm)0.03 × 0.02 × 0.02
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.907, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
6582, 1964, 1510
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.05
No. of reflections1964
No. of parameters139
H-atom treatmentH-atom parameters not refined
w = 1/[σ2(Fo2) + (0.038P)2 + 45.4129P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.05, 0.80

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Siemens, 1991), SHELXTL.

Selected bond lengths (Å) top
Ba1—O10W2.778 (14)Ba2—O72.854 (8)
Ba1—O9W2.785 (8)Zr1—O32.172 (6)
Ba1—O2i2.799 (7)Zr1—O62.173 (7)
Ba1—O22.864 (7)Zr1—O52.209 (6)
Ba1—O1i2.968 (7)Zr1—O42.213 (7)
Ba1—O33.224 (6)O9W—O1iii2.789 (11)
Ba2—O7ii2.764 (7)O9W—O4iv2.863 (11)
Ba2—O82.793 (9)O10W—O5iv3.059 (7)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y+1/2, z+3/2; (iii) x1/2, y, z+1; (iv) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds