Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of two novel phyl­losilicates with compositions Cs[Si3O6(OH)] (caesium hydroxo­hexa­oxotetra­otri­silicate) and Rb[Si2O4(OH)] (rubidium hydroxo­hexa­oxotetrao­di­silicate) have been characterized by X-ray diffraction. The topology of the caesium phyl­losilicate silica sheet consists of interconnected four- and six-membered rings and thus differs from all of the previously reported phyl­losilicates. The topology of the rubidium phyl­losilicate silica sheet consists of six-membered rings only, in boat conformations, resulting in a corrugated sheet similar to that observed in δ-Na2Si2O5. Both of the title compounds exhibit the characteristic sandwich structure of sheet silicates, with the Cs atom ninefold coordinated and the Rb atom eightfold coordinated to the framework O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103014586/iz1030sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103014586/iz1030Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103014586/iz1030IIsup3.hkl
Contains datablock II

Comment top

During our search for novel mixed-geometry (octahedral/tetrahedral metal oxide) open frameworks, we discovered two phyllosilicate by-products, and we subsequently altered the synthesis conditions in order to isolate these layered silicates. Both title compounds exhibit novel phyllosilicate structures. The rubidium compound is the only known high-mass alkali described by a six-membered ring silica sheet – a characteristic reported as belonging to low-mass alkali phyllosilicates (Dejong et al., 1994). Likewise, the caesium compound exhibits novel four- and six-ring sheets, in which the six-membered rings adopt boat conformations. A structural study of these layered compounds may lead to a better understanding of the hydrothermal synthesis of octahedral/tetrahedral open frameworks, since a large number of reported mixed-geometry metal oxide frameworks exhibit alternating layers of silica sheets and octahedral metal oxide sheets (Ananias et al., 2001; Rocha et al., 1998). Furthermore, these structures have potential applications in ion-exchange and chemisorption processes (Da Fonseca et al., 2000; Lagadic et al., 2001; Pagnoux et al.. 1991). Preliminary experiments for Rb[Si2O4(OH)] are promising in this context.

Fig. 1 illustrates the sandwich structure of the Cs phyllosilicate, clearly showing the Cs atoms residing between the silica sheets. The Cs atom is coordinated to nine neighboring O atoms, with Cs—O distances in the range 3.02–3.62 Å. Two dangling O atoms propagate into the interlayer space, of which one must be protonated for the electroneutrality of the structure. No H atom could be located in the difference Fourier map because of the large electron density associated with the Cs atom. However, the Si3—O7 bond length of 1.600 (4) Å agrees with the value reported for an Si—OH bond length in tetrahedral silicates with three bridging O atoms (Nyfeler & Armbruster, 1998). Fig. 2 illustrates the four- and six-membered ring topology of the silica sheet, which is unique to phyllosilicates.

Fig. 3 illustrates the typical sandwich structure of a phyllosilicate for the Rb compound. The Rb atom occupies the interlayer space and is eightfold coordinated to neighboring O atoms, with Rb—O distances in the range 2.91–3.57 Å. Again, no H atoms could be located in the difference Fourier maps, although the presence of H atoms is required for the electroneutrality of the structure. The Si1—O2 bond length of 1.591 (2) Å is slightly shorter than that reported for a typical Si—OH bond length in this bonding situation, reflecting the fact that the O atom only requires protonation to fractional occupancy of 0.5 (Nyfeler & Armbruster, 1998). Fig. 4 depicts the corrugated six-membered ring topology of the silica sheet, which is very similar to the topology of δ–Na2Si2O5 (Kahlenberg et al., 1999). This compound is the first example of a high-mass alkali phyllosilicate with such a topology, and this result may raise new questions concerning the molecular modeling of disilicate glasses from phyllosilicate structures (Nyfeler & Armbruster, 1998).

Experimental top

Cs[Si3O6(OH)] was prepared from tetramethoxysilane (1.477 g), caesium hydroxide (1.512 g), tetraethylammonium hydroxide (TEAOH, 0.326 g) and distilled water (6 ml), giving an SiO2/Cs2O/TEAOH/H2O gel composition of 1:0.26:0.08:40. Rb[Si2O4(OH)] was prepared from colloidal silica (Aldrich AS40, 0.627 g), rubidium hydroxide (2.086 g) and distilled water (9 ml), giving an SiO2/Rb2O/H2O gel composition of 1:1.95:120. Both reactions were carried out in Parr acid digestion bombs with 23 ml poly(tetrafluoroethylene) liners. All gels were prepared, mixed and aged for 1 h in the Teflon liners, which were generally half filled. Both reactions were carried out at 493 K for a period of 5 d.

Computing details top

For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. [100] view of the framework of (I), illustrating the layered character of this material. Si, O and Cs atoms are shown as light grey, black and medium grey circles, respectively.
[Figure 2] Fig. 2. [001] view illustrating the four- and six-membered ring topology of the phyllosilicate sheets in (I). Si and O atoms are showm as light grey and black circles, respectively. Cs atoms has been omitted for clarity.
[Figure 3] Fig. 3. [100] view of the framework of (II), illustrating the layered character of this material. Si, O and Rb atoms are shown as light grey, black and medium grey circles, respectively.
[Figure 4] Fig. 4. [001] view illustrating the six-membered ring topology of the phyllosilicate sheets in (II). Si and O atoms are shown as light grey and black circles, respectively. Rb atoms has been omitted for clarity.
(I) top
Crystal data top
Cs[Si3O6(OH)]Dx = 3.052 Mg m3
Mr = 330.19Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 192 reflections
a = 4.9163 (9) Åθ = 5–25°
b = 10.340 (2) ŵ = 5.64 mm1
c = 14.136 (3) ÅT = 293 K
V = 718.6 (2) Å3Prism, colorless
Z = 40.22 × 0.04 × 0.02 mm
F(000) = 616
Data collection top
Bruker AXS four-circle
diffractometer
1517 reflections with I > 2σ(I)
Bruker SMART 1000 CCD scansRint = 0.052
Absorption correction: multi-scan
(Blessing, 1995; Sheldrick, 2001)
θmax = 28.2°, θmin = 2.4°
Tmin = 0.370, Tmax = 0.896h = 66
5183 measured reflectionsk = 1213
1670 independent reflectionsl = 1818
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.0545P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.033Δρmax = 0.74 e Å3
wR(F2) = 0.082Δρmin = 0.75 e Å3
S = 0.93Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1670 reflectionsExtinction coefficient: 0.0221 (12)
101 parametersAbsolute structure: Flack (1983), 650 Friedel pairs
0 restraintsAbsolute structure parameter: 0.00 (3)
H-atom parameters not refined
Crystal data top
Cs[Si3O6(OH)]V = 718.6 (2) Å3
Mr = 330.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9163 (9) ŵ = 5.64 mm1
b = 10.340 (2) ÅT = 293 K
c = 14.136 (3) Å0.22 × 0.04 × 0.02 mm
Data collection top
Bruker AXS four-circle
diffractometer
1670 independent reflections
Absorption correction: multi-scan
(Blessing, 1995; Sheldrick, 2001)
1517 reflections with I > 2σ(I)
Tmin = 0.370, Tmax = 0.896Rint = 0.052
5183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters not refined
wR(F2) = 0.082Δρmax = 0.74 e Å3
S = 0.93Δρmin = 0.75 e Å3
1670 reflectionsAbsolute structure: Flack (1983), 650 Friedel pairs
101 parametersAbsolute structure parameter: 0.00 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure determination. Single crystal X–ray diffraction experiments were carried out on a 4–circle Bruker 1 K Smart–CCD diffractometer. X–rays were generated at 50 kV and 30 mA using normal–focus X–ray tube with Mo as the target metal (Mo K-alpha, L= 0.71073 A). Each crystal was collected at room temperature with a phi and omega scans using 0.3 degree rotations/frame. A total of 1650 frames were collected for each crystal spanning one hemisphere of reciprocal space out to 0.75 A. Data were integrated using SAINT (Bruker, 2000), and empirical absorption corrections were preformed in the program SADABS (Sheldrick, 2000). Structures were solved in SHELXS (Sheldrick, 1990) using direct methods, and successive refinements were preformed in SHELXL–97 by difference Fourier synthesis (Sheldrick, 1993). All least–squares refinements were carried out against |F2|.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.96911 (8)0.41523 (3)0.74709 (3)0.02941 (16)
Si10.9820 (3)0.58294 (12)1.00897 (9)0.0116 (3)
Si20.4790 (3)0.64876 (12)0.89281 (10)0.0117 (3)
Si30.8928 (3)0.29464 (14)1.05627 (11)0.0127 (3)
O10.4019 (9)0.6159 (4)0.7884 (3)0.0214 (9)
O20.7923 (8)0.6101 (4)0.9180 (3)0.0201 (9)
O30.5859 (7)0.2505 (4)1.0302 (3)0.0186 (8)
O40.8974 (8)0.4519 (4)1.0617 (3)0.0181 (9)
O50.4456 (9)0.8035 (4)0.9144 (3)0.0212 (9)
O60.2907 (7)0.5751 (4)0.9716 (3)0.0181 (8)
O70.9768 (9)0.2370 (4)1.1570 (3)0.0216 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0292 (2)0.0325 (2)0.0266 (2)0.00522 (15)0.00434 (19)0.00456 (18)
Si10.0127 (6)0.0123 (5)0.0098 (6)0.0002 (6)0.0024 (5)0.0009 (5)
Si20.0137 (6)0.0137 (6)0.0076 (6)0.0004 (6)0.0015 (6)0.0001 (5)
Si30.0131 (7)0.0136 (7)0.0113 (7)0.0005 (5)0.0013 (5)0.0002 (6)
O10.028 (2)0.025 (2)0.0104 (18)0.0058 (16)0.0007 (17)0.0011 (16)
O20.0118 (17)0.034 (2)0.015 (2)0.0006 (16)0.0019 (15)0.0023 (18)
O30.0144 (17)0.0242 (19)0.017 (2)0.0029 (15)0.0015 (15)0.0018 (16)
O40.023 (2)0.0144 (18)0.017 (2)0.0000 (14)0.0034 (17)0.0012 (15)
O50.028 (2)0.0187 (17)0.017 (2)0.0018 (18)0.0046 (19)0.0024 (16)
O60.0146 (17)0.027 (2)0.012 (2)0.0033 (16)0.0033 (15)0.0034 (18)
O70.029 (2)0.0204 (18)0.0151 (18)0.0012 (19)0.0067 (19)0.0025 (15)
Geometric parameters (Å, º) top
Cs1—O1i3.029 (4)Si2—O61.636 (4)
Cs1—O7ii3.190 (4)Si2—O51.637 (4)
Cs1—O7iii3.247 (4)Si2—Cs1ix4.0443 (15)
Cs1—O23.264 (4)Si2—Cs1x4.0445 (15)
Cs1—O5iv3.271 (4)Si3—O71.598 (4)
Cs1—O4v3.465 (4)Si3—O3iii1.616 (4)
Cs1—O13.525 (4)Si3—O31.619 (4)
Cs1—O1iv3.627 (4)Si3—O41.628 (4)
Cs1—O3iii3.630 (4)Si3—Cs1ii4.0958 (16)
Cs1—Si23.9849 (15)O1—Cs1x3.029 (4)
Cs1—Si1v4.0312 (15)O1—Cs1ix3.627 (4)
Cs1—Si2iv4.0443 (15)O3—Si3ii1.616 (4)
Si1—O41.601 (4)O3—Cs1ii3.630 (4)
Si1—O5vi1.608 (4)O4—Cs1vii3.465 (4)
Si1—O6i1.609 (4)O5—Si1xi1.608 (4)
Si1—O21.613 (4)O5—Cs1ix3.271 (4)
Si1—Cs1vii4.0312 (15)O6—Si1x1.609 (4)
Si1—Cs1viii4.3142 (16)O7—Cs1iii3.190 (4)
Si2—O11.562 (4)O7—Cs1ii3.247 (4)
Si2—O21.631 (4)
O1i—Cs1—O7ii142.11 (10)O5vi—Si1—O2110.2 (2)
O1i—Cs1—O7iii73.25 (11)O6i—Si1—O2107.0 (2)
O7ii—Cs1—O7iii99.59 (10)O4—Si1—Cs1vii58.17 (14)
O1i—Cs1—O267.76 (11)O5vi—Si1—Cs1vii51.14 (15)
O7ii—Cs1—O277.75 (10)O6i—Si1—Cs1vii142.51 (16)
O7iii—Cs1—O2101.23 (10)O2—Si1—Cs1vii110.27 (15)
O1i—Cs1—O5iv144.51 (11)O4—Si1—Cs193.34 (15)
O7ii—Cs1—O5iv69.47 (10)O5vi—Si1—Cs1156.68 (16)
O7iii—Cs1—O5iv126.82 (10)O6i—Si1—Cs172.28 (15)
O2—Cs1—O5iv124.65 (10)O2—Si1—Cs148.95 (15)
O1i—Cs1—O4v103.85 (10)Cs1vii—Si1—Cs1138.55 (4)
O7ii—Cs1—O4v97.04 (10)O4—Si1—Cs1viii78.65 (16)
O7iii—Cs1—O4v155.21 (10)O5vi—Si1—Cs1viii62.64 (16)
O2—Cs1—O4v100.18 (10)O6i—Si1—Cs1viii70.53 (15)
O5iv—Cs1—O4v44.61 (9)O2—Si1—Cs1viii169.35 (16)
O1i—Cs1—O196.92 (11)Cs1vii—Si1—Cs1viii72.10 (3)
O7ii—Cs1—O167.65 (9)Cs1—Si1—Cs1viii135.89 (3)
O7iii—Cs1—O1145.52 (9)O1—Si2—O2112.5 (2)
O2—Cs1—O145.84 (9)O1—Si2—O6113.9 (2)
O5iv—Cs1—O180.23 (10)O2—Si2—O6105.7 (2)
O4v—Cs1—O158.68 (10)O1—Si2—O5111.3 (2)
O1i—Cs1—O1iv164.68 (9)O2—Si2—O5107.1 (2)
O7ii—Cs1—O1iv41.94 (9)O6—Si2—O5105.8 (2)
O7iii—Cs1—O1iv91.76 (9)O1—Si2—Cs161.73 (17)
O2—Cs1—O1iv119.67 (10)O2—Si2—Cs152.66 (15)
O5iv—Cs1—O1iv44.67 (9)O6—Si2—Cs1114.30 (15)
O4v—Cs1—O1iv88.41 (9)O5—Si2—Cs1138.51 (17)
O1—Cs1—O1iv97.32 (4)O1—Si2—Cs1ix63.48 (16)
O1i—Cs1—O3iii92.59 (10)O2—Si2—Cs1ix142.04 (16)
O7ii—Cs1—O3iii61.21 (9)O6—Si2—Cs1ix110.00 (15)
O7iii—Cs1—O3iii44.56 (9)O5—Si2—Cs1ix50.98 (15)
O2—Cs1—O3iii72.03 (10)Cs1—Si2—Cs1ix119.30 (4)
O5iv—Cs1—O3iii122.48 (10)O1—Si2—Cs1x40.39 (15)
O4v—Cs1—O3iii157.75 (9)O2—Si2—Cs1x123.40 (16)
O1—Cs1—O3iii105.04 (9)O6—Si2—Cs1x73.61 (15)
O1iv—Cs1—O3iii78.27 (9)O5—Si2—Cs1x128.03 (16)
O1i—Cs1—Si284.84 (9)Cs1—Si2—Cs1x75.51 (3)
O7ii—Cs1—Si267.69 (7)Cs1ix—Si2—Cs1x79.63 (3)
O7iii—Cs1—Si2122.85 (7)O7—Si3—O3iii114.5 (2)
O2—Cs1—Si223.40 (7)O7—Si3—O3109.8 (2)
O5iv—Cs1—Si2101.41 (8)O3iii—Si3—O3107.08 (12)
O4v—Cs1—Si280.58 (7)O7—Si3—O4109.1 (2)
O1—Cs1—Si222.97 (7)O3iii—Si3—O4108.4 (2)
O1iv—Cs1—Si2106.52 (7)O3—Si3—O4107.8 (2)
O3iii—Cs1—Si286.18 (6)O7—Si3—Cs1ii47.85 (16)
O1i—Cs1—Si1v122.96 (8)O3iii—Si3—Cs1ii131.22 (15)
O7ii—Cs1—Si1v86.55 (8)O3—Si3—Cs1ii62.04 (15)
O7iii—Cs1—Si1v140.70 (7)O4—Si3—Cs1ii120.29 (16)
O2—Cs1—Si1v117.95 (7)Si2—O1—Cs1x120.1 (2)
O5iv—Cs1—Si1v22.51 (7)Si2—O1—Cs195.30 (19)
O4v—Cs1—Si1v23.12 (6)Cs1x—O1—Cs196.92 (11)
O1—Cs1—Si1v72.55 (7)Si2—O1—Cs1ix93.86 (17)
O1iv—Cs1—Si1v67.17 (7)Cs1x—O1—Cs1ix101.81 (12)
O3iii—Cs1—Si1v144.44 (6)Cs1—O1—Cs1ix151.33 (13)
Si2—Cs1—Si1v95.52 (3)Si1—O2—Si2139.8 (3)
O1i—Cs1—Si2iv160.67 (8)Si1—O2—Cs1109.17 (18)
O7ii—Cs1—Si2iv57.21 (7)Si2—O2—Cs1103.94 (19)
O7iii—Cs1—Si2iv107.02 (7)Si3ii—O3—Si3143.2 (3)
O2—Cs1—Si2iv129.60 (7)Si3ii—O3—Cs1ii115.26 (17)
O5iv—Cs1—Si2iv22.88 (7)Si3—O3—Cs1ii94.76 (17)
O4v—Cs1—Si2iv67.47 (7)Si1—O4—Si3145.8 (3)
O1—Cs1—Si2iv92.93 (7)Si1—O4—Cs1vii98.71 (17)
O1iv—Cs1—Si2iv22.66 (7)Si3—O4—Cs1vii115.11 (19)
O3iii—Cs1—Si2iv100.88 (7)Si1xi—O5—Si2145.9 (3)
Si2—Cs1—Si2iv109.65 (2)Si1xi—O5—Cs1ix106.36 (18)
Si1v—Cs1—Si2iv45.18 (3)Si2—O5—Cs1ix106.14 (18)
O4—Si1—O5vi106.0 (2)Si1x—O6—Si2137.2 (3)
O4—Si1—O6i110.8 (2)Si3—O7—Cs1iii139.4 (2)
O5vi—Si1—O6i111.3 (2)Si3—O7—Cs1ii110.8 (2)
O4—Si1—O2111.6 (2)Cs1iii—O7—Cs1ii99.59 (10)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z+2; (iii) x+1/2, y+1/2, z+2; (iv) x+1, y1/2, z+3/2; (v) x+3/2, y+1, z1/2; (vi) x+1/2, y+3/2, z+2; (vii) x+3/2, y+1, z+1/2; (viii) x+5/2, y+1, z+1/2; (ix) x+1, y+1/2, z+3/2; (x) x1, y, z; (xi) x1/2, y+3/2, z+2.
(II) top
Crystal data top
Rb[Si2O4(OH)]Dx = 2.9 Mg m3
Mr = 222.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PcmnCell parameters from 89 reflections
a = 4.8147 (13) Åθ = 5–25°
b = 8.267 (2) ŵ = 10.10 mm1
c = 12.814 (3) ÅT = 293 K
V = 510.0 (2) Å3Hexagonal, colorless
Z = 40.11 × 0.04 × 0.01 mm
F(000) = 424
Data collection top
Bruker AXS four-circle
diffractometer
559 reflections with I > 2σ(I)
Bruker SMART 1000 CCD scansRint = 0.045
Absorption correction: multi-scan
(Blessing, 1995; Sheldrick, 2001)
θmax = 28.2°, θmin = 3.2°
Tmin = 0.403, Tmax = 0.906h = 66
3401 measured reflectionsk = 1010
647 independent reflectionsl = 1617
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.2002P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.59 e Å3
647 reflectionsΔρmin = 0.68 e Å3
40 parameters
Crystal data top
Rb[Si2O4(OH)]V = 510.0 (2) Å3
Mr = 222.66Z = 4
Orthorhombic, PcmnMo Kα radiation
a = 4.8147 (13) ŵ = 10.10 mm1
b = 8.267 (2) ÅT = 293 K
c = 12.814 (3) Å0.11 × 0.04 × 0.01 mm
Data collection top
Bruker AXS four-circle
diffractometer
647 independent reflections
Absorption correction: multi-scan
(Blessing, 1995; Sheldrick, 2001)
559 reflections with I > 2σ(I)
Tmin = 0.403, Tmax = 0.906Rint = 0.045
3401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.080H-atom parameters not refined
S = 1.09Δρmax = 0.59 e Å3
647 reflectionsΔρmin = 0.68 e Å3
40 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.53159 (9)0.750.46487 (4)0.0253 (2)
Si10.50817 (14)0.56212 (10)0.18906 (7)0.0113 (2)
O10.2322 (4)0.4563 (3)0.21655 (16)0.0164 (5)
O20.6363 (4)0.5071 (3)0.08027 (18)0.0216 (5)
O30.4072 (7)0.750.1898 (3)0.0233 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0288 (3)0.0205 (3)0.0265 (3)00.00795 (17)0
Si10.0099 (4)0.0122 (4)0.0118 (5)0.0004 (2)0.0002 (3)0.0001 (3)
O10.0145 (10)0.0183 (10)0.0164 (12)0.0040 (7)0.0024 (8)0.0024 (8)
O20.0179 (10)0.0337 (13)0.0131 (12)0.0006 (9)0.0033 (9)0.0031 (9)
O30.0206 (15)0.0139 (15)0.036 (2)00.0096 (14)0
Geometric parameters (Å, º) top
Rb1—O2i2.911 (2)Si1—O31.6275 (13)
Rb1—O2ii2.911 (2)Si1—O1v1.628 (2)
Rb1—O2iii2.962 (2)Si1—O11.629 (2)
Rb1—O2iv2.962 (2)Si1—Rb1ix3.9465 (11)
Rb1—O1v3.041 (2)Si1—Rb1x3.9766 (10)
Rb1—O1vi3.041 (2)Si1—Rb1xi4.1109 (10)
Rb1—O3vii3.573 (3)O1—Si1i1.628 (2)
Rb1—O33.576 (4)O1—Rb1x3.041 (2)
Rb1—Si13.8622 (12)O2—Rb1xi2.911 (2)
Rb1—Si1viii3.8622 (12)O2—Rb1ix2.962 (2)
Rb1—Si1iii3.9465 (11)O3—Si1viii1.6275 (13)
Rb1—Si1iv3.9465 (11)O3—Rb1xii3.573 (3)
Si1—O21.591 (2)
O2i—Rb1—O2ii93.79 (9)Si1—Rb1—Si1iii147.223 (18)
O2i—Rb1—O2iii161.26 (3)Si1viii—Rb1—Si1iii121.62 (2)
O2ii—Rb1—O2iii87.55 (6)O2i—Rb1—Si1iv102.97 (5)
O2i—Rb1—O2iv87.55 (6)O2ii—Rb1—Si1iv143.04 (5)
O2ii—Rb1—O2iv161.26 (3)O2iii—Rb1—Si1iv66.44 (5)
O2iii—Rb1—O2iv85.34 (9)O2iv—Rb1—Si1iv21.06 (4)
O2i—Rb1—O1v69.28 (6)O1v—Rb1—Si1iv99.06 (4)
O2ii—Rb1—O1v117.73 (6)O1vi—Rb1—Si1iv126.80 (4)
O2iii—Rb1—O1v126.18 (6)O3vii—Rb1—Si1iv75.22 (6)
O2iv—Rb1—O1v80.21 (6)O3—Rb1—Si1iv144.26 (4)
O2i—Rb1—O1vi117.73 (6)Si1—Rb1—Si1iv121.62 (2)
O2ii—Rb1—O1vi69.28 (6)Si1viii—Rb1—Si1iv147.223 (18)
O2iii—Rb1—O1vi80.21 (6)Si1iii—Rb1—Si1iv46.35 (3)
O2iv—Rb1—O1vi126.18 (6)O2—Si1—O3113.17 (16)
O1v—Rb1—O1vi68.25 (8)O2—Si1—O1v111.57 (12)
O2i—Rb1—O3vii76.92 (6)O3—Si1—O1v106.45 (14)
O2ii—Rb1—O3vii76.92 (6)O2—Si1—O1110.63 (11)
O2iii—Rb1—O3vii85.22 (6)O3—Si1—O1105.51 (14)
O2iv—Rb1—O3vii85.22 (6)O1v—Si1—O1109.23 (7)
O1v—Rb1—O3vii143.55 (5)O2—Si1—Rb1154.90 (9)
O1vi—Rb1—O3vii143.55 (5)O3—Si1—Rb167.65 (13)
O2i—Rb1—O372.22 (6)O1v—Si1—Rb148.57 (8)
O2ii—Rb1—O372.22 (6)O1—Si1—Rb192.39 (8)
O2iii—Rb1—O3125.63 (5)O2—Si1—Rb1ix42.00 (9)
O2iv—Rb1—O3125.63 (5)O3—Si1—Rb1ix78.24 (13)
O1v—Rb1—O345.53 (5)O1v—Si1—Rb1ix101.87 (8)
O1vi—Rb1—O345.53 (5)O1—Si1—Rb1ix145.75 (8)
O3vii—Rb1—O3134.11 (3)Rb1—Si1—Rb1ix119.43 (2)
O2i—Rb1—Si160.36 (5)O2—Si1—Rb1x66.64 (8)
O2ii—Rb1—Si195.32 (5)O3—Si1—Rb1x116.72 (11)
O2iii—Rb1—Si1138.17 (5)O1v—Si1—Rb1x133.64 (9)
O2iv—Rb1—Si1101.53 (5)O1—Si1—Rb1x44.64 (8)
O1v—Rb1—Si123.66 (4)Rb1—Si1—Rb1x137.03 (2)
O1vi—Rb1—Si162.31 (4)Rb1ix—Si1—Rb1x102.61 (3)
O3vii—Rb1—Si1136.12 (5)O2—Si1—Rb1xi33.12 (8)
O3—Rb1—Si124.90 (2)O3—Si1—Rb1xi141.70 (13)
O2i—Rb1—Si1viii95.32 (5)O1v—Si1—Rb1xi83.77 (8)
O2ii—Rb1—Si1viii60.36 (5)O1—Si1—Rb1xi105.48 (8)
O2iii—Rb1—Si1viii101.53 (5)Rb1—Si1—Rb1xi132.35 (2)
O2iv—Rb1—Si1viii138.17 (5)Rb1ix—Si1—Rb1xi63.485 (19)
O1v—Rb1—Si1viii62.31 (4)Rb1x—Si1—Rb1xi73.05 (2)
O1vi—Rb1—Si1viii23.66 (4)Si1i—O1—Si1138.71 (14)
O3vii—Rb1—Si1viii136.12 (5)Si1i—O1—Rb1x107.76 (10)
O3—Rb1—Si1viii24.90 (2)Si1—O1—Rb1x113.25 (10)
Si1—Rb1—Si1viii47.43 (3)Si1—O2—Rb1xi129.51 (12)
O2i—Rb1—Si1iii143.04 (5)Si1—O2—Rb1ix116.94 (11)
O2ii—Rb1—Si1iii102.97 (5)Rb1xi—O2—Rb1ix92.45 (6)
O2iii—Rb1—Si1iii21.06 (4)Si1viii—O3—Si1145.2 (2)
O2iv—Rb1—Si1iii66.44 (5)Si1viii—O3—Rb1xii99.91 (12)
O1v—Rb1—Si1iii126.80 (4)Si1—O3—Rb1xii99.91 (12)
O1vi—Rb1—Si1iii99.06 (4)Si1viii—O3—Rb187.45 (12)
O3vii—Rb1—Si1iii75.22 (6)Si1—O3—Rb187.45 (12)
O3—Rb1—Si1iii144.26 (4)Rb1xii—O3—Rb1153.40 (11)
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+3/2, y+3/2, z+1/2; (iv) x+3/2, y, z+1/2; (v) x+1/2, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+3/2, z+1/2; (viii) x, y+3/2, z; (ix) x+3/2, y+3/2, z1/2; (x) x1/2, y1/2, z+1/2; (xi) x+1/2, y1/2, z+1/2; (xii) x+1/2, y+3/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaCs[Si3O6(OH)]Rb[Si2O4(OH)]
Mr330.19222.66
Crystal system, space groupOrthorhombic, P212121Orthorhombic, Pcmn
Temperature (K)293293
a, b, c (Å)4.9163 (9), 10.340 (2), 14.136 (3)4.8147 (13), 8.267 (2), 12.814 (3)
V3)718.6 (2)510.0 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)5.6410.10
Crystal size (mm)0.22 × 0.04 × 0.020.11 × 0.04 × 0.01
Data collection
DiffractometerBruker AXS four-circle
diffractometer
Bruker AXS four-circle
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995; Sheldrick, 2001)
Multi-scan
(Blessing, 1995; Sheldrick, 2001)
Tmin, Tmax0.370, 0.8960.403, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
5183, 1670, 1517 3401, 647, 559
Rint0.0520.045
(sin θ/λ)max1)0.6660.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 0.93 0.027, 0.080, 1.09
No. of reflections1670647
No. of parameters10140
H-atom treatmentH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.74, 0.750.59, 0.68
Absolute structureFlack (1983), 650 Friedel pairs?
Absolute structure parameter0.00 (3)?

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds