Download citation
Download citation
link to html
Polyoxometallates are capable of including transition metals in their crystal structures as either discrete cations or heteroatoms. The title compound crystallizes with triclinic symmetry and consists of a centrosymmetric [V10O28]6- anion, a trimeric {[Na(H2O)3][Ni(H2O)6][Na(H2O)3]}4+ cation, an [Ni(H2O)6]2+ cation and four water molecules of crystallization. The compound possesses two Ni atoms (each on independent inversion centres), one as a discrete cation and one in a disodium-nickel trimeric cation involved in the one-dimensional polycation-polyanion hybrid polymer. The polymers are bound together via hydrogen bonds to the water mol­ecules and the nickel(II) hexahydrate cation. Several structures of decavanadate compounds having transition metal atoms, monovalent cations and [V10O28]6- anions in the ratio 2:2:1 have been reported previously. However, the present compound differs from these in its arrangement of monovalent cations and transition metal atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102015603/iz1023sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102015603/iz1023Isup2.hkl
Contains datablock I

Comment top

Several peroxovanadium complexes have attracted attention for their insulin-mimetic and enzyme-like activities (Tracy & Crans, 1998; Siegel & Siegel, 1995). In our attempt to prepare peroxovanadates, the title novel compound, (I), a nickel sodium decavanadate having no peroxo group, was obtained as green-orange crystals and its crystal structure is presented here. \sch

The structure of (I) consists of a decavanadate anion, three edge-shared octahedra of Ni and Na, an [Ni(H2O)6]2+ cation and four waters of crystallization (Fig. 1). The [V10O28]6- anions and [Na(H2O)3][Ni(H2O)6][Na(H2O)3]4+ trimeric cations are linked alternately to form a one-dimensional chain (Fig. 2).

The framework of [V10O28]6- has been studied in detail previously (Evans, 1966; Nowogrocki et al., 1997). The decavanadate unit comprises ten edge-sharing VO6 octahedra with approximate D2h symmetry. The V—O distances and bond angles in the decavanadate unit of (I) are comparable with those in the literature (Evans, 1966).

In the trimeric cation of (I), the Na atoms are surrounded by one decavanadate O1 atom and five water molecules, and the Ni atom by six water molecules. The Ni octahedron is sandwiched between two Na octahedra. Atom Na1 coordinates directly to the decavanadate unit at O1. One of the terminal water molecules on the Na atom positioned trans to decavanadate atom O1 was refined as disordered over two positions (O21A and O21B). The occupancy factors of these atoms were refined in the course of the initial calculations and were then fixed to the refined values of 0.3 and 0.7, respectively, in the final calculation.

The O1—Na1—O21A and O1—Na1—O21B angles [160.3 (9)° and 167.3 (4)°, respectively] do not differ greatly, which does not conflict with the disordering. The Na—O bond distances have a wide range of values, from 2.331 (8) to 2.564 (4) Å. The Na—O distances to the terminal water molecules (Na1—O21A, Na1—O21B, Na1—O22 and Na1—O23) are 2.44 (4), 2.32 (2), 2.359 (8) and 2.376 (6) Å, respectively. The length of the Na1—O1 bond [2.395 (6) Å] is similar to these three, even though atom O1 also bonds to atom V1. The Na—O distances to the water molecules bridging to atom Ni1 [2.544 (6) Å for Na1—O15 and 2.564 (6) Å for Na1—O16] are longer than those of the other four Na1—O bonds.

Each [Na(OH2)3][Ni(OH2)6][Na(OH2)3]4+[V10O28]6- chain is connected via hydrogen bonds through the four waters of crystallization and the water molecules coordinated to Na and Ni, to form the overall three-dimensional structure. With regard to the two Ni atoms, Ni1 and Ni2, atom Ni1 is involved in the chain as mentioned above, whereas atom Ni2 is isolated from the chain and plays an important role in tying the chains together. The Ni1—O distances to the water molecules bridging to Na, Ni1—O15 and Ni1—O16, are 2.067 (5) and 2.107 (5) Å, respectively, and that to the terminal water molecule, Ni1—O17, is 2.053 (5) Å. The hydrogen-bonded O—O distances are in the range 2.630 (7)–3.131 (9) Å. H atoms were not identified in the difference Fourier maps and could not be determined.

A number of decavanadate compounds with transition metals, monovalent cations and [V10O28]6- anions in the ratio 2:2:1 have been reported so far (Wickham, 1972), two of which have been structurally analyzed. The two compounds, K2Zn2V10O28.16H2O (Evans, 1966) and (NH4)2Co2V10O28.16H2O (Nowogrocki et al., 1997), are isostructural. However, the overall structure of (I) differs from them. The structure of MI2MII2V10O28.16H2O consists of a [V10O28]6- anion, two isolated octahedral MII(H2O)62+ cation groups, two MI ions and four waters of crystallization. The cations and water molecules surround the polyanion, forming hydrogen bonds between them. Therefore, there is no direct connection between the cations and the polyanion, in contrast with (I), where the [Na(H2O)3][Ni(H2O)6][Na(H2O)3]4+ trimeric cation is bound directly to the decavanadate. This difference in structures may be caused by the difference in size and behaviour of the monovalent cations. It is noteworthy that the formula of (I) can be written as Na2Ni2V10O28.22H2O, whereas that of the compounds mentioned above is MI2MII2V10O28.16H2O; the different number of water molecules in the formula clearly plays an important role in the overall structural differences.

Experimental top

V2O5 (0.4652 g, 0.0025 mol) and 6 M NaOH (5.0 ml, 0.03 mol) were added to water (ca 20 ml). The mixture was stirred in an ice bath, producing a clear yellow solution. The solution was adjusted to 25 ml by adding 30% H2O2 (0.5 ml), 6 M HNO3 (volume?) and water (volume?). This brought the pH of the solution to 4.10. An aqueous solution of 1 M Ni(NO3)2·6H2O (5 ml, 0.005 mol) was added to this solution, and then ethanol (7.5 ml). The final molar ratio of H2O2:V:Na:Ni was 1:1:3:1. Tabular green-orange crystals of (I) appeared in about 12 h, usually together with prismatic deep-orange crystals, which were most probably sodium decavanadate.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I). Displacement ellipsoids are at the 30% probability level [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, -z; (iii) -x, 1 - y, -z].
[Figure 2] Fig. 2. A polyhedral presentation of the chain structure of (I).
bis(nickel hexahydrate) bis(sodium trihydrate) decavanadate tetrahydrate top
Crystal data top
[Ni(H2O)6]2[Na(H2O)3]2V10O28·4H2OZ = 1
Mr = 1517.15F(000) = 752
Triclinic, P1Dx = 2.404 Mg m3
a = 10.836 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 12.606 (2) ÅCell parameters from 25 reflections
c = 8.331 (1) Åθ = 16.8–17.5°
α = 93.19 (2)°µ = 3.15 mm1
β = 99.83 (2)°T = 293 K
γ = 109.65 (2)°Prismatic, green-orange
V = 1048.1 (3) Å30.50 × 0.18 × 0.05 mm
Data collection top
Rigaku AFC-5R automated four-circle
diffractometer
6109 independent reflections
Radiation source: normal focus rotating anode3399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 3 pixels mm-1θmax = 30.0°, θmin = 2.9°
ω/2θ scansh = 015
Absorption correction: ψ scan
TEXSAN (Molecular Structure Corporation, 1995)
k = 1716
Tmin = 0.553, Tmax = 0.854l = 1111
6109 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters not defined
S = 1.07Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2) + (0.0315P)2 + 9.2497P]
where P = (Fo2 + 2Fc2)/3
6109 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Ni(H2O)6]2[Na(H2O)3]2V10O28·4H2Oγ = 109.65 (2)°
Mr = 1517.15V = 1048.1 (3) Å3
Triclinic, P1Z = 1
a = 10.836 (2) ÅMo Kα radiation
b = 12.606 (2) ŵ = 3.15 mm1
c = 8.331 (1) ÅT = 293 K
α = 93.19 (2)°0.50 × 0.18 × 0.05 mm
β = 99.83 (2)°
Data collection top
Rigaku AFC-5R automated four-circle
diffractometer
6109 independent reflections
Absorption correction: ψ scan
TEXSAN (Molecular Structure Corporation, 1995)
3399 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.854Rint = 0.048
6109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.152H-atom parameters not defined
S = 1.07Δρmax = 0.89 e Å3
6109 reflectionsΔρmin = 0.81 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.00000.00000.0193 (3)
Ni20.00000.50000.00000.0225 (3)
V10.52589 (11)0.29325 (10)0.48469 (14)0.0161 (2)
V20.54232 (11)0.51351 (10)0.70205 (14)0.0135 (2)
V30.31139 (12)0.28671 (11)0.69173 (15)0.0198 (3)
V40.23279 (12)0.26101 (10)0.31599 (15)0.0190 (3)
V50.24935 (11)0.48117 (10)0.52379 (14)0.0155 (2)
Na10.7383 (3)0.1032 (3)0.3864 (4)0.0301 (7)
O10.6239 (5)0.2247 (4)0.4637 (7)0.0262 (12)
O20.4499 (5)0.2346 (4)0.6524 (6)0.0191 (10)
O30.3786 (5)0.2131 (4)0.3211 (6)0.0184 (10)
O40.3506 (4)0.5699 (4)0.3673 (5)0.0149 (9)
O50.4161 (5)0.5900 (4)0.6700 (6)0.0170 (10)
O60.5982 (4)0.5975 (4)0.4974 (6)0.0150 (9)
O70.4685 (5)0.4206 (4)0.8245 (6)0.0216 (11)
O80.6717 (5)0.6192 (4)0.8233 (6)0.0183 (10)
O90.2603 (5)0.2146 (5)0.8350 (7)0.0308 (13)
O100.1987 (5)0.2008 (4)0.5061 (6)0.0208 (10)
O110.2197 (5)0.3897 (4)0.6848 (6)0.0196 (10)
O120.1211 (5)0.1717 (5)0.1748 (7)0.0316 (13)
O130.1498 (5)0.5507 (4)0.5359 (7)0.0258 (12)
O140.1532 (5)0.3682 (4)0.3578 (6)0.0183 (10)
O150.6738 (5)0.1368 (4)0.0905 (7)0.0280 (12)
O160.5122 (5)0.0434 (4)0.2414 (6)0.0226 (11)
O170.3841 (6)0.0934 (5)0.0456 (6)0.0303 (13)
O180.0518 (5)0.4074 (5)0.1884 (6)0.0288 (12)
O190.1724 (5)0.3819 (5)0.1394 (7)0.0315 (13)
O200.1065 (6)0.3955 (5)0.0516 (7)0.0319 (14)
O21A0.914 (4)0.023 (3)0.383 (4)0.050 (8)0.30
O21B0.8811 (15)0.0220 (12)0.2953 (19)0.058 (4)0.70
O220.9216 (6)0.2515 (6)0.5481 (9)0.0494 (18)
O230.6994 (6)0.0209 (5)0.6312 (7)0.0324 (13)
O240.3706 (5)0.6672 (5)0.9513 (7)0.0294 (12)
O250.8820 (7)0.1568 (6)0.0816 (9)0.0492 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0246 (7)0.0165 (6)0.0183 (6)0.0090 (5)0.0048 (5)0.0029 (5)
Ni20.0195 (6)0.0343 (8)0.0168 (6)0.0137 (6)0.0028 (5)0.0058 (6)
V10.0164 (5)0.0116 (5)0.0211 (6)0.0070 (4)0.0019 (5)0.0014 (5)
V20.0147 (5)0.0146 (5)0.0125 (5)0.0069 (4)0.0025 (4)0.0015 (4)
V30.0200 (6)0.0189 (6)0.0222 (6)0.0070 (5)0.0065 (5)0.0087 (5)
V40.0163 (6)0.0148 (6)0.0222 (6)0.0038 (5)0.0010 (5)0.0009 (5)
V50.0134 (5)0.0161 (6)0.0194 (6)0.0074 (5)0.0043 (4)0.0032 (5)
Na10.0321 (17)0.0282 (17)0.0319 (17)0.0120 (14)0.0087 (14)0.0044 (14)
O10.023 (3)0.019 (3)0.039 (3)0.011 (2)0.006 (2)0.003 (2)
O20.019 (2)0.012 (2)0.028 (3)0.0063 (19)0.003 (2)0.008 (2)
O30.018 (2)0.017 (2)0.019 (2)0.0068 (19)0.0007 (19)0.0045 (19)
O40.016 (2)0.016 (2)0.013 (2)0.0070 (19)0.0013 (18)0.0002 (18)
O50.022 (2)0.019 (2)0.014 (2)0.013 (2)0.0056 (19)0.0020 (19)
O60.017 (2)0.015 (2)0.014 (2)0.0068 (19)0.0035 (17)0.0028 (18)
O70.023 (3)0.026 (3)0.021 (3)0.012 (2)0.007 (2)0.012 (2)
O80.021 (2)0.018 (2)0.014 (2)0.0063 (19)0.0000 (19)0.0039 (19)
O90.033 (3)0.030 (3)0.034 (3)0.011 (2)0.017 (2)0.017 (3)
O100.021 (2)0.014 (2)0.028 (3)0.006 (2)0.005 (2)0.002 (2)
O110.024 (2)0.020 (3)0.021 (2)0.012 (2)0.010 (2)0.009 (2)
O120.025 (3)0.029 (3)0.036 (3)0.008 (2)0.004 (2)0.002 (3)
O130.023 (3)0.023 (3)0.038 (3)0.015 (2)0.010 (2)0.005 (2)
O140.017 (2)0.016 (2)0.023 (3)0.0078 (19)0.0012 (19)0.0033 (19)
O150.033 (3)0.021 (3)0.028 (3)0.006 (2)0.007 (2)0.005 (2)
O160.027 (3)0.022 (3)0.022 (3)0.010 (2)0.010 (2)0.008 (2)
O170.044 (3)0.035 (3)0.020 (3)0.025 (3)0.005 (2)0.004 (2)
O180.029 (3)0.042 (3)0.023 (3)0.019 (3)0.007 (2)0.011 (2)
O190.027 (3)0.035 (3)0.031 (3)0.013 (3)0.003 (2)0.003 (3)
O200.031 (3)0.053 (4)0.026 (3)0.031 (3)0.011 (2)0.011 (3)
O21A0.05 (2)0.041 (16)0.06 (2)0.011 (14)0.028 (17)0.022 (17)
O21B0.043 (8)0.028 (6)0.101 (12)0.003 (5)0.032 (9)0.005 (9)
O220.030 (3)0.042 (4)0.075 (5)0.011 (3)0.011 (3)0.008 (4)
O230.041 (3)0.027 (3)0.032 (3)0.014 (3)0.012 (3)0.006 (2)
O240.030 (3)0.030 (3)0.033 (3)0.015 (2)0.009 (2)0.003 (2)
O250.046 (4)0.036 (4)0.054 (4)0.000 (3)0.008 (3)0.004 (3)
Geometric parameters (Å, º) top
Ni1—O172.053 (5)Na1—O232.377 (6)
Ni1—O17i2.053 (5)Na1—O12.395 (6)
Ni1—O15i2.067 (5)Na1—O21A2.44 (4)
Ni1—O152.067 (5)Na1—O152.544 (6)
Ni1—O16i2.107 (5)Na1—O162.564 (6)
Ni1—O162.107 (5)Na1—O17i4.003 (6)
Ni2—O18ii2.050 (5)Na1—O18vi4.326 (7)
Ni2—O182.050 (5)Na1—O174.328 (6)
Ni2—O19ii2.062 (6)O1—O223.079 (8)
Ni2—O192.062 (6)O2—O16iv2.746 (6)
Ni2—O20ii2.092 (5)O3—O172.697 (7)
Ni2—O202.092 (5)O3—O23iv2.853 (7)
V1—O11.603 (5)O4—O19ii2.714 (7)
V1—O21.810 (5)O5—O242.673 (7)
V1—O31.856 (5)O7—O24vii2.858 (7)
V1—O4iii1.984 (5)O8—O20iii2.865 (7)
V1—O5iii2.022 (5)O9—O17viii2.844 (7)
V1—O6iii2.241 (5)O9—O21Biv2.901 (16)
V1—V5iii3.0734 (19)O10—O21Aiv2.94 (3)
V1—V33.1049 (18)O10—O21Av3.10 (4)
V2—O71.683 (5)O11—O20viii2.702 (7)
V2—O81.695 (5)O11—O22v3.083 (8)
V2—O51.913 (5)O12—O25v3.009 (9)
V2—O4iii1.941 (5)O12—O21Bv3.023 (16)
V2—O6iii2.117 (5)O13—O18ix2.785 (7)
V2—O62.125 (5)O13—O22iii2.934 (8)
V2—V33.087 (2)O14—O182.630 (7)
V2—V4iii3.091 (2)O15—O24iii2.702 (8)
V3—O91.602 (5)O15—O252.824 (9)
V3—O101.826 (5)O16—O2iv2.746 (6)
V3—O111.879 (5)O16—O23iv2.775 (7)
V3—O21.897 (5)O17—O9x2.844 (7)
V3—O72.046 (5)O18—O13ix2.785 (7)
V3—O6iii2.323 (5)O19—O4ii2.714 (7)
V3—V43.0692 (18)O19—O24ix2.796 (8)
V3—V53.0964 (17)O19—O202.929 (7)
V3—O21Biv3.764 (15)O19—O25v3.131 (9)
V3—O21Aiv3.79 (4)O20—O11x2.702 (7)
V4—O121.602 (6)O20—O8iii2.865 (7)
V4—O101.834 (5)O21A—O10iv2.94 (3)
V4—O31.866 (5)O21A—O223.09 (4)
V4—O141.877 (5)O21A—O10vi3.10 (4)
V4—O8iii2.062 (5)O21B—O9iv2.901 (16)
V4—O6iii2.340 (5)O21B—O12vi3.023 (16)
V4—V2iii3.091 (2)O22—O13iii2.934 (8)
V5—O131.614 (5)O22—O11vi3.083 (8)
V5—O111.817 (5)O23—O16iv2.775 (7)
V5—O141.822 (5)O23—O3iv2.853 (7)
V5—O41.995 (5)O23—O25viii2.868 (9)
V5—O52.006 (5)O24—O15iii2.702 (8)
V5—O6iii2.219 (5)O24—O19ix2.796 (8)
V5—V1iii3.0734 (19)O24—O7vii2.858 (7)
V5—O183.725 (5)O25—O23x2.868 (9)
V5—O22v3.799 (7)O25—O12vi3.009 (9)
Na1—O21B2.323 (16)O25—O19vi3.131 (9)
Na1—O222.358 (7)
O17—Ni1—O17i180.0V4—V3—O21Biv92.1 (2)
O17—Ni1—O15i88.5 (2)V2—V3—O21Biv162.3 (2)
O17i—Ni1—O15i91.5 (2)V5—V3—O21Biv135.1 (2)
O17—Ni1—O1591.5 (2)V1—V3—O21Biv106.3 (2)
O17i—Ni1—O1588.5 (2)O9—V3—O21Aiv56.5 (5)
O15i—Ni1—O15180.0O10—V3—O21Aiv49.1 (5)
O17—Ni1—O16i89.6 (2)O11—V3—O21Aiv114.3 (6)
O17i—Ni1—O16i90.4 (2)O2—V3—O21Aiv86.3 (6)
O15i—Ni1—O16i86.6 (2)O7—V3—O21Aiv152.4 (5)
O15—Ni1—O16i93.4 (2)O6iii—V3—O21Aiv128.4 (5)
O17—Ni1—O1690.4 (2)V4—V3—O21Aiv81.0 (4)
O17i—Ni1—O1689.6 (2)V2—V3—O21Aiv164.3 (6)
O15i—Ni1—O1693.4 (2)V5—V3—O21Aiv125.3 (5)
O15—Ni1—O1686.6 (2)V1—V3—O21Aiv103.0 (6)
O16i—Ni1—O16180.0O21Biv—V3—O21Aiv11.5 (4)
O18ii—Ni2—O18180.0O12—V4—O10103.9 (3)
O18ii—Ni2—O19ii84.7 (2)O12—V4—O3102.4 (2)
O18—Ni2—O19ii95.3 (2)O10—V4—O391.6 (2)
O18ii—Ni2—O1995.3 (2)O12—V4—O14102.6 (3)
O18—Ni2—O1984.7 (2)O10—V4—O1491.0 (2)
O19ii—Ni2—O19180.0O3—V4—O14153.5 (2)
O18ii—Ni2—O20ii87.9 (2)O12—V4—O8iii100.2 (3)
O18—Ni2—O20ii92.1 (2)O10—V4—O8iii155.8 (2)
O19ii—Ni2—O20ii89.7 (2)O3—V4—O8iii84.9 (2)
O19—Ni2—O20ii90.3 (2)O14—V4—O8iii82.0 (2)
O18ii—Ni2—O2092.1 (2)O12—V4—O6iii174.5 (3)
O18—Ni2—O2087.9 (2)O10—V4—O6iii81.53 (19)
O19ii—Ni2—O2090.3 (2)O3—V4—O6iii77.83 (18)
O19—Ni2—O2089.7 (2)O14—V4—O6iii76.48 (18)
O20ii—Ni2—O20180.0O8iii—V4—O6iii74.28 (17)
O1—V1—O2103.4 (2)O12—V4—V3136.9 (2)
O1—V1—O3100.9 (2)O10—V4—V332.93 (16)
O2—V1—O395.2 (2)O3—V4—V384.61 (15)
O1—V1—O4iii101.2 (2)O14—V4—V383.34 (15)
O2—V1—O4iii91.2 (2)O8iii—V4—V3122.86 (14)
O3—V1—O4iii154.8 (2)O6iii—V4—V348.60 (11)
O1—V1—O5iii99.2 (2)O12—V4—V2iii131.1 (2)
O2—V1—O5iii155.9 (2)O10—V4—V2iii124.91 (17)
O3—V1—O5iii88.4 (2)O3—V4—V2iii78.79 (15)
O4iii—V1—O5iii76.31 (19)O14—V4—V2iii78.14 (15)
O1—V1—O6iii174.4 (2)O8iii—V4—V2iii30.93 (13)
O2—V1—O6iii81.72 (19)O6iii—V4—V2iii43.37 (11)
O3—V1—O6iii80.66 (19)V3—V4—V2iii91.97 (5)
O4iii—V1—O6iii76.20 (18)O13—V5—O11103.0 (2)
O5iii—V1—O6iii75.42 (17)O13—V5—O14102.5 (2)
O1—V1—V5iii90.66 (19)O11—V5—O1494.4 (2)
O2—V1—V5iii130.72 (17)O13—V5—O498.1 (2)
O3—V1—V5iii128.51 (16)O11—V5—O4156.9 (2)
O4iii—V1—V5iii39.55 (13)O14—V5—O490.1 (2)
O5iii—V1—V5iii40.09 (14)O13—V5—O599.5 (2)
O6iii—V1—V5iii84.23 (12)O11—V5—O590.8 (2)
O1—V1—V3137.1 (2)O14—V5—O5155.6 (2)
O2—V1—V334.01 (14)O4—V5—O576.41 (19)
O3—V1—V383.73 (15)O13—V5—O6iii174.0 (2)
O4iii—V1—V388.20 (14)O11—V5—O6iii81.68 (19)
O5iii—V1—V3123.67 (13)O14—V5—O6iii80.76 (19)
O6iii—V1—V348.25 (12)O4—V5—O6iii76.70 (18)
V5iii—V1—V3119.82 (5)O5—V5—O6iii76.46 (18)
O7—V2—O8107.5 (2)O13—V5—V1iii88.8 (2)
O7—V2—O598.1 (2)O11—V5—V1iii131.26 (17)
O8—V2—O598.5 (2)O14—V5—V1iii129.37 (16)
O7—V2—O4iii96.5 (2)O4—V5—V1iii39.29 (13)
O8—V2—O4iii96.0 (2)O5—V5—V1iii40.46 (13)
O5—V2—O4iii155.2 (2)O6iii—V5—V1iii85.24 (12)
O7—V2—O6iii86.9 (2)O13—V5—V3136.5 (2)
O8—V2—O6iii165.5 (2)O11—V5—V333.74 (15)
O5—V2—O6iii80.91 (19)O14—V5—V383.38 (15)
O4iii—V2—O6iii80.09 (18)O4—V5—V3125.13 (13)
O7—V2—O6164.7 (2)O5—V5—V387.93 (14)
O8—V2—O687.8 (2)O6iii—V5—V348.45 (12)
O5—V2—O680.46 (19)V1iii—V5—V3120.80 (5)
O4iii—V2—O680.10 (19)O13—V5—O1863.0 (2)
O6iii—V2—O677.80 (19)O11—V5—O18111.75 (18)
O7—V2—V338.12 (18)O14—V5—O1840.77 (16)
O8—V2—V3145.59 (17)O4—V5—O1886.16 (15)
O5—V2—V389.87 (15)O5—V5—O18153.49 (16)
O4iii—V2—V389.47 (14)O6iii—V5—O18119.09 (16)
O6iii—V2—V348.76 (13)V1iii—V5—O18115.63 (10)
O6—V2—V3126.56 (14)V3—V5—O18118.54 (10)
O7—V2—V4iii146.19 (19)O13—V5—O22v76.7 (2)
O8—V2—V4iii38.71 (17)O11—V5—O22v53.41 (19)
O5—V2—V4iii89.12 (15)O14—V5—O22v56.51 (19)
O4iii—V2—V4iii89.69 (14)O4—V5—O22v142.91 (18)
O6iii—V2—V4iii126.93 (13)O5—V5—O22v140.58 (18)
O6—V2—V4iii49.13 (13)O6iii—V5—O22v109.33 (16)
V3—V2—V4iii175.69 (5)V1iii—V5—O22v165.42 (11)
O9—V3—O10103.1 (3)V3—V5—O22v71.17 (11)
O9—V3—O11102.6 (3)O18—V5—O22v58.44 (14)
O10—V3—O1191.6 (2)O21B—Na1—O2291.0 (4)
O9—V3—O2101.3 (2)O21B—Na1—O23103.2 (4)
O10—V3—O291.4 (2)O22—Na1—O2388.0 (3)
O11—V3—O2154.5 (2)O21B—Na1—O1167.3 (4)
O9—V3—O7100.9 (3)O22—Na1—O180.7 (2)
O10—V3—O7155.9 (2)O23—Na1—O186.3 (2)
O11—V3—O784.2 (2)O21B—Na1—O21A18.0 (7)
O2—V3—O782.7 (2)O22—Na1—O21A80.2 (9)
O9—V3—O6iii174.7 (3)O23—Na1—O21A88.4 (7)
O10—V3—O6iii82.18 (19)O1—Na1—O21A160.3 (9)
O11—V3—O6iii77.62 (18)O21B—Na1—O1586.8 (4)
O2—V3—O6iii77.78 (18)O22—Na1—O15115.1 (2)
O7—V3—O6iii73.78 (18)O23—Na1—O15155.0 (2)
O9—V3—V4136.2 (2)O1—Na1—O1588.0 (2)
O10—V3—V433.11 (16)O21A—Na1—O15104.4 (7)
O11—V3—V484.46 (15)O21B—Na1—O1699.7 (4)
O2—V3—V484.40 (16)O22—Na1—O16169.0 (2)
O7—V3—V4122.84 (14)O23—Na1—O1687.4 (2)
O6iii—V3—V449.07 (12)O1—Na1—O1689.0 (2)
O9—V3—V2131.4 (2)O21A—Na1—O16109.6 (9)
O10—V3—V2125.44 (17)O15—Na1—O1668.19 (18)
O11—V3—V278.81 (16)O21B—Na1—O17i60.9 (4)
O2—V3—V278.86 (15)O22—Na1—O17i143.0 (2)
O7—V3—V230.52 (13)O23—Na1—O17i119.9 (2)
O6iii—V3—V243.27 (12)O1—Na1—O17i121.71 (18)
V4—V3—V292.33 (5)O21A—Na1—O17i77.2 (8)
O9—V3—V5135.0 (2)O15—Na1—O17i45.67 (15)
O10—V3—V582.39 (16)O16—Na1—O17i47.02 (15)
O11—V3—V532.48 (14)O21B—Na1—O18vi87.5 (4)
O2—V3—V5123.40 (15)O22—Na1—O18vi58.1 (2)
O7—V3—V581.48 (14)O23—Na1—O18vi144.9 (2)
O6iii—V3—V545.62 (11)O1—Na1—O18vi79.88 (17)
V4—V3—V560.87 (4)O21A—Na1—O18vi93.9 (8)
V2—V3—V561.18 (4)O15—Na1—O18vi56.95 (15)
O9—V3—V1133.5 (2)O16—Na1—O18vi124.14 (16)
O10—V3—V182.11 (16)O17i—Na1—O18vi94.67 (13)
O11—V3—V1123.65 (15)O21B—Na1—O17118.7 (4)
O2—V3—V132.25 (14)O22—Na1—O17133.6 (2)
O7—V3—V180.58 (14)O23—Na1—O17115.43 (19)
O6iii—V3—V146.03 (12)O1—Na1—O1762.83 (16)
V4—V3—V160.83 (4)O21A—Na1—O17135.9 (8)
V2—V3—V161.48 (4)O15—Na1—O1741.52 (15)
V5—V3—V191.46 (5)O16—Na1—O1741.61 (14)
O9—V3—O21Biv46.4 (3)O17i—Na1—O1758.91 (13)
O10—V3—O21Biv60.6 (3)O18vi—Na1—O1786.52 (12)
O11—V3—O21Biv118.7 (3)V1—O1—Na1169.0 (3)
O2—V3—O21Biv84.5 (3)V1—O1—O22141.0 (3)
O7—V3—O21Biv141.1 (3)Na1—O1—O2249.11 (18)
O6iii—V3—O21Biv138.2 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x+1, y, z; (vii) x+1, y+1, z+2; (viii) x, y, z+1; (ix) x, y+1, z+1; (x) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(H2O)6]2[Na(H2O)3]2V10O28·4H2O
Mr1517.15
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.836 (2), 12.606 (2), 8.331 (1)
α, β, γ (°)93.19 (2), 99.83 (2), 109.65 (2)
V3)1048.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)3.15
Crystal size (mm)0.50 × 0.18 × 0.05
Data collection
DiffractometerRigaku AFC-5R automated four-circle
diffractometer
Absorption correctionψ scan
TEXSAN (Molecular Structure Corporation, 1995)
Tmin, Tmax0.553, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
6109, 6109, 3399
Rint0.048
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.152, 1.07
No. of reflections6109
No. of parameters301
H-atom treatmentH-atom parameters not defined
Δρmax, Δρmin (e Å3)0.89, 0.81

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected bond lengths (Å) top
Ni1—O172.053 (5)V3—O101.826 (5)
Ni1—O17i2.053 (5)V3—O111.879 (5)
Ni1—O15i2.067 (5)V3—O21.897 (5)
Ni1—O152.067 (5)V3—O72.046 (5)
Ni1—O16i2.107 (5)V3—O6iii2.323 (5)
Ni1—O162.107 (5)V4—O121.602 (6)
Ni2—O18ii2.050 (5)V4—O101.834 (5)
Ni2—O182.050 (5)V4—O31.866 (5)
Ni2—O19ii2.062 (6)V4—O141.877 (5)
Ni2—O192.062 (6)V4—O8iii2.062 (5)
Ni2—O20ii2.092 (5)V4—O6iii2.340 (5)
Ni2—O202.092 (5)V5—O131.614 (5)
V1—O11.603 (5)V5—O111.817 (5)
V1—O21.810 (5)V5—O141.822 (5)
V1—O31.856 (5)V5—O41.995 (5)
V1—O4iii1.984 (5)V5—O52.006 (5)
V1—O5iii2.022 (5)V5—O6iii2.219 (5)
V1—O6iii2.241 (5)Na1—O21B2.323 (16)
V2—O71.683 (5)Na1—O222.358 (7)
V2—O81.695 (5)Na1—O232.377 (6)
V2—O51.913 (5)Na1—O12.395 (6)
V2—O4iii1.941 (5)Na1—O21A2.44 (4)
V2—O6iii2.117 (5)Na1—O152.544 (6)
V2—O62.125 (5)Na1—O162.564 (6)
V3—O91.602 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds