Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
MnSbSe2I contains layers parallel to the bc plane that consist of edge- and corner-sharing MnSe6/2 and MnSe2/2I4/2 octahedra. Sb atoms are located between these layers and form SbSe3 trigonal pyramids. Owing to the off-center placement of the Sb atom and the inequivalence of the two crystallographically independent Mn atoms, the monoclinic MnSbSe2I structure is a distorted variant of the orthorhombic UFeS3 structure type.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103014082/iz1033sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103014082/iz1033Isup2.hkl
Contains datablock I

Comment top

Quaternary phases consisting of a transition metal and several types of p-block elements in an ordered arrangement are relatively scarce. In the TM—Pn—Q—X systems (where TM is a transition metal, Pn = P, As, Sb and Bi, Q = S, Se and Te, and X = F, Cl, Br and I), the most prevalent examples contain Cu, for example, Cu6PS5Br (Haznar et al., 1999), (CuBr)3P4Se4 (Reiser et al., 2003), (CuI)P4Se4 (Pfitzner et al., 1999), (CuI)3P4Se4 (Pfitzner & Reiser, 1999), (CuI)2P8Se3 (Pfitzner et al., 2000), (CuI)2Cu3SbS3 (Pfitzner, 1997), Cu3Bi2S4Cl (Lewis & Kupcik, 1974) and Cu3Bi2S4Br (Mariolacos & Kupcik, 1975), or another late d-block element, for example, CdSb6S8I4 (Sirota et al., 1976) and Hg3AsQ4X (Q = S and Se, and X = Cl, Br and I; Beck et al., 2000). In most cases, the metal adopts a tetrahedral coordination, as expected for these late d-block elements; an interesting exception is CdSb6S8I4, in which Cd adopts an octahedral coordination. There appear to be no examples of compounds of formula TM1Pn1Q2X.

MnSbSe2I represents a new layered structure type, as shown in Fig. 1(a). The layers are parallel to the bc plane and contain two kinds of Mn-centered octahedra; atom Mn1 is surrounded by four Se2 and two Se1 atoms, whereas atom Mn2 is surrounded by four I1 and two Se1 atoms. The octahedra share their corners along the c direction and share their edges along the b direction. The Mn—Se distances of 2.6590 (9), 2.7849 (6) and 2.7687 (9) Å and the Mn—I distances of 2.8380 (5) Å are comparable to those found in olivine-type Mn2SiSe4 [2.671 (4)—2.756 (3) Å; Jobic et al., 1995] and in CsMnI3 [2.920 (2) Å; Zandbergen, 1980], respectively, where octahedrally coordinated Mn is present. Between the layers lie the Sb1 atoms, which are coordinated to three Se atoms to form a trigonal pyramid at distances of 2.5995 (9) and 2.7277 (6) Å, similar to those in Sb2Se3 [2.589 (1)–2.803 (1) Å; Voutsas et al., 1985]. The closest distance between an Sb1 atom in one layer and an Se atom in the adjacent layer is 3.1523 (8) Å, which is too long to be considered as a covalent bond.

The structure of monoclinic MnSbSe2I (C2/m) is a distorted variant of that of orthorhombic UFeS3 (Cmcm; Fig. 1 b and Noël & Padiou, 1976). In the latter structure, layers of Fe-centered octahedra are also evident, but the intervening U atoms are arranged more symmetrically, residing in tricapped trigonal-prismatic sites. The lower monoclinic symmetry (β = 91.27°) of MnSbSe2I arises from the absence of mirror and glide planes associated with the displacement of the Sb atoms as well as the chemical inequivalence of the two types of Mn-centered octahedra. The irregular position of the Sb atom is indicative of Sb3+, implying the presence of a lone pair. This assignment is consistent with the charge-balanced formulation (Mn2+)(Sb3+)(Se2−)2(I). Comparison with the analogous formulation (U3+)(Fe3+)(S2−)3 shows that replacement of one of the chalcogen atoms in UFeS3 by a halogen atom in MnSbSe2I is compensated by substitution with a lower-charged transition-metal ion.

Experimental top

Single crystals of MnSbSe2I were obtained as a by-product of the reaction of Sm (1.20 mmol, Alfa, 40 mesh, 99.9%), Mn (0.20 mmol, Alfa, 100 mesh, 99.9%), Sb (0.20 mmol, Alfa, 325 mesh, 99.5%) and Se (2.40 mmol, Alfa, 325 mesh, 99.99%) in a fused-silica tube to which a small amount of I2 was added. The reaction tube was heated at 1223 K for 4 d before being cooled to 973 K at a rate of 3 K h−1, at which point the furnace was turned off. The final product consisted mainly of golden plate-like crystals of SmSe3 and a few black prisms of MnSbSe2I. Qualitative energy-dispersive X-ray analysis performed on several of these prisms revealed an average composition (at. %) of 19 (2)% Mn, 22 (2)% Sb, 39 (2)% Se and 21 (2)% I, in good agreement with that deduced from the single-crystal X-ray analysis. No trace of Sm could be detected.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ATOMS 5.1 (Dowty, 1999); software used to prepare material for publication: SHELXTL 5.1.

Figures top
[Figure 1] Fig. 1. (a) MnSbSe2I viewed along the b axis. (b) UFeS3 viewed along the a axis. Displacement ellipsoids are drawn at the 99% probability level in both cases.
manganese antimony diselenide iodide top
Crystal data top
MnSbSe2IF(000) = 788
Mr = 461.51Dx = 5.645 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 2097 reflections
a = 13.319 (3) Åθ = 3.1–28.6°
b = 4.0359 (8) ŵ = 26.21 mm1
c = 10.105 (2) ÅT = 153 K
β = 91.27 (3)°Prism, black
V = 543.08 (19) Å30.19 × 0.04 × 0.02 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
737 independent reflections
Radiation source: fine-focus sealed tube709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
0.3° ω scansθmax = 28.6°, θmin = 2.0°
Absorption correction: numerical
XP in SHELXTL (Sheldrick, 1997)
h = 1717
Tmin = 0.145, Tmax = 0.656k = 55
2404 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.04Fo2)2]
wR(F2) = 0.071(Δ/σ)max < 0.001
S = 1.37Δρmax = 2.11 e Å3
737 reflectionsΔρmin = 1.63 e Å3
34 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0022 (3)
Crystal data top
MnSbSe2IV = 543.08 (19) Å3
Mr = 461.51Z = 4
Monoclinic, C2/mMo Kα radiation
a = 13.319 (3) ŵ = 26.21 mm1
b = 4.0359 (8) ÅT = 153 K
c = 10.105 (2) Å0.19 × 0.04 × 0.02 mm
β = 91.27 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
737 independent reflections
Absorption correction: numerical
XP in SHELXTL (Sheldrick, 1997)
709 reflections with I > 2σ(I)
Tmin = 0.145, Tmax = 0.656Rint = 0.026
2404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02634 parameters
wR(F2) = 0.0710 restraints
S = 1.37Δρmax = 2.11 e Å3
737 reflectionsΔρmin = 1.63 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.36336 (3)0.00000.07710 (4)0.01207 (17)
Sb10.29385 (3)0.00000.68476 (4)0.01329 (18)
Se10.07442 (4)0.00000.25801 (6)0.01032 (18)
Se20.36110 (4)0.00000.44523 (6)0.00988 (19)
Mn10.00000.00000.50000.0115 (3)
Mn20.00000.00000.00000.0116 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0109 (2)0.0113 (3)0.0140 (3)0.0000.00066 (16)0.000
Sb10.0145 (3)0.0132 (3)0.0122 (3)0.0000.00112 (17)0.000
Se10.0111 (3)0.0098 (3)0.0099 (3)0.0000.0028 (2)0.000
Se20.0094 (3)0.0104 (3)0.0097 (3)0.0000.0015 (2)0.000
Mn10.0106 (6)0.0113 (6)0.0125 (7)0.0000.0005 (5)0.000
Mn20.0115 (6)0.0106 (6)0.0127 (6)0.0000.0002 (5)0.000
Geometric parameters (Å, º) top
I1—Mn2i2.8380 (5)Se1—I1xii3.8843 (10)
I1—Mn2ii2.8380 (5)Se1—I1v4.0436 (9)
I1—Se23.7208 (10)Se1—I1vi4.0436 (9)
I1—Sb1iii3.8041 (9)Se2—Mn1i2.7849 (6)
I1—Sb1iv3.8041 (9)Se2—Mn1ii2.7849 (6)
I1—Se1i3.8843 (10)Se2—Sb1iv3.1523 (8)
I1—Se1ii3.8843 (10)Se2—Sb1iii3.1523 (8)
I1—I1v3.9257 (10)Se2—I1ix5.4894 (9)
I1—I1vi3.9257 (10)Se2—I1viii5.4894 (9)
I1—I1vii3.9910 (12)Mn1—Se1xiii2.6590 (9)
I1—I1viii4.0359 (8)Mn1—Se2xi2.7849 (6)
I1—I1ix4.0359 (8)Mn1—Se2iii2.7849 (6)
I1—Se1v4.0436 (9)Mn1—Se2xii2.7849 (6)
I1—Se1vi4.0436 (9)Mn1—Se2iv2.7849 (6)
I1—Sb1x4.0514 (11)Mn1—I1iii5.0301 (12)
Sb1—Se22.5995 (9)Mn1—I1xi5.0301 (12)
Sb1—Se1iii2.7277 (6)Mn1—I1iv5.0301 (11)
Sb1—Se1iv2.7277 (6)Mn1—I1xii5.0301 (11)
Sb1—Se2iv3.1523 (8)Mn2—Se1xiv2.7687 (9)
Sb1—Se2iii3.1523 (8)Mn2—I1xi2.8380 (5)
Se1—Mn12.6590 (9)Mn2—I1vi2.8380 (5)
Se1—Sb1iii2.7277 (6)Mn2—I1xii2.8380 (5)
Se1—Sb1iv2.7277 (6)Mn2—I1v2.8380 (5)
Se1—Mn22.7687 (9)Mn2—I1xiv4.8850 (11)
Se1—I1xi3.8843 (10)
Mn2i—I1—Mn2ii90.64 (2)Sb1iii—Se1—I1xii99.84 (2)
Mn2i—I1—Se2107.09 (2)Sb1iv—Se1—I1xii159.973 (19)
Mn2ii—I1—Se2107.09 (2)Mn2—Se1—I1xii46.889 (19)
Mn2i—I1—Sb1iii99.31 (2)I1xi—Se1—I1xii62.60 (2)
Mn2ii—I1—Sb1iii156.376 (14)Mn1—Se1—I1v149.060 (10)
Se2—I1—Sb1iii49.516 (17)Sb1iii—Se1—I1v113.83 (3)
Mn2i—I1—Sb1iv156.376 (14)Sb1iv—Se1—I1v70.46 (2)
Mn2ii—I1—Sb1iv99.31 (2)Mn2—Se1—I1v44.529 (12)
Se2—I1—Sb1iv49.516 (17)I1xi—Se1—I1v60.41 (2)
Sb1iii—I1—Sb1iv64.07 (2)I1xii—Se1—I1v91.42 (2)
Mn2i—I1—Se1i45.414 (13)Mn1—Se1—I1vi149.060 (10)
Mn2ii—I1—Se1i92.110 (18)Sb1iii—Se1—I1vi70.46 (2)
Se2—I1—Se1i63.34 (2)Sb1iv—Se1—I1vi113.82 (3)
Sb1iii—I1—Se1i80.181 (18)Mn2—Se1—I1vi44.529 (12)
Sb1iv—I1—Se1i112.37 (2)I1xi—Se1—I1vi91.42 (2)
Mn2i—I1—Se1ii92.110 (18)I1xii—Se1—I1vi60.41 (2)
Mn2ii—I1—Se1ii45.414 (13)I1v—Se1—I1vi59.873 (18)
Se2—I1—Se1ii63.34 (2)Mn1—Se1—I1138.32 (3)
Sb1iii—I1—Se1ii112.37 (2)Sb1iii—Se1—I160.806 (16)
Sb1iv—I1—Se1ii80.181 (18)Sb1iv—Se1—I160.806 (16)
Se1i—I1—Se1ii62.60 (2)Mn2—Se1—I184.53 (3)
Mn2i—I1—I1v138.491 (18)I1xi—Se1—I1116.450 (19)
Mn2ii—I1—I1v91.023 (16)I1xii—Se1—I1116.450 (19)
Se2—I1—I1v111.94 (3)I1v—Se1—I156.06 (2)
Sb1iii—I1—I1v95.42 (2)I1vi—Se1—I156.06 (2)
Sb1iv—I1—I1v63.195 (17)Sb1—Se2—Mn1i93.21 (2)
Se1i—I1—I1v174.976 (18)Sb1—Se2—Mn1ii93.21 (2)
Se1ii—I1—I1v117.521 (18)Mn1i—Se2—Mn1ii92.87 (2)
Mn2i—I1—I1vi91.023 (16)Sb1—Se2—Sb1iv98.75 (2)
Mn2ii—I1—I1vi138.491 (18)Mn1i—Se2—Sb1iv166.55 (2)
Se2—I1—I1vi111.94 (3)Mn1ii—Se2—Sb1iv92.57 (2)
Sb1iii—I1—I1vi63.195 (17)Sb1—Se2—Sb1iii98.75 (2)
Sb1iv—I1—I1vi95.42 (2)Mn1i—Se2—Sb1iii92.57 (2)
Se1i—I1—I1vi117.521 (18)Mn1ii—Se2—Sb1iii166.55 (2)
Se1ii—I1—I1vi174.976 (18)Sb1iv—Se2—Sb1iii79.61 (3)
I1v—I1—I1vi61.87 (2)Sb1—Se2—I1160.31 (2)
Mn2i—I1—I1vii45.321 (10)Mn1i—Se2—I1100.29 (2)
Mn2ii—I1—I1vii45.321 (10)Mn1ii—Se2—I1100.29 (2)
Se2—I1—I1vii114.71 (3)Sb1iv—Se2—I166.62 (2)
Sb1iii—I1—I1vii140.047 (16)Sb1iii—Se2—I166.62 (2)
Sb1iv—I1—I1vii140.047 (16)Sb1—Se2—I1ix129.658 (11)
Se1i—I1—I1vii61.771 (17)Mn1i—Se2—I1ix130.83 (2)
Se1ii—I1—I1vii61.771 (17)Mn1ii—Se2—I1ix65.69 (2)
I1v—I1—I1vii123.038 (19)Sb1iv—Se2—I1ix42.296 (16)
I1vi—I1—I1vii123.038 (19)Sb1iii—Se2—I1ix101.63 (2)
Mn2i—I1—I1viii44.679 (10)I1—Se2—I1ix47.326 (10)
Mn2ii—I1—I1viii135.321 (10)Sb1—Se2—I1viii129.658 (11)
Se2—I1—I1viii90.0Mn1i—Se2—I1viii65.69 (2)
Sb1iii—I1—I1viii57.963 (10)Mn1ii—Se2—I1viii130.83 (2)
Sb1iv—I1—I1viii122.037 (10)Sb1iv—Se2—I1viii101.63 (2)
Se1i—I1—I1viii58.701 (10)Sb1iii—Se2—I1viii42.296 (16)
Se1ii—I1—I1viii121.299 (10)I1—Se2—I1viii47.326 (10)
I1v—I1—I1viii120.933 (10)I1ix—Se2—I1viii94.652 (19)
I1vi—I1—I1viii59.067 (10)Se1xiii—Mn1—Se1180.0
I1vii—I1—I1viii90.0Se1xiii—Mn1—Se2xi85.60 (2)
Mn2i—I1—I1ix135.321 (10)Se1—Mn1—Se2xi94.40 (2)
Mn2ii—I1—I1ix44.679 (11)Se1xiii—Mn1—Se2iii94.40 (2)
Se2—I1—I1ix90.0Se1—Mn1—Se2iii85.60 (2)
Sb1iii—I1—I1ix122.037 (10)Se2xi—Mn1—Se2iii180.00 (3)
Sb1iv—I1—I1ix57.963 (10)Se1xiii—Mn1—Se2xii85.60 (2)
Se1i—I1—I1ix121.299 (10)Se1—Mn1—Se2xii94.40 (2)
Se1ii—I1—I1ix58.701 (10)Se2xi—Mn1—Se2xii92.87 (2)
I1v—I1—I1ix59.067 (10)Se2iii—Mn1—Se2xii87.13 (2)
I1vi—I1—I1ix120.933 (10)Se1xiii—Mn1—Se2iv94.40 (2)
I1vii—I1—I1ix90.0Se1—Mn1—Se2iv85.60 (2)
I1viii—I1—I1ix180.000 (10)Se2xi—Mn1—Se2iv87.13 (2)
Mn2i—I1—Se1v88.87 (2)Se2iii—Mn1—Se2iv92.87 (2)
Mn2ii—I1—Se1v43.168 (17)Se2xii—Mn1—Se2iv180.0
Se2—I1—Se1v147.526 (11)Se1xiii—Mn1—I1iii49.749 (16)
Sb1iii—I1—Se1v156.985 (17)Se1—Mn1—I1iii130.251 (16)
Sb1iv—I1—Se1v113.014 (19)Se2xi—Mn1—I1iii133.296 (19)
Se1i—I1—Se1v119.59 (2)Se2iii—Mn1—I1iii46.704 (19)
Se1ii—I1—Se1v88.58 (2)Se2xii—Mn1—I1iii95.99 (2)
I1v—I1—Se1v65.24 (2)Se2iv—Mn1—I1iii84.01 (2)
I1vi—I1—Se1v95.41 (2)Se1xiii—Mn1—I1xi130.251 (16)
I1vii—I1—Se1v57.82 (2)Se1—Mn1—I1xi49.749 (16)
I1viii—I1—Se1v119.937 (9)Se2xi—Mn1—I1xi46.704 (19)
I1ix—I1—Se1v60.063 (9)Se2iii—Mn1—I1xi133.296 (19)
Mn2i—I1—Se1vi43.168 (18)Se2xii—Mn1—I1xi84.01 (2)
Mn2ii—I1—Se1vi88.87 (2)Se2iv—Mn1—I1xi95.99 (2)
Se2—I1—Se1vi147.526 (11)I1iii—Mn1—I1xi180.0
Sb1iii—I1—Se1vi113.014 (19)Se1xiii—Mn1—I1iv49.749 (16)
Sb1iv—I1—Se1vi156.985 (17)Se1—Mn1—I1iv130.251 (16)
Se1i—I1—Se1vi88.58 (2)Se2xi—Mn1—I1iv95.99 (2)
Se1ii—I1—Se1vi119.59 (2)Se2iii—Mn1—I1iv84.01 (2)
I1v—I1—Se1vi95.41 (2)Se2xii—Mn1—I1iv133.296 (19)
I1vi—I1—Se1vi65.24 (2)Se2iv—Mn1—I1iv46.704 (19)
I1vii—I1—Se1vi57.82 (2)I1iii—Mn1—I1iv47.303 (14)
I1viii—I1—Se1vi60.063 (9)I1xi—Mn1—I1iv132.697 (14)
I1ix—I1—Se1vi119.937 (9)Se1xiii—Mn1—I1xii130.251 (16)
Se1v—I1—Se1vi59.873 (18)Se1—Mn1—I1xii49.749 (16)
Mn2i—I1—Sb1x82.26 (2)Se2xi—Mn1—I1xii84.01 (2)
Mn2ii—I1—Sb1x82.26 (2)Se2iii—Mn1—I1xii95.99 (2)
Se2—I1—Sb1x166.328 (15)Se2xii—Mn1—I1xii46.704 (19)
Sb1iii—I1—Sb1x120.132 (18)Se2iv—Mn1—I1xii133.296 (19)
Sb1iv—I1—Sb1x120.132 (18)I1iii—Mn1—I1xii132.697 (14)
Se1i—I1—Sb1x127.44 (2)I1xi—Mn1—I1xii47.303 (14)
Se1ii—I1—Sb1x127.44 (2)I1iv—Mn1—I1xii180.0
I1v—I1—Sb1x56.94 (2)Se1—Mn2—Se1xiv180.0
I1vi—I1—Sb1x56.94 (2)Se1—Mn2—I1xi87.70 (2)
I1vii—I1—Sb1x78.96 (3)Se1xiv—Mn2—I1xi92.30 (2)
I1viii—I1—Sb1x90.0Se1—Mn2—I1vi92.30 (2)
I1ix—I1—Sb1x90.0Se1xiv—Mn2—I1vi87.70 (2)
Se1v—I1—Sb1x39.383 (12)I1xi—Mn2—I1vi180.000 (11)
Se1vi—I1—Sb1x39.383 (12)Se1—Mn2—I1xii87.70 (2)
Se2—Sb1—Se1iii87.94 (2)Se1xiv—Mn2—I1xii92.30 (2)
Se2—Sb1—Se1iv87.94 (2)I1xi—Mn2—I1xii90.64 (2)
Se1iii—Sb1—Se1iv95.43 (3)I1vi—Mn2—I1xii89.36 (2)
Se2—Sb1—Se2iv81.25 (2)Se1—Mn2—I1v92.30 (2)
Se1iii—Sb1—Se2iv166.92 (2)Se1xiv—Mn2—I1v87.70 (2)
Se1iv—Sb1—Se2iv91.54 (2)I1xi—Mn2—I1v89.36 (2)
Se2—Sb1—Se2iii81.25 (2)I1vi—Mn2—I1v90.64 (2)
Se1iii—Sb1—Se2iii91.54 (2)I1xii—Mn2—I1v180.000 (11)
Se1iv—Sb1—Se2iii166.92 (2)Se1—Mn2—I1xiv118.88 (3)
Se2iv—Sb1—Se2iii79.61 (3)Se1xiv—Mn2—I1xiv61.12 (3)
Mn1—Se1—Sb1iii93.22 (2)I1xi—Mn2—I1xiv53.466 (12)
Mn1—Se1—Sb1iv93.22 (2)I1vi—Mn2—I1xiv126.534 (12)
Sb1iii—Se1—Sb1iv95.43 (3)I1xii—Mn2—I1xiv53.466 (12)
Mn1—Se1—Mn2137.15 (3)I1v—Mn2—I1xiv126.534 (12)
Sb1iii—Se1—Mn2114.51 (2)Se1—Mn2—I161.12 (3)
Sb1iv—Se1—Mn2114.51 (2)Se1xiv—Mn2—I1118.88 (3)
Mn1—Se1—I1xi98.75 (2)I1xi—Mn2—I1126.534 (12)
Sb1iii—Se1—I1xi159.973 (19)I1vi—Mn2—I153.466 (12)
Sb1iv—Se1—I1xi99.84 (2)I1xii—Mn2—I1126.534 (12)
Mn2—Se1—I1xi46.889 (19)I1v—Mn2—I153.466 (12)
Mn1—Se1—I1xii98.75 (2)I1xiv—Mn2—I1180.0
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y1/2, z+1; (v) x+1/2, y1/2, z; (vi) x+1/2, y+1/2, z; (vii) x+1, y, z; (viii) x, y+1, z; (ix) x, y1, z; (x) x, y, z1; (xi) x1/2, y1/2, z; (xii) x1/2, y+1/2, z; (xiii) x, y, z+1; (xiv) x, y, z.

Experimental details

Crystal data
Chemical formulaMnSbSe2I
Mr461.51
Crystal system, space groupMonoclinic, C2/m
Temperature (K)153
a, b, c (Å)13.319 (3), 4.0359 (8), 10.105 (2)
β (°) 91.27 (3)
V3)543.08 (19)
Z4
Radiation typeMo Kα
µ (mm1)26.21
Crystal size (mm)0.19 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionNumerical
XP in SHELXTL (Sheldrick, 1997)
Tmin, Tmax0.145, 0.656
No. of measured, independent and
observed [I > 2σ(I)] reflections
2404, 737, 709
Rint0.026
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.37
No. of reflections737
No. of parameters34
Δρmax, Δρmin (e Å3)2.11, 1.63

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXTL (Sheldrick, 1997), ATOMS 5.1 (Dowty, 1999), SHELXTL 5.1.

Selected bond lengths (Å) top
Sb1—Se22.5995 (9)Mn1—Se2iii2.7849 (6)
Sb1—Se1i2.7277 (6)Mn2—Se1iv2.7687 (9)
Mn1—Se1ii2.6590 (9)Mn2—I1iii2.8380 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1; (iii) x1/2, y1/2, z; (iv) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds