Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title mol­ecule, C13H14O3, is a chiral mol­ecule which exhibits C-C single-bond lengths that deviate from the expected value. Both enanti­omers are present in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041802/is6160sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041802/is6160Isup2.hkl
Contains datablock I

CCDC reference: 296587

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.062
  • wR factor = 0.172
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.19
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The structure of the title compound, (I), was determined as part of an ongoing investigation of the chemical reactivity and crystal structures of polycyclic pentacycloundecane (PCU) cage derivatives. Previous studies indicated that PCU cages and derivatives often display C—C bond lengths that deviate from the expected value of 1.54 Å (Flippen-Anderson et al., 1991; Linden et al., 2005; Kruger et al., 2005). It is typically found that bonds involving atoms C4, C8 and C11 are shorter than normal, and that the C9—C10 bond is longer than expected.

The title compound is unsymmetrically substituted at the mouth of the cage, with a ketone substituent at atom C8 and a ketal substituent at atom C11 (Fig. 1). The asymmetric unit is comprised of one chiral molecule, with eight molecules (four of each enantiomer) in the unit cell (Fig. 2). This compound exhibits the shortening and elongation of certain C—C single bonds, as reported for related PCU derivatives (Table 1). The longest C—C single bond is the C9—C10 bond [1.581 (3) Å], with the C3—C10, C6—C7, C5—C9, C2—C6, C5—C6 and C1—C7 bonds also exceeding the expected value of 1.54 Å. The bonds involving the bridgehead atom C4 are shorter than expected; C3—C4 and C4—C5 exhibit values of 1.525 (3) and 1.521 (3) Å, respectively. The shortest bond is the C7—C8 bond [1.509 (3) Å], with the C10—C11, C8—C9 and C12—C13 bonds also exhibiting short C—C single-bond lengths. The unsymmetrical substitution at the mouth of the cage results in corresponding bonds in the molecule displaying different bond lengths, for example, the C1—C11 bond [1.536 (3) Å] is longer than the corresponding C7—C8 bond.

The five-membered rings, C2–C6 and C3–C5/C9/C10, are in the envelope conformation (envelope on C4), and the acetal ring, O1/C11/O2/C13/C12, also adopts the envelope conformation (envelope on C1). The rings, C1–C3/C10/C11 and C5–C9, are twisted on C10—C11 and C8—C9, respectively.

Experimental top

The synthetic procedure reported by Dekker & Oliver (1979) was followed to prepare the title compound, (I). In this procedure, a mixture of pentacycloundecane dione (Cookson et al., 1964) (183 g, 1.05 mol), ethylene glycol (81.2 ml, 1.45 mol) and p-toluenesulfonic acid (6.11 g, 3.21 × 10−2 mol) in benzene (600 ml) was refluxed (Dean–Stark trap) with stirring for 4 d. The reaction mixture was cooled to room temperature and slowly poured into ice-cold 10% (v/v) aqueous Na2CO3 (1000 ml), extracted with dichloromethane (3 × 500 ml) and the combined extracts were dried over anhydrous Na2SO4. Evaporation of the solvent followed by recrystallization of the crude residue yielded the mono-acetal as colourless crystals (170.04 g, 74%). IR (KBr) max 1747 cm−1 (CO); 1H NMR (CDCl3, 300 MHz): δ 1.51–1.84 (2H, methylene bridge protons), 2.35–2.92 (8H, methine protons), 3.78–3.91 (4H, ketal protons); 13C NMR (CDCl3, 75 MHz): δ 36.35 (d), 38.74 (t), 41.33–53.02 (d), 64.52–65.71 (t, ketal carbons), 113.92 (s), 215.14 (s). The MS spectra was identical to an authentic sample.

Refinement top

All H atoms were placed in calculated positions, with methylene C—H distances of 0.99 Å and methine C—H distances of 1.00 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(parent atom)·The maximum and minimum electron-density peaks were 1.07 Å from atom C3 and 0.59 Å from atom C2, respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level (ORTEP-3; Farrugia, 1997).
[Figure 2] Fig. 2. Packing diagram (Mercury; Bruno et al., 2002) of (I), viewed along the b axis.
Pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8–11-dione ethylene acetal top
Crystal data top
C13H14O3F(000) = 928
Mr = 218.24Dx = 1.455 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3784 reflections
a = 24.7387 (10) Åθ = 3.2–28.2°
b = 6.6340 (3) ŵ = 0.10 mm1
c = 12.7631 (5) ÅT = 173 K
β = 107.914 (2)°Plate, colourless
V = 1993.09 (14) Å30.37 × 0.22 × 0.11 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
1984 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.0°, θmin = 1.7°
ϕ and ω scansh = 3232
10114 measured reflectionsk = 88
2394 independent reflectionsl = 1611
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0769P)2 + 5.0276P]
where P = (Fo2 + 2Fc2)/3
2394 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H14O3V = 1993.09 (14) Å3
Mr = 218.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.7387 (10) ŵ = 0.10 mm1
b = 6.6340 (3) ÅT = 173 K
c = 12.7631 (5) Å0.37 × 0.22 × 0.11 mm
β = 107.914 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1984 reflections with I > 2σ(I)
10114 measured reflectionsRint = 0.026
2394 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.06Δρmax = 0.58 e Å3
2394 reflectionsΔρmin = 0.27 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37708 (7)0.2153 (3)0.49972 (13)0.0337 (4)
O20.42588 (7)0.1357 (2)0.67591 (12)0.0281 (4)
O30.43301 (7)0.3342 (3)0.90396 (13)0.0346 (4)
C110.38698 (9)0.2763 (3)0.61014 (17)0.0246 (4)
C100.33147 (9)0.2869 (4)0.6361 (2)0.0312 (5)
H100.30820.16150.61570.037*
C30.30253 (9)0.4749 (4)0.56919 (19)0.0333 (5)
H30.28140.44930.49000.040*
C40.26712 (10)0.5617 (5)0.6374 (2)0.0409 (6)
H4A0.25160.69670.61170.049*
H4B0.23620.47010.64130.049*
C50.31574 (10)0.5697 (4)0.74473 (19)0.0337 (5)
H50.30580.62450.80950.040*
C90.34154 (9)0.3535 (4)0.75962 (19)0.0307 (5)
H90.32410.26070.80190.037*
C80.40359 (9)0.3992 (3)0.81707 (17)0.0244 (4)
C70.41823 (9)0.5648 (3)0.74936 (17)0.0266 (5)
H70.45390.64190.78480.032*
C60.36223 (10)0.6893 (3)0.71134 (19)0.0302 (5)
H60.36500.83740.72670.036*
C20.35290 (9)0.6213 (3)0.59021 (18)0.0287 (5)
H20.35050.72920.53420.034*
C10.40826 (9)0.4949 (3)0.62745 (16)0.0249 (4)
H10.43850.53230.59390.030*
C120.43072 (11)0.1416 (4)0.49494 (19)0.0342 (5)
H12A0.45480.25280.48280.041*
H12B0.42560.04030.43580.041*
C130.45626 (9)0.0469 (3)0.60825 (18)0.0282 (5)
H13A0.45110.10120.60450.034*
H13B0.49730.07750.63770.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0349 (9)0.0390 (9)0.0226 (8)0.0069 (7)0.0020 (6)0.0081 (7)
O20.0320 (8)0.0282 (8)0.0247 (8)0.0087 (6)0.0096 (6)0.0036 (6)
O30.0423 (9)0.0408 (9)0.0201 (8)0.0147 (7)0.0088 (7)0.0052 (7)
C110.0259 (10)0.0260 (10)0.0195 (10)0.0023 (8)0.0037 (8)0.0017 (8)
C100.0232 (10)0.0337 (12)0.0354 (12)0.0033 (9)0.0071 (9)0.0049 (9)
C30.0226 (9)0.0450 (13)0.0279 (11)0.0070 (9)0.0013 (8)0.0035 (10)
C40.0258 (11)0.0516 (15)0.0449 (14)0.0077 (10)0.0100 (10)0.0023 (12)
C50.0309 (11)0.0434 (13)0.0297 (11)0.0119 (10)0.0135 (9)0.0027 (10)
C90.0266 (10)0.0355 (12)0.0339 (12)0.0008 (9)0.0150 (9)0.0033 (9)
C80.0284 (10)0.0257 (10)0.0208 (9)0.0050 (8)0.0103 (8)0.0002 (8)
C70.0321 (11)0.0258 (10)0.0215 (10)0.0036 (8)0.0073 (8)0.0013 (8)
C60.0365 (12)0.0253 (10)0.0272 (11)0.0045 (9)0.0072 (9)0.0004 (8)
C20.0320 (11)0.0288 (11)0.0246 (10)0.0043 (9)0.0075 (9)0.0049 (8)
C10.0278 (10)0.0264 (10)0.0210 (9)0.0013 (8)0.0083 (8)0.0017 (8)
C120.0408 (13)0.0349 (12)0.0279 (11)0.0063 (10)0.0121 (10)0.0051 (9)
C130.0297 (10)0.0260 (10)0.0302 (11)0.0016 (8)0.0110 (9)0.0019 (8)
Geometric parameters (Å, º) top
O1—C111.413 (2)C5—H51.0000
O1—C121.433 (3)C9—C81.514 (3)
O2—C111.416 (2)C9—H91.0000
O2—C131.434 (3)C8—C71.509 (3)
O3—C81.204 (3)C7—C61.557 (3)
C11—C101.510 (3)C7—C11.569 (3)
C11—C11.536 (3)C7—H71.0000
C10—C31.556 (3)C6—C21.558 (3)
C10—C91.581 (3)C6—H61.0000
C10—H101.0000C2—C11.550 (3)
C3—C41.525 (3)C2—H21.0000
C3—C21.537 (3)C1—H11.0000
C3—H31.0000C12—C131.524 (3)
C4—C51.521 (3)C12—H12A0.9900
C4—H4A0.9900C12—H12B0.9900
C4—H4B0.9900C13—H13A0.9900
C5—C91.557 (3)C13—H13B0.9900
C5—C61.560 (3)
C11—O1—C12105.16 (16)O3—C8—C9127.6 (2)
C11—O2—C13107.47 (15)C7—C8—C9104.74 (17)
O1—C11—O2106.27 (16)C8—C7—C6102.55 (17)
O1—C11—C10110.00 (17)C8—C7—C1111.14 (17)
O2—C11—C10113.50 (18)C6—C7—C189.67 (16)
O1—C11—C1111.14 (18)C8—C7—H7116.6
O2—C11—C1113.36 (17)C6—C7—H7116.6
C10—C11—C1102.65 (17)C1—C7—H7116.6
C11—C10—C3102.27 (18)C7—C6—C290.09 (16)
C11—C10—C9110.91 (17)C7—C6—C5107.77 (18)
C3—C10—C9103.20 (18)C2—C6—C5103.13 (18)
C11—C10—H10113.2C7—C6—H6117.3
C3—C10—H10113.2C2—C6—H6117.3
C9—C10—H10113.2C5—C6—H6117.3
C4—C3—C2103.8 (2)C3—C2—C1107.72 (18)
C4—C3—C10103.7 (2)C3—C2—C6102.75 (18)
C2—C3—C10101.49 (17)C1—C2—C690.29 (16)
C4—C3—H3115.3C3—C2—H2117.4
C2—C3—H3115.3C1—C2—H2117.4
C10—C3—H3115.3C6—C2—H2117.4
C5—C4—C395.36 (17)C11—C1—C2103.59 (16)
C5—C4—H4A112.7C11—C1—C7111.36 (17)
C3—C4—H4A112.7C2—C1—C789.94 (16)
C5—C4—H4B112.7C11—C1—H1116.2
C3—C4—H4B112.7C2—C1—H1116.2
H4A—C4—H4B110.2C7—C1—H1116.2
C4—C5—C9105.0 (2)O1—C12—C13102.66 (18)
C4—C5—C6102.53 (19)O1—C12—H12A111.2
C9—C5—C6101.11 (17)C13—C12—H12A111.2
C4—C5—H5115.4O1—C12—H12B111.2
C9—C5—H5115.4C13—C12—H12B111.2
C6—C5—H5115.4H12A—C12—H12B109.1
C8—C9—C5101.02 (18)O2—C13—C12105.12 (17)
C8—C9—C10111.35 (17)O2—C13—H13A110.7
C5—C9—C10101.69 (18)C12—C13—H13A110.7
C8—C9—H9113.8O2—C13—H13B110.7
C5—C9—H9113.8C12—C13—H13B110.7
C10—C9—H9113.8H13A—C13—H13B108.8
O3—C8—C7127.2 (2)
C12—O1—C11—O236.8 (2)C9—C8—C7—C159.5 (2)
C12—O1—C11—C10160.01 (19)C8—C7—C6—C2112.19 (17)
C12—O1—C11—C187.0 (2)C1—C7—C6—C20.59 (16)
C13—O2—C11—O123.5 (2)C8—C7—C6—C58.4 (2)
C13—O2—C11—C10144.49 (18)C1—C7—C6—C5103.24 (18)
C13—O2—C11—C198.9 (2)C4—C5—C6—C7128.41 (19)
O1—C11—C10—C370.9 (2)C9—C5—C6—C720.1 (2)
O2—C11—C10—C3170.16 (17)C4—C5—C6—C234.0 (2)
C1—C11—C10—C347.4 (2)C9—C5—C6—C274.3 (2)
O1—C11—C10—C9179.60 (18)C4—C3—C2—C1127.62 (19)
O2—C11—C10—C960.7 (2)C10—C3—C2—C120.2 (2)
C1—C11—C10—C962.0 (2)C4—C3—C2—C633.2 (2)
C11—C10—C3—C4148.97 (19)C10—C3—C2—C674.3 (2)
C9—C10—C3—C433.7 (2)C7—C6—C2—C3108.85 (18)
C11—C10—C3—C241.5 (2)C5—C6—C2—C30.6 (2)
C9—C10—C3—C273.8 (2)C7—C6—C2—C10.59 (16)
C2—C3—C4—C553.4 (2)C5—C6—C2—C1107.69 (17)
C10—C3—C4—C552.3 (2)O1—C11—C1—C283.6 (2)
C3—C4—C5—C952.3 (2)O2—C11—C1—C2156.80 (17)
C3—C4—C5—C653.0 (2)C10—C11—C1—C234.0 (2)
C4—C5—C9—C8147.18 (19)O1—C11—C1—C7178.94 (16)
C6—C5—C9—C840.8 (2)O2—C11—C1—C761.4 (2)
C4—C5—C9—C1032.4 (2)C10—C11—C1—C761.4 (2)
C6—C5—C9—C1073.94 (19)C3—C2—C1—C117.9 (2)
C11—C10—C9—C82.9 (3)C6—C2—C1—C11111.40 (17)
C3—C10—C9—C8105.9 (2)C3—C2—C1—C7104.09 (18)
C11—C10—C9—C5109.8 (2)C6—C2—C1—C70.59 (16)
C3—C10—C9—C50.9 (2)C8—C7—C1—C110.7 (2)
C5—C9—C8—O3124.0 (2)C6—C7—C1—C11104.00 (18)
C10—C9—C8—O3128.7 (2)C8—C7—C1—C2103.93 (19)
C5—C9—C8—C748.6 (2)C6—C7—C1—C20.59 (16)
C10—C9—C8—C758.7 (2)C11—O1—C12—C1334.1 (2)
O3—C8—C7—C6137.6 (2)C11—O2—C13—C121.9 (2)
C9—C8—C7—C635.1 (2)O1—C12—C13—O219.7 (2)
O3—C8—C7—C1127.9 (2)

Experimental details

Crystal data
Chemical formulaC13H14O3
Mr218.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)24.7387 (10), 6.6340 (3), 12.7631 (5)
β (°) 107.914 (2)
V3)1993.09 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.22 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10114, 2394, 1984
Rint0.026
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.172, 1.06
No. of reflections2394
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SAINT, SHELXTL (Bruker, 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
C11—C101.510 (3)C5—C61.560 (3)
C11—C11.536 (3)C9—C81.514 (3)
C10—C31.556 (3)C8—C71.509 (3)
C10—C91.581 (3)C7—C61.557 (3)
C3—C41.525 (3)C7—C11.569 (3)
C3—C21.537 (3)C6—C21.558 (3)
C4—C51.521 (3)C2—C11.550 (3)
C5—C91.557 (3)C12—C131.524 (3)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds