Download citation
Download citation
link to html
The crystal structure of trisodium hexanitro­cobaltate(III) has been determined by X-ray diffraction at 293 and 10 K. It contains the slightly distorted octahedral Co(NO2)63- anion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101007995/iz1013sup1.cif
Contains datablocks Iat293K, Iat10K, publ

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101007995/iz1013Iat293Ksup2.hkl
Contains datablock rt

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101007995/iz1013Iat10Ksup3.hkl
Contains datablock lt

Comment top

Na3Co(NO2)6 is a classical transition metal coordination complex and the high site symmetry of the almost octahedral Co(NO2)63- ion present in the trigonal space group makes it an attractive candidate for charge-density studies. Unit-cell parameters of the compound were reported by Okaya et al. (1957) and the structure was determined at ambient temperature by powder methods (Gromilov et al., 1992). Here, we report, from X-ray diffraction, a more much accurate room-temperature structure and at 10 K an accurate extensive data set that should be suitable for such charge density analysis.

The crystal structure was solved on an X-ray data set collected at room temperature in the space group R-3 m, and refined on F2 to R = 0.0330 using anisotropic temperature factors. In that space group the NO2 group is situated on a crystal mirror plane. Close inspection of the thermal parameters of atoms which lie on the mirror plane (e.g. atom O1 has U11 = U22 = 0.076 and U33 = 0.021 Å-2) led us to the conclusion that the crystal is a merohedral twin, in which the reciprocal lattices coincide exactly. If the twinning population ratio is 50:50 the -3 m Laue symmetry is retained for given Bragg peak positions. Accordingly, we refined the structure in both the 293 and the 10 K cases in the space group R3, using the twin option of SHELXL97. and We obtained distinctly better results, R = 0.0197, than without the twinning option. At 10 K the R-factors without and with the twinning option were 0.0784 and 0.0213, respectively.

The environments of the sodium cations and the anion are shown in Fig. 1. In the Co(NO2)63- anion, the CoN6 unit is almost octahedral. The angle between nitrogen atoms related by the threefold rotation axis and subtended at the cobalt atom is 86.9°, contrasting with the ideal octahedral value of 90°. The Na+ ions are situated on two crystallographically non-equivalent threefold axes. Atom Na1 is surrounded by six oxygen atoms which form a distorted octahedron with Na—O distances typical for this type of polyhedron. The coordination sphere of Na2 is more complicated, with twelve oxygen atoms surrounding the sodium in a distorted dodecahedron. The table lists important bond lengths and angles.

Related literature top

For related literature, see: Gromilov et al. (1992); Larsen (1995); Okaya et al. (1957); Streltsov & Zavodnik (1989).

Experimental top

Na3Co(NO2)6 (Univar, analytical reagent) was recrystallized by very slow evaporation from aqueous solution.

Refinement top

Room temperature and the very low temperature data sets were collected on a locally assembled Huber 512 goniometer equipped with a Displex 202D cryogenic refrigerator (Hendricksen et al., 1986; Larsen, 1995). A full sphere of data was collected. Lists of calculated and observed structure factors are given in the supplementary material. For the 10 K X-ray data collection correction for the absorption by the beryllium shields was performed by PROFIT (Streltsov & Zavodnik, 1989) program.

Computing details top

For both compounds, data collection: Local diffractometer control software; cell refinement: Local diffractometer control software; data reduction: PROFIT (Streltsov & Zavodnik, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Environments of the atoms in Na3Co(NO206 at 10 K. Displacement ellipsoids are shown at the 50% probability level.
(Iat293K) trisodium hexanitrocobaltate(III) top
Crystal data top
Na3Co(NO2)6Dx = 2.565 Mg m3
Mr = 403.96Melting point: not measured K
Trigonal, R3Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3Cell parameters from 12 reflections
a = 7.806 (1) Åθ = 22.0–22.0°
c = 14.867 (2) ŵ = 1.86 mm1
V = 784.5 (2) Å3T = 293 K
Z = 3Prism, dark-red
F(000) = 5940.38 × 0.26 × 0.25 mm
Data collection top
Huber 512 goniometer
diffractometer
518 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.025
None monochromatorθmax = 30.1°, θmin = 3.3°
ω–2θ scanh = 1111
Absorption correction: gaussian
Xtal 3.7 (Hall, du Boulay & Olthof-Hazekamp, 2000)
k = 1010
Tmin = 0.620, Tmax = 0.673l = 2121
3068 measured reflections3 standard reflections every 100 reflections
518 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.9654P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.40 e Å3
518 reflectionsΔρmin = 0.33 e Å3
36 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0096 (13)
Crystal data top
Na3Co(NO2)6Z = 3
Mr = 403.96Mo Kα radiation
Trigonal, R3µ = 1.86 mm1
a = 7.806 (1) ÅT = 293 K
c = 14.867 (2) Å0.38 × 0.26 × 0.25 mm
V = 784.5 (2) Å3
Data collection top
Huber 512 goniometer
diffractometer
518 reflections with I > 2σ(I)
Absorption correction: gaussian
Xtal 3.7 (Hall, du Boulay & Olthof-Hazekamp, 2000)
Rint = 0.025
Tmin = 0.620, Tmax = 0.6733 standard reflections every 100 reflections
3068 measured reflections intensity decay: 1%
518 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02036 parameters
wR(F2) = 0.0550 restraints
S = 1.10Δρmax = 0.40 e Å3
518 reflectionsΔρmin = 0.33 e Å3
Special details top

Experimental. no special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.00000.00000.00000.01297 (15)
Na10.00000.00000.26365 (7)0.0293 (2)
Na20.33330.33330.16670.0294 (3)
N0.1144 (4)0.1292 (4)0.07212 (8)0.0186 (3)
O10.0984 (3)0.1450 (3)0.15415 (9)0.0333 (5)
O20.2034 (4)0.2021 (4)0.03344 (8)0.0308 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.01245 (17)0.01245 (17)0.0140 (2)0.00622 (8)0.0000.000
Na10.0336 (4)0.0336 (4)0.0206 (5)0.01682 (18)0.0000.000
Na20.0333 (5)0.0333 (5)0.0217 (7)0.0166 (2)0.0000.000
N0.0199 (9)0.0175 (9)0.0202 (5)0.0108 (4)0.0004 (6)0.0014 (6)
O10.0495 (13)0.0443 (12)0.0205 (5)0.0342 (11)0.0021 (6)0.0057 (6)
O20.0368 (13)0.0391 (14)0.0319 (5)0.0307 (5)0.0039 (9)0.0007 (9)
Geometric parameters (Å, º) top
Co—N1.966 (2)Na1—O2vii2.338 (2)
N—O11.226 (2)Na1—O2viii2.338 (2)
N—O21.238 (3)Na1—Na2viii3.513 (1)
Na1—O12.322 (2)Na2—O2ix2.653 (2)
Na1—O2i2.338 (2)Na2—O2x2.653 (2)
Na2—O12.873 (2)Na2—O2xi2.653 (2)
Na2—O22.653 (2)Na2—O2xii2.653 (2)
Co—Nii1.966 (2)Na2—O2xiii2.653 (2)
Co—Niii1.966 (2)Na2—O1x2.873 (2)
Co—Niv1.966 (2)Na2—O1xi2.873 (2)
Co—Nv1.966 (2)Na2—O1ix2.873 (2)
Co—Nvi1.966 (2)Na2—O1xiii2.873 (2)
Na1—O1vi2.322 (2)Na2—O1xii2.873 (2)
Na1—O1iii2.322 (2)O2—Na1xiv2.338 (2)
Nii—Co—Niii180.0O2xiii—Na2—O1x108.73 (7)
Nii—Co—Niv93.09 (5)O2—Na2—O144.69 (4)
Niii—Co—Niv86.91 (5)O2ix—Na2—O1104.17 (8)
Nii—Co—N86.91 (5)O2x—Na2—O1135.31 (4)
Niii—Co—N93.09 (5)O2xi—Na2—O1108.73 (7)
Niv—Co—N180.0O2xii—Na2—O175.83 (8)
Nii—Co—Nv93.09 (5)O2xiii—Na2—O171.27 (7)
Niii—Co—Nv86.91 (5)O1x—Na2—O1180.0
Niv—Co—Nv93.09 (5)O2—Na2—O1xi104.17 (8)
N—Co—Nv86.91 (5)O2ix—Na2—O1xi108.73 (7)
Nii—Co—Nvi86.91 (5)O2x—Na2—O1xi75.83 (8)
Niii—Co—Nvi93.09 (5)O2xi—Na2—O1xi44.69 (4)
Niv—Co—Nvi86.91 (5)O2xii—Na2—O1xi71.27 (7)
N—Co—Nvi93.09 (5)O2xiii—Na2—O1xi135.31 (4)
Nv—Co—Nvi180.0O1x—Na2—O1xi60.415 (6)
O1vi—Na1—O176.26 (6)O1—Na2—O1xi119.585 (6)
O1vi—Na1—O1iii76.26 (6)O2—Na2—O1ix108.73 (7)
O1—Na1—O1iii76.26 (6)O2ix—Na2—O1ix44.69 (4)
O1vi—Na1—O2i174.26 (7)O2x—Na2—O1ix71.27 (7)
O1—Na1—O2i104.00 (7)O2xi—Na2—O1ix104.17 (8)
O1iii—Na1—O2i98.18 (6)O2xii—Na2—O1ix135.31 (4)
O1vi—Na1—O2vii104.00 (7)O2xiii—Na2—O1ix75.83 (8)
O1—Na1—O2vii98.18 (6)O1x—Na2—O1ix60.415 (6)
O1iii—Na1—O2vii174.26 (7)O1—Na2—O1ix119.585 (6)
O2i—Na1—O2vii81.67 (5)O1xi—Na2—O1ix119.585 (6)
O1vi—Na1—O2viii98.18 (6)O2—Na2—O1xiii75.83 (8)
O1—Na1—O2viii174.26 (7)O2ix—Na2—O1xiii71.27 (7)
O1iii—Na1—O2viii104.00 (7)O2x—Na2—O1xiii104.17 (8)
O2i—Na1—O2viii81.67 (5)O2xi—Na2—O1xiii135.31 (4)
O2vii—Na1—O2viii81.67 (5)O2xii—Na2—O1xiii108.73 (7)
O1vi—Na1—Na2viii134.52 (4)O2xiii—Na2—O1xiii44.69 (4)
O1—Na1—Na2viii134.52 (4)O1x—Na2—O1xiii119.585 (6)
O1iii—Na1—Na2viii134.52 (4)O1—Na2—O1xiii60.415 (6)
O2i—Na1—Na2viii49.03 (3)O1xi—Na2—O1xiii180.0
O2vii—Na1—Na2viii49.03 (3)O1ix—Na2—O1xiii60.416 (6)
O2viii—Na1—Na2viii49.03 (3)O2—Na2—O1xii71.27 (7)
O2—Na2—O2ix70.38 (4)O2ix—Na2—O1xii135.31 (4)
O2—Na2—O2x180.0O2x—Na2—O1xii108.73 (7)
O2ix—Na2—O2x109.62 (4)O2xi—Na2—O1xii75.83 (8)
O2—Na2—O2xi70.38 (4)O2xii—Na2—O1xii44.69 (4)
O2ix—Na2—O2xi70.38 (4)O2xiii—Na2—O1xii104.17 (8)
O2x—Na2—O2xi109.62 (4)O1x—Na2—O1xii119.585 (6)
O2—Na2—O2xii109.62 (4)O1—Na2—O1xii60.415 (6)
O2ix—Na2—O2xii180.0O1xi—Na2—O1xii60.416 (6)
O2x—Na2—O2xii70.38 (4)O1ix—Na2—O1xii180.0
O2xi—Na2—O2xii109.62 (4)O1xiii—Na2—O1xii119.584 (6)
O2—Na2—O2xiii109.62 (4)O1—N—O2117.9 (2)
O2ix—Na2—O2xiii109.62 (4)O1—N—Co123.0 (1)
O2x—Na2—O2xiii70.38 (4)O2—N—Co119.1 (1)
O2xi—Na2—O2xiii180.0N—O1—Na1133.7 (1)
O2xii—Na2—O2xiii70.38 (4)N—O1—Na293.3 (1)
O2—Na2—O1x135.31 (4)Na1—O1—Na2130.95 (6)
O2ix—Na2—O1x75.83 (8)N—O2—Na1xiv166.4 (1)
O2x—Na2—O1x44.69 (4)N—O2—Na2103.97 (9)
O2xi—Na2—O1x71.27 (7)Na1xiv—O2—Na289.25 (4)
O2xii—Na2—O1x104.17 (8)
Symmetry codes: (i) x+y+2/3, x+1/3, z+1/3; (ii) y, x+y, z; (iii) y, xy, z; (iv) x, y, z; (v) xy, x, z; (vi) x+y, x, z; (vii) y1/3, xy2/3, z+1/3; (viii) x1/3, y+1/3, z+1/3; (ix) y, xy1, z; (x) x+2/3, y2/3, z+1/3; (xi) x+y+1, x, z; (xii) y+2/3, x+y+1/3, z+1/3; (xiii) xy1/3, x2/3, z+1/3; (xiv) x+1/3, y1/3, z1/3.
(Iat10K) trisodium hexanitrocobaltate(III) top
Crystal data top
Na3Co(NO2)6Dx = 2.606 Mg m3
Mr = 403.96Melting point: not measured K
Trigonal, R3Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3Cell parameters from 24 reflections
a = 7.7724 (4) Åθ = 29.8–40.1°
c = 14.763 (2) ŵ = 1.89 mm1
V = 772.4 (1) Å3T = 11 K
Z = 3Prism, dark-red
F(000) = 5940.38 × 0.26 × 0.25 mm
Data collection top
Huber 512 goniometer
diffractometer
1819 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.029
None monochromatorθmax = 50.1°, θmin = 3.3°
ω–2θ scanh = 1616
Absorption correction: gaussian
Xtal 3.7 (Hall, du Boulay & Olthof-Hazekamp, 2000)
k = 1616
Tmin = 0.591, Tmax = 0.673l = 3131
10695 measured reflections3 standard reflections every 100 reflections
1819 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.039P)2 + 0.4843P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.85 e Å3
1819 reflectionsΔρmin = 1.39 e Å3
36 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0083 (11)
Crystal data top
Na3Co(NO2)6Z = 3
Mr = 403.96Mo Kα radiation
Trigonal, R3µ = 1.89 mm1
a = 7.7724 (4) ÅT = 11 K
c = 14.763 (2) Å0.38 × 0.26 × 0.25 mm
V = 772.4 (1) Å3
Data collection top
Huber 512 goniometer
diffractometer
1819 reflections with I > 2σ(I)
Absorption correction: gaussian
Xtal 3.7 (Hall, du Boulay & Olthof-Hazekamp, 2000)
Rint = 0.029
Tmin = 0.591, Tmax = 0.6733 standard reflections every 100 reflections
10695 measured reflections intensity decay: 1%
1819 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02136 parameters
wR(F2) = 0.0610 restraints
S = 1.07Δρmax = 0.85 e Å3
1819 reflectionsΔρmin = 1.39 e Å3
Special details top

Experimental. The correction for the absorption by the beryllium shield was performed by PROFIT (Streltsov & Zavodnik, 1989) program.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.00000.00000.00000.00511 (3)
Na10.00000.00000.26420 (3)0.01020 (6)
Na20.33330.33330.16670.01068 (9)
N0.11241 (10)0.13232 (10)0.07273 (3)0.00757 (6)
O10.08919 (8)0.15443 (8)0.15537 (3)0.01086 (7)
O20.20588 (12)0.20117 (12)0.03362 (3)0.01024 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.00537 (4)0.00537 (4)0.00460 (5)0.00269 (2)0.0000.000
Na10.01132 (9)0.01132 (9)0.00794 (13)0.00566 (5)0.0000.000
Na20.01201 (13)0.01201 (13)0.00802 (19)0.00601 (7)0.0000.000
N0.00850 (17)0.00829 (16)0.00685 (11)0.00489 (13)0.00007 (12)0.00009 (11)
O10.01444 (16)0.01370 (16)0.00683 (12)0.00882 (14)0.00079 (10)0.00151 (11)
O20.01193 (19)0.01216 (18)0.01019 (12)0.00868 (11)0.00009 (17)0.00136 (17)
Geometric parameters (Å, º) top
Co—N1.9679 (4)Na1—Na2vii3.4811 (7)
Co—Ni1.9679 (4)Na2—O12.8637 (5)
Co—Nii1.9679 (4)Na2—O1ix2.8637 (5)
Co—Niii1.9679 (4)Na2—O1x2.8637 (5)
Co—Niv1.9679 (4)Na2—O1xi2.8637 (5)
Co—Nv1.9679 (4)Na2—O1xii2.8637 (5)
N—O11.2326 (7)Na2—O1xiii2.8637 (5)
N—O21.2395 (6)Na2—O22.6291 (5)
Na1—O12.3098 (6)Na2—O2ix2.6291 (5)
Na1—O1i2.3098 (6)Na2—O2x2.6291 (5)
Na1—O1ii2.3098 (6)Na2—O2xi2.6291 (5)
Na1—O2vi2.3141 (5)Na2—O2xii2.6291 (5)
Na1—O2vii2.3141 (5)Na2—O2xiii2.6291 (5)
Na1—O2viii2.3141 (5)O2—Na1xiv2.3142 (5)
N—Co—Niii180.0O2xi—Na2—O1x103.28 (2)
Niv—Co—Ni180.0O2—Na2—O1x110.10 (2)
Nv—Co—Nii180.0O2xii—Na2—O1ix110.10 (2)
N—Co—Niv86.94 (2)O2ix—Na2—O1xiii110.10 (2)
N—Co—Nv86.94 (2)O2xiii—Na2—O1xii110.10 (2)
Ni—Co—Niii86.94 (2)O2x—Na2—O1xi110.10 (2)
Ni—Co—Nv86.94 (2)O2xi—Na2—O1110.10 (2)
Nii—Co—Niii86.94 (2)O2—Na2—O1xii134.74 (1)
Nii—Co—Niv86.94 (2)O2xii—Na2—O1134.74 (1)
N—Co—Ni93.06 (2)O2ix—Na2—O1x134.74 (1)
N—Co—Nii93.06 (2)O2xiii—Na2—O1xi134.74 (1)
Niii—Co—Niv93.06 (2)O2x—Na2—O1ix134.74 (1)
Niii—Co—Nv93.06 (2)O2xi—Na2—O1xiii134.74 (1)
Niv—Co—Nv93.06 (2)O2—Na2—O145.26 (1)
Ni—Co—Nii93.06 (2)O2xii—Na2—O1xii45.26 (1)
O1—Na1—O1i76.95 (2)O2ix—Na2—O1ix45.26 (1)
O1—Na1—O1ii76.95 (2)O2xiii—Na2—O1xiii45.26 (1)
O1ii—Na1—O1i76.95 (2)O2x—Na2—O1x45.26 (1)
O1—Na1—O2vi104.74 (2)O2xi—Na2—O1xi45.26 (1)
O1i—Na1—O2vii104.74 (2)O2—Na2—O1ix69.90 (2)
O1ii—Na1—O2viii104.74 (2)O2xii—Na2—O1x69.90 (2)
O1—Na1—O2vii173.21 (2)O2ix—Na2—O1xi69.90 (2)
O1i—Na1—O2viii173.21 (2)O2xiii—Na2—O169.90 (2)
O1ii—Na1—O2vi173.21 (2)O2x—Na2—O1xiii69.90 (2)
O1—Na1—O2viii96.93 (2)O2xi—Na2—O1xii69.90 (2)
O1i—Na1—O2vi96.93 (2)O2—Na2—O1xiii76.72 (2)
O1ii—Na1—O2vii96.93 (2)O2xii—Na2—O1xi76.72 (2)
O2viii—Na1—O2vii81.69 (2)O2ix—Na2—O176.72 (2)
O2vi—Na1—O2vii81.69 (2)O2xiii—Na2—O1x76.72 (2)
O2vi—Na1—O2viii81.69 (2)O2x—Na2—O1xii76.72 (2)
O1ii—Na1—Na2vii134.08 (2)O2xi—Na2—O1ix76.72 (2)
O1—Na1—Na2vii134.08 (2)O2—Na2—O2ix109.71 (2)
O1i—Na1—Na2vii134.08 (2)O2—Na2—O2xiii109.71 (2)
O2vi—Na1—Na2vii49.04 (1)O2xii—Na2—O2xi109.71 (2)
O2viii—Na1—Na2vii49.04 (1)O2x—Na2—O2xii109.71 (2)
O2vii—Na1—Na2vii49.04 (1)O2x—Na2—O2xiii109.71 (2)
O1xiii—Na2—O1ix119.664 (2)O2xi—Na2—O2ix109.71 (2)
O1—Na2—O1x119.664 (2)O2—Na2—O2xii180.0
O1—Na2—O1xi119.664 (2)O2x—Na2—O2ix180.0
O1xii—Na2—O1ix119.664 (2)O2xi—Na2—O2xiii180.0
O1xii—Na2—O1xiii119.664 (2)O2—Na2—O2x70.29 (2)
O1xi—Na2—O1x119.664 (2)O2—Na2—O2xi70.29 (2)
O1xii—Na2—O1180.0O2xii—Na2—O2ix70.29 (2)
O1x—Na2—O1ix180.0O2xii—Na2—O2xiii70.29 (2)
O1xi—Na2—O1xiii180.0O2ix—Na2—O2xiii70.29 (2)
O1—Na2—O1ix60.336 (2)O2x—Na2—O2xi70.29 (2)
O1—Na2—O1xiii60.336 (2)O1—N—O2118.51 (5)
O1xii—Na2—O1x60.336 (2)O1—N—Co122.73 (4)
O1xii—Na2—O1xi60.336 (2)O2—N—Co118.73 (4)
O1x—Na2—O1xiii60.336 (2)N—O1—Na1132.61 (4)
O1xi—Na2—O1ix60.336 (2)N—O1—Na292.24 (3)
O2—Na2—O1xi103.28 (2)Na1—O1—Na2130.97 (2)
O2xii—Na2—O1xiii103.28 (2)N—O2—Na1xiv166.03 (4)
O2ix—Na2—O1xii103.28 (2)N—O2—Na2103.73 (3)
O2xiii—Na2—O1ix103.28 (2)Na1xiv—O2—Na289.30 (2)
O2x—Na2—O1103.28 (2)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) x, y, z; (iv) y, x+y, z; (v) xy, x, z; (vi) x+y+2/3, x+1/3, z+1/3; (vii) x1/3, y+1/3, z+1/3; (viii) y1/3, xy2/3, z+1/3; (ix) y+2/3, x+y+1/3, z+1/3; (x) y, xy1, z; (xi) x+y+1, x, z; (xii) x+2/3, y2/3, z+1/3; (xiii) xy1/3, x2/3, z+1/3; (xiv) x+1/3, y1/3, z1/3.

Experimental details

(Iat293K)(Iat10K)
Crystal data
Chemical formulaNa3Co(NO2)6Na3Co(NO2)6
Mr403.96403.96
Crystal system, space groupTrigonal, R3Trigonal, R3
Temperature (K)29311
a, c (Å)7.806 (1), 14.867 (2)7.7724 (4), 14.763 (2)
V3)784.5 (2)772.4 (1)
Z33
Radiation typeMo KαMo Kα
µ (mm1)1.861.89
Crystal size (mm)0.38 × 0.26 × 0.250.38 × 0.26 × 0.25
Data collection
DiffractometerHuber 512 goniometer
diffractometer
Huber 512 goniometer
diffractometer
Absorption correctionGaussian
Xtal 3.7 (Hall, du Boulay & Olthof-Hazekamp, 2000)
Gaussian
Xtal 3.7 (Hall, du Boulay & Olthof-Hazekamp, 2000)
Tmin, Tmax0.620, 0.6730.591, 0.673
No. of measured, independent and
observed [I > 2σ(I)] reflections
3068, 518, 518 10695, 1819, 1819
Rint0.0250.029
(sin θ/λ)max1)0.7051.080
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.055, 1.10 0.021, 0.061, 1.07
No. of reflections5181819
No. of parameters3636
Δρmax, Δρmin (e Å3)0.40, 0.330.85, 1.39

Computer programs: Local diffractometer control software, PROFIT (Streltsov & Zavodnik, 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Bond lengths (Å) and angles (°) in the Co(NO2)63- anion and geometry of Na+ cations and oxygen atoms interactions. top
Bond (X1-X2)293 K10.5 KSymm. trans. X2
Co-N1.966 (2)1.9679 (4)0, i, ii, iii, iv, v
N-O11.226 (2)1.2326 (7)0
N-O21.238 (3)1.2395 (6)0
Na1-O12.322 (2)2.3098 (6)0, i, ii
Na1-O22.338 (2)2.3141 (5)vi, vii, vii
Na2-O12.873 (2)2.8637 (5)0, ix, x, xi, xii, xiii
Na2-O22.653 (2)2.6291 (5)0, ix, x, xi, xii, xiii
Na1-Na23.513 (1)3.4811 (7)vi
Angle (X1-X3-X3)293 K10.5 KSymm. trans. X1,X3
O1-N-O2117.9 (2)118.51 (5)0,0
O1-N-Co123.0 (1)122.73 (4)0,0
O2-N-Co119.1 (1)118.73 (4)0,0
N-O1-Na1133.7 (1)132.61 (4)0,0
N-O1-Na293.3 (1)92.24 (3)0,0
Na1-O1-Na2130.95 (6)130.97 (2)0,0
N-O2-Na2103.97 (9)103.73 (3)0,0
N-Co-N180.0180.00,iii; i,iv; ii,v
N-Co-N86.91 (5)86.94 (2)0,iv; 0,v; i,iii; i,v; ii,iii; ii,iv
N-Co-N93.09 (5)93.06 (2)0,ii; 0,xii; i,ii; iii,iv; iii,v; iv,v
O1-Na1-O176.26 (6)76.95 (2)0,ii; 0,xii; i,ii
O1-Na1-O2104.00 (7)104.74 (2)0,viii; i,vi; ii,vii
O1-Na1-O2174.26 (7)173.21 (2)0,vi; i,vii; ii,viii
O1-Na1-O298.18 (6)96.93 (2)0,vii; i,viii; ii,vi
O2-Na1-O281.67 (5)81.69 (2)viii,vi; viii,vii; vi,vii
O1-Na2-O1119.585 (6)119.664 (2)0,ix; 0,x; ix,x; xi,xiii; xii,xi; xii,xiii
O1-Na2-O1180.0180.00,xi; x,xiii; xii,ix
O1-Na2-O160.415 (6)60.336 (2)0,xii; 0,xiii; ix,xi; ix,xiii; x,xi; xii,x
O2-Na2-O1104.17 (8)103.28 (2)0,x; ix,0; x,ix; xi,xiii; xii,xi; xiii,xii
O2-Na2-O1108.73 (7)110.10 (2)0,ix; ix,x; x,0; xi,xii; xii,xiii; xiii,xi
O2-Na2-O1135.31 (4)134.74 (1)0,xi; ix,xii; x,xiii; xi,0; xii,ix; xiii,x
O2-Na2-O144.69 (4)45.26 (1)0,0; ix,ix; x,x; xi,xi; xii,xii; xiii,xiii
O2-Na2-O171.27 (7)69.90 (2)0,xii; ix,xiii; x,xi; xi,ix; xii,x; xiii,0
O2-Na2-O175.83 (8)76.72 (2)0,xiii; ix,xi; x,xii; xi,x; xii,0; xiii,ix
O2-Na2-O2109.62 (4)109.71 (2)0,xii; 0,xiii; ix,xi; ix,xiii; x,xi; xii,x
O2-Na2-O2180.0180.00,xi; x,xiii; xii,ix
O2-Na2-O270.38 (4)70.29 (2)0,ix; 0,x; i,xi; ix,x; xi,xiii; xii,xiii
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds